Skip to main content

Muscarinic Acetylcholine Receptors in the Central Nervous System: Structure, Function, and Pharmacology

  • Chapter
Exploring the Vertebrate Central Cholinergic Nervous System

Abstract

Muscarinic acetylcholine (ACh) receptors (mAChRs) are members of the 7 transmembranespanning, guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) superfamily. There are 5 subtypes of mAChRs, and these mediate the majority of the actions of ACh in both the central nervous system (CNS) and the periphery. For example, peripheral mAChR activation results in a reduction in heart rate and vasodilatation of vascular beds, increases in exocrine secretions from sweat and lacrimal glands, and contraction of smooth muscle in the gastrointestinal tract, airways, ciliary body, and iris sphincter. All 5 subtypes of mAChRs are expressed in the CNS and are postulated to play a role in learning and memory, arousal, REM sleep, psychotic states, control of movement, thermoregulation, reward behaviors, and the generation of epileptic foci. This chapter provides an overview of current knowledge regarding the structure, function, and pharmacology of the mAChRs, with a particular emphasis on their roles in the CNS. For a historical introduction, see Chapter 4 A-E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AbdAlla, S., Lother, H., el Massiery A. and Quitterer, U.: Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 7: 1003–1009, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Abe, J., Takahashi, M., Ishida, M., Lee, J. D. and Berk, B. C.: c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J. Biol. Chem. 272: 20389–20394, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Akam, E. C., Challiss, R. A. and Nahorski, S. R.: Gq/11 and Gi/0 activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: dependence on agonist as well as receptor-subtype. Br. J. Pharmacol. 132: 950–958, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Albert, P. R. and Robillard, L.: G protein specificity. Traffic direction required. Cell. Signal. 14: 407–418, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Allen, T. G.: The role of N-, Q-and R-type Ca2+ channels in feedback inhibition of ACh release from rat basal forebrain neurones. J. Physiol. 515: 93–107, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Allman, K., Page, K. M., Curtis, C. A. and Hulme, E. C.: Scanning mutagenesis identifies amino acid side chains in transmembrane domain 5 of the M1 muscarinic receptor that participate in binding the acetyl methyl group of acetylcholine. Mol. Pharmacol. 58: 175–184, 2000.

    PubMed  CAS  Google Scholar 

  • Anagnostaras, S. G., Murphy, G. G., Hamilton, S. E., Mitchell, S. L., Rahnama, N. P., Nathanson, N. M. and Silva, A. J.: Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci. 6: 51–58, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Angeli, P., Marucci, G., Buccioni, M., Piergentili, A., Giannella, M., Quaglia, W., Pigini, M., Cantalamessa, F., Nasuti, C., Novi, F., Maggio, R., Qasem, A. R. and Spampinato, S.: Deoxamuscaroneoxime derivatives as useful muscarinic agonists to explore the muscarinic subsite: demox, a modulator of orthosteric and allosteric sites at cardiac muscarinic M2 receptors. Life Sci. 70: 1427–1446, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ayyagari P. V., Gerber, M., Joseph, J. A. and Crews, F. T.: Uncoupling of muscarinic cholinergic phosphoinositide signals in senescent cerebral cortical and hippocampal membranes. Neurochem. Int. 32: 107–115, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, R. B., Berry, K. J., Glenton, P. A. M., Nikolaou, N. M. and Soh, K. S.: A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29‡C and in ileum at 29‡C and 37‡C. Br. J. Pharmacol. 58: 613–620, 1976.

