Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 112))

  • 1147 Accesses

All structures tend to reach a minimum energy configuration; a perfect single crystal, for example, is the illustration of such configuration. However, the former structure with very low internal energy may not be suitable for all domains of application. Indeed, depending on the desired performance, the introduction of defects into a perfect microstructure can prove advantageous. Doped silicon plates and doped ceramics are good examples of the possible ameliorations resulting from the presence of defects in a material. Similarly to dopants, grain boundaries can lead to improved materials response. In general, grain boundaries provide barriers to the motion of dislocations within a grain – this in turns leads to a more pronounced hardening – and can also act as barrier to crack propagation, which can improve the materials’ ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gleiter, H., Materials Science and Engineering 52, (1982)

    Google Scholar 

  2. Read, W.T., Dislocations in Crystals. McGraw-Hill, New York, (1953)

    Google Scholar 

  3. Herring, C., In: Gomer, R., and C.S. Smith, (eds.) Structure and Properties of Solid Surfaces. University of Chicago Press, Chicago, (1952)

    Google Scholar 

  4. Gjostein, N.A. and F.N. Rhines, Acta Metallurgica 7, (1959)

    Google Scholar 

  5. Chan, S.W. and R.W. Balluffi, Acta Metallurgica 33(6), 1113–1119, (1985)

    Google Scholar 

  6. Wolf, D., Acta Metallurgica 38, (1990)

    Google Scholar 

  7. Wolf, D., Acta Metallurgica 32(5), 735–748, (1984)

    Google Scholar 

  8. Read, W.T. and W. Shockley, Imperfections in Nearly Perfect Crystals. New York: Wiley; London: Chapman & Hall, (1952)

    Google Scholar 

  9. Warrington, D.H. and M. Boon, Acta Metallurgica 23(5), 599–607, (1975)

    Google Scholar 

  10. Hirth, J.P. and J. Lothe, Theory of Dislocations. Krieger Publishing Company, New York, (1982)

    Google Scholar 

  11. Bollmann, W., Crystal Defects and Crystalline Interfaces. Springer Verlag, New York, (1970)

    Google Scholar 

  12. Balluffi, R.W., A. Brokman, and A.H. King, Acta Metallurgica 30, (1982)

    Google Scholar 

  13. Brandon, D.G., B. Ralph, S. Ranganathan, and M.S. Wald, Acta Metallurgica 12(7), 813–821, (1964)

    Google Scholar 

  14. Balluffi, R.W. and P.D. Bristowe, Surface Science 144, (1984)

    Google Scholar 

  15. Balluffi, R.W. and A. Brokman, Scripta Metallurgica 17(8), 1027–1030, (1983)

    Google Scholar 

  16. Brokman, A. and R.W. Balluffi, Acta Metallurgica (1981)

    Google Scholar 

  17. Spearot, D.E., L. Capolungo, J. Qu, and M. Cherkaoui, Computational Materials Science 42, 57–67, (2008)

    Google Scholar 

  18. Capolungo, L., D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, and K.I. Jacob, Journal of the Mechanics and Physics of Solids 55, (2007)

    Google Scholar 

  19. Li, J.C.M., Surface Science 31, (1972)

    Google Scholar 

  20. Shih, K.K. and J.C.M. Li, Surface Science 50, (1975)

    Google Scholar 

  21. Romanov, A.E., European Journal of Mechanics A/Solids 22, (2003)

    Google Scholar 

  22. Romanov, A.E. and V.I. Vladimirov, Dislocations in Solids. Elsevier, City: Amsterdam, North Holland, (1992)

    Google Scholar 

  23. Huang, W. and T. Mura, Journal of Applied Physics 41, (1970)

    Google Scholar 

  24. Gutkin, M.Y., I.A. Ovid'ko, and N.V. Skiba, Materials Science and Engineering 339, (2003)

    Google Scholar 

  25. Gutkin, M.Y. and I.A. Ovid'ko, Plastic Deformation in Nanocrystalline Materials. Springer New York, (2004)

    Google Scholar 

  26. Hurtado, J.A., et al., Materials Science and Engineering 190, (1995)

    Google Scholar 

  27. Mikaelyan, K.N., I.A. Ovid'ko, and A.E. Romanov, Materials Science and Engineering 288, (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Cherkaoui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cherkaoui, M., Capolungo, L. (2009). Grain Boundary Modeling. In: Atomistic and Continuum Modeling of Nanocrystalline Materials. Springer Series in Materials Science, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46771-9_5

Download citation

Publish with us

Policies and ethics