    PubMed  CAS  Google Scholar 

  • Baron, B. M. and Siegel, B. W.: Alpha 2-adrenergic and muscarinic cholinergic receptors have opposing actions on cyclic AMP levels in SK-N-SH human neuroblastoma cells. J. Neurochem. 53: 602–609, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Basile, A. S., Fedorova, I., Zapata, A., Liu, X., Shippenberg, T., Duttaroy, A., Yamada, M. and Wess, J.: Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc. Natl. Acad. Sci. U.S.A. 99: 11452–11457, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Baumgold, J. and Fishman, P. H.: Muscarinic receptor-mediated increase in cAMP levels in SK-N-SH human neuroblastoma cells. Biochem. Biophys. Res. Commun. 154: 1137–1143, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bawin, S. M., Satmary, W. M. and Adey, W. R.: Nitric oxide modulates rhythmic slow activity in rat hippocampal slices. Neuroreport 5 1869–1872, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Beech, D. J.: Actions of neurotransmitters and other messengers on Ca2+ channels and K+ channels in smooth muscle cells. Pharmacol. Ther. 73: 91–119, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Berkeley, J. L., Gomeza, J., Wess, J., Hamilton, S. E., Nathanson, N. M. and Levey, A.: I. M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol. Cell. Neurosci. 18: 512–524, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bernardini N., Roza C., Sauer S. K., Gomeza J., Wess J. and Reeh P. W.: Muscarinic M2 receptors on peripheral nerve endings: a molecular target of antinociception. J. Neurosci. 22: RC229, 2002.

    PubMed  Google Scholar 

  • Berridge, M. J. and Irvine, R. F.: Inositol phosphates and cell signalling. Nature 341: 197–205, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Birdsall, N. J. M. and Lazareno, S.: To what extent can binding studies allow the quantification of affinity and efficacy? Ann. N.Y. Acad. Sci. 812: 41–47, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Birdsall, N. J. M., Burgen, A. S. V., Hulme, E. C., Stockton, J. M. and Zigmond, M. J.: The effect of McN-A-343 on muscarinic receptors in the cerebral cortex and heart. Br. J. Pharmacol. 78: 257–259, 1983.

    PubMed  CAS  Google Scholar 

  • Birdsall, N. J., Lazareno, S. and Matsui, H.: Allosteric regulation of muscarinic receptors. Prog. Brain Res. 109: 147–151, 1996.

    PubMed  CAS  Google Scholar 

  • Birdsall, N. J., Farries, T., Gharagozloo, P., Kobayashi, S., Kuonen, D., Lazareno, S., Popham, A. and Sugimoto, M.: Selective allosteric enhancement of the binding and actions of acetylcholine at muscarinic receptor subtypes. Life Sci. 60: 1047–1052, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Birdsall, N. J., Lazareno, S., Popham, A. and Saldanha, J.: Multiple allosteric sites on muscarinic receptors. Life Sci. 68: 2517–2524, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Blin, N., Yun, J. and Wess, J.: Mapping of single amino acid residues required for selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. J. Biol. Chem. 270: 17741–17748, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Bluml, K., Mutschler, E. and Wess, J.: Functional role of a cytoplasmic aromatic amino acid in muscarinic receptor-mediated activation of phospholipase C. J. Biol. Chem. 269: 11537–11541, 1994a.

    PubMed  CAS  Google Scholar 

  • Bluml, K., Mutschler, E. and Wess, J.: Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphati-dylinositol hydrolysis. J. Biol. Chem. 269: 402–405, 1994b.

    PubMed  CAS  Google Scholar 

  • Bolton, T. B., Prestwich, S. A., Zholos, A. V. and Gordienko, D. V.: Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61: 85–115, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, T. I.: The molecular basis of muscarinic receptor diversity. Trends Neurosci. 12: 148–151, 1989a.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, T. I.: New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol. Sci., Supplt.: 11–15, 1989b.

    Google Scholar 

  • Bonner, T. I., Buckley, N. J., Young, A. C. and Brann, M. R.: Identification of a family of muscarinic acetylcholine receptor genes. Science 237: 527–532, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, T. I., Young, A. C., Brann, M. R. and Buckley, N. J.: Cloning and expression of the human and rat m5 acetylcholine receptor genes. Neuron 1: 403–410, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, T. I., Modi, W. S., Seuanez, H. N. and O’Brien, S. J.: Chromosomal mapping of the five human genes encoding the muscarinic acetylcholine receptors. Cytogenet. Cell. Genet. 58: 1850–1851, 1991.

    Google Scholar 

  • Bourne, H. R.: How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9: 134–142, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier, M.: Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2: 274–286, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J. L., Martinez-Carcamo, M., Monroy-Sanchez, J. A., Posadas, C. and Garcia-Sainz, J. A.: Guanine nucleotide-induced positive cooperativity in muscarinic-cholinergic antagonist binding. Biochem. Biophys. Res. Comm. 134: 172–177, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S. and Snyder, S. H.: Nitric oxide, a novel neuronal messenger. Neuron 8: 3–11, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S. and Snyder, S. H.: Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63: 175–195, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bromidge, S. M., Brown, F., Cassidy, F., Clark, M. S., Dabbs, S., Hadley, M. S., Hawkins, J., Loudon, J. M., Naylor, C. B., Orlek, B. S. and Riley, G. J.: Design of [R-(Z)]-(+)-alpha-(methoxyimino)-1-azabicyclo[2.2.2]octane-3-acetonitrile (SB 202026), a functionally selective azabicyclic muscarinic M1 agonist incorporating the N-methoxy imidoyl nitrile group as a novel ester bioisostere. J. Med. Chem. 40: 4265–4280, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A. and Adams, P. R.: Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283: 673–676, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A., Forward, A. and Marsh, S.: Antagonist discrimination between ganglionic and ileal muscarinic receptors. Br. J. Pharmacol. 71: 362–364, 1980.

    PubMed  CAS  Google Scholar 

  • Buck, M. A. and Fraser, C. M.: Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: pharmacological and biochemical properties. Biochem. Biophys. Res. Commun. 173: 666–672, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, N. J., Bonner, T. I. and Brann, M. R.: Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 8: 4646–4652, 1988.

    PubMed  CAS  Google Scholar 

  • Buller, S., Zlotos, D. P., Mohr, K. and Ellis, J.: Allosteric site on muscarinic acetylcholine receptors: A single amino acid in transmembrane region 7 is critical to the subtype selectivities of caracurine V derivatives and alkane-bisammonium ligands. Mol. Pharmacol. 61: 160–168, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bunemann, M. and Hosey, M. M.: G-protein coupled receptor kinases as modulators of G-protein signalling. J. Physiol. (Lond.) 517: 5–23, 1999.

    Article  CAS  Google Scholar 

  • Bunemann, M., Lee, K. B., Pals-Rylaarsdam, R., Roseberry, A. G. and Hosey, M. M.: Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu. Rev. Physiol. 61: 169–192, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Burgen, A. S. V.: The role of ionic interactions at the muscarinic receptor. Br. J. Pharmacol. 25: 4–7, 1965.

    CAS  Google Scholar 

  • Burstein, E. S., Spalding, T. A., Brauner-Osborne, H. and Brann, M. R.: Constitutive activation of muscarinic receptors by the G-protein Gq. FEBS Lett. 363: 261–263, 1995a.

    Article  PubMed  CAS  Google Scholar 

  • Burstein, E. S., Spalding, T. A., Hill-Eubanks, D. and Brann, M. R.: Structure-function of muscarinic receptor coupling to G proteins. Random saturation mutagenesis identifies a critical determinant of receptor affinity for G proteins. J. Biol. Chem. 270: 3141–3146, 1995b.

    Article  PubMed  CAS  Google Scholar 

  • Burstein, E. S., Spalding, T. A. and Brann, M. R.: Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins. Mol. Pharmacol. 51: 312–319, 1997.

    PubMed  CAS  Google Scholar 

  • Bymaster, F. P., Whitesitt, C. A., Shannon, H. E., DeLapp, N., Ward, J. S., Calligaro, D. O., Shipley, L. A., Buelke-Sam, J. L., Bodick, N. C., Farde, L., Sheardown, M. J., Olesen, P. H., Hansen, K. T., Suzdak, P. D., Swedberg, M. D. B., Sauerberg, P. and Mitch, C. H.: Xanomeline: a selective muscarinic agonist for the treatment of Alzheimer’s disease. Drug. Dev. Res. 40: 158–170, 1997.

    Article  CAS  Google Scholar 

  • Bymaster, F. P., Shannon, H. E., Rasmussen, K., Delapp, N. W., Mitch, C. H., Ward, J. S., Calligaro, D. O., Ludvigsen, T. S., Sheardown, M. J., Olesen, P. H., Swedberg, M. D. B., Sauerberg, P. and Finkjensen, A.: Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-Yl)-1-azabicyclo[3.2.1]octane. Eur. J. Pharmacol. 356: 109–119, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bymaster, F. P., McKinzie, D. L., Felder, C. C. and Wess, J.: Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem. Res. 28: 437–442, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Cachero, T. G., Morielli, A. D. and Peralta, E.G.: The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93: 1077–1085, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Carey, G. J., Billard, W., Binch, H., 3rd, Cohen-Williams, M., Crosby, G., Grzelak, M., Guzik, H., Kozlowski, J. A., Lowe, D. B., Pond, A. J., Tedesco, R. P., Watkins, R. W. and Coffin, V. L.: SCH 57790, a selective muscarinic M2 receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur. J. Pharmacol. 431: 189–200, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Carsi, J. M., Valentine, H. H. and Potter, L. T.: m2-toxin: A selective ligand for M2 muscarinic receptors. Mol. Pharmacol. 56: 933–937, 1999.

    PubMed  CAS  Google Scholar 

  • Caulfield, M. P.: Muscarinic receptors-characterization, coupling and function. Pharmacol. Ther. 58: 319–379, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Caulfield, M. P. and Birdsall, N. J.: International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 50: 279–290, 1998.

    PubMed  CAS  Google Scholar 

  • Changeux, J. P. and Edelstein, S. J.: Allosteric receptors after 30 years. Neuron 21: 959–980, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Chidiac, P., Green, M. A., Pawagi, A. B. and Wells, J. W.: Cardiac muscarinic receptors: cooperativity as the basis for multiple states of affinity. Biochemistry 36: 7361–7379, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A.: Quantification of allosteric interactions at G protein-coupled receptors using radioligand binding assays. In: “Current Protocols in Pharmacology,” S. J. Enna, Ed., pp. 1.22.1–1.22.40, Wiley and Sons, New York, 2000.

    Google Scholar 

  • Christopoulos, A.: Allosteric binding sites on cellsurface receptors: novel targets for drug discovery. Nat. Rev. Drug. Discov. 1: 198–210, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A. and El-Fakahany, E. E.: Novel persistent activation of muscarinic M1 receptors by xanomeline. Eur. J. Pharmacol. 334: R3–R4, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A. and El-Fakahany, E. E.: The generation of nitric oxide by G protein-coupled receptors. Life Sci. 64: 1–15, 1999a.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A. and El-Fakahany, E. E.: Qualitative and quantitative assessment of relative agonist efficacy. Biochem. Pharmacol. 58: 735–748, 1999b.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A. and Kenakin, T.: G Protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54: 323–374, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A. and Mitchelson, F.: Assessment of the allosteric interactions of the bisquaternary heptane-1,7-bis(dimethyl-3′-pthalimidopropyl)ammonium bromide at M1 and M2 muscarine receptors. Mol. Pharmacol. 46: 105–114, 1994.

    PubMed  CAS  Google Scholar 

  • Christopoulos, A., Lanzafame, A. and Mitchelson, F.: Allosteric interactions at muscarinic cholinoceptors. Clin. Exp. Pharmacol. Physiol. 25: 184–194, 1998a.

    Google Scholar 

  • Christopoulos, A., Pierce, T. L., Sorman, J. L. and El-Fakahany, E. E.: On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 53: 1120–1130, 1998b.

    PubMed  CAS  Google Scholar 

  • Christopoulos, A., Parsons, A. M. and El-Fakahany, E. E.: Pharmacological analysis of the novel mode of interaction between xanomeline and the M1 muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 289: 1220–1228, 1999a.

    PubMed  CAS  Google Scholar 

  • Christopoulos, A., Sorman, J. L., Mitchelson, F. and El-Fakahany, E. E.: Characterization of the subtype selectivity of the allosteric modulator heptane-1,7-bis-(dimethyl-3′-pthalimidopropyl) ammonium bromide (C7/3-phth) at cloned muscarinic acetylcholine receptors. Biochem. Pharmacol. 57: 171–179, 1999b.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos, A., Grant, M. K., Ayoubzadeh, N., Kim, O. N., Sauerberg, P., Jeppesen, L. and El-Fakahany, E. E.: Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J. Pharmacol. Exp. Ther. 298: 1260–1268, 2001.

    PubMed  CAS  Google Scholar 

  • Clark, A. L. and Mitchelson, F.: The inhibitory effects of gallamine on muscarinic receptors. Br. J. Pharmacol. 58: 323–331, 1976.

    PubMed  CAS  Google Scholar 

  • Coleman, R. A., Johnson, M., Nials, A. T. and Vardey, C. J.: Exosites: their current status, relevance to the duration of action of long-acting b2-adrenoceptor agonists. Trends Pharmacol. Sci. 17: 324–330, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Conklin, B. R., Brann, M. R., Buckley, N. J., Ma, A. L., Bonner, T. I. and Axelrod, J.: Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc. Natl. Acad. Sci. U. S.A. 85: 8698–8702, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Conti, P., Dallanoce, C., De Amici, M., De Micheli, C. and Ebert, B.: Synthesis and binding affinity of new muscarinic ligands structurally related to oxotremorine. Bioorg. Med. Chem. Lett. 7: 1033–1036, 1997.

    Article  CAS  Google Scholar 

  • Coso, O. A., Teramoto, H., Simonds, W. F. and Gutkind, J. S.: Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway. J. Biol. Chem. 271: 3963–3966, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Crespo, P., Xu, N., Daniotti, J. L., Troppmair, J., Rapp, U. R. and Gutkind, J. S.: Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. J. Biol. Chem. 269: 21103–21109, 1994.

    PubMed  CAS  Google Scholar 

  • Curtis, C. M., Wheatley, M., Bansal, S., Birdsall, N. J. M., Eveleigh, P., Pedder, E. K., Poyner, D. and Hulme, E. C.: Propylbenilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J. Biol. Chem. 264: 489–495, 1989.

    PubMed  CAS  Google Scholar 

  • Daeffler, L., Schmidlin, F., Gies, J. P. and Landry, Y.: Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors. Br. J. Pharmacol. 126: 1246–1252, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Daub, H., Weiss, F. U., Wallasch, C. and Ullrich, A.: Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379: 557–560, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Daub, H., Wallasch, C., Lankenau, A., Herrlich, A. and Ullrich, A.: Signal characteristics of G protein-transactivated EGF receptor. Embo. J. 16: 7032–7044, 1997.

    Article  PubMed  CAS  Google Scholar 

  • De Vries, L., Zheng, B., Fischer, T., Elenko, E. and Farquhar, M. G.: The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40: 235–271, 2000.

    Article  PubMed  Google Scholar 

  • Di Chiara, G., Morelli, M. and Consolo, S.: Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci. 17: 228–233, 1994.

    Article  PubMed  Google Scholar 

  • Dittman, A. H., Weber, J. P., Hinds, T. R., Choi, E. J., Migeon, J. C., Nathanson, N. M. and Storm, D. R.: A novel mechanism for coupling of m4 muscarinic acetylcholine receptors to calmodulin-sensitive adenylyl cyclases: crossover from G protein-coupled inhibition to stimulation. Biochemistry 33: 943–951, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Dolezal, V., Lisa, V., Diebler, M. F., Kasparova, J. and Tucek, S.: Differentiation of NG108-15 cells induced by the combined presence of dbcAMP and dexamethasone brings about the expression of N and P/Q types of calcium channels and the inhibitory influence of muscarinic receptors on calcium influx. Brain Res. 910: 134–141, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dorje, F., Levey, A. I. and Brann, M. R.: Immunological detection of muscarinic receptor subtype proteins (m1–m5) in rabbit peripheral tissues. Mol. Pharmacol. 40: 459–462, 1991.

    PubMed  CAS  Google Scholar 

  • Duttaroy, A., Gomeza, J., Gan, J. W., Siddiqui, N., Basile, A. S., Harman, W. D., Smith, P. L., Felder, C. C., Levey, A. I. and Wess, J.: Evaluation of muscarinic agonist-induced analgesia in muscarinic acetylcholine receptor knockout mice. Mol. Pharmacol. 62: 1084–1093, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Eglen, R. M.: Muscarinic receptor antagonists. Pharmacological and therapeutic utility. In: “Receptor-Based Drug Design,” P. Leff, Ed., pp. 273–296, Marcel Dekker, New York, 1998.

    Google Scholar 

  • Eglen, R. M. and Watson, N.: Selective muscarinic receptor agonists and antagonists. Pharmacol. Toxicol. 78: 59–68, 1996.

    PubMed  CAS  Google Scholar 

  • Eglen, R. M., Choppin, A. and Watson, N.: Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol. Sci. 22: 409–414, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ehlert, F. J.: The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol. Pharmacol. 28: 410–421, 1985.

    PubMed  CAS  Google Scholar 

  • Ehlert, F. J.: Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33: 187–194, 1988.

    PubMed  CAS  Google Scholar 

  • Ehlert, F. J. and Rathbun, B. E.: Signaling through the muscarinic receptor-adenylate cyclase system of the heart is buffered against GTP over a range of concentrations. Mol. Pharmacol. 38: 148–158, 1990.

    PubMed  CAS  Google Scholar 

  • Ehlert, F. J., Roeske, W. R. and Yamamura, H. I.: Molecular biology, pharmacology, and brain distribution of subtypes of the muscarinic receptor. In: “Psychopharmacology: The Fourth Generation of Progress,” F. E. Bloom and D. J. Kupfer, Eds., pp. 111–124, Raven Press, New York, 1995.

    Google Scholar 

  • Eisenach, J. C.: Muscarinic-mediated analgesia. Life Sci. 64: 549–554, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J.: Allosteric binding sites on muscarinic receptors. Drug. Dev. Res. 40: 193–204, 1997.

    Article  CAS  Google Scholar 

  • Ellis, J. and Seidenberg, M.: Interactions of alcuronium, TMB-8, and other allosteric ligands with muscarinic acetylcholine receptors: studies with chimeric receptors. Mol. Pharmacol. 58: 1451–1460, 2000.

    PubMed  CAS  Google Scholar 

  • England, B. P., Ackerman, M. S. and Barrett, R. W.: A chimeric D2 dopamine/m1 muscarinic receptor with D2 binding specificity mobilizes intracellular calcium in response to dopamine. FEBS Lett. 279: 87–90, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ensinger, H. A., Doods, H. N., Immel-Sehr, A. R., Kuhn, F. J., Lambrecht, G., Mendla, K. D., Muller, R. E., Mutschler, E., Sagrada, A., Walther, G. et al.: WAL 2014—a muscarinic agonist with preferential neuron-stimulating properties. Life Sci. 52:473–480, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J. H.: Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu. Rev. Pharmacol. Toxicol. 36: 481–509, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J. H.: Phospholipase D: tenzymology, mechanisms of regulation, and function. Physiol. Rev. 77: 303–320, 1997.

    PubMed  CAS  Google Scholar 

  • Exton, J. H.: Regulation of phospholipase D. Biochim. Biophys. Acta 1439: 121–133, 1999.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., Wallace, M. A. and Wojcikiewicz, R. J.: Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J. 2: 2569–2574, 1988.

    PubMed  CAS  Google Scholar 

  • Felder, C. C.: Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J. 9: 619–625, 1995.

    PubMed  CAS  Google Scholar 

  • Felder, C. C., Kanterman, R. Y., Ma, A. L. and Axelrod, J.: A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J. Biol. Chem. 264: 20356–20362, 1989.

    PubMed  CAS  Google Scholar 

  • Felder, C. C., Williams, H. L. and Axelrod, J.: A transduction pathway associated with receptors coupled to the inhibitory guanine nucleotide binding protein Gi that amplifies ATP-mediated arachidonic acid release. Proc. Natl. Acad. Sci. U.S.A. 88: 6477–6480, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Felder, C. C., Bymaster, F. P., Ward, J. and DeLapp, N.: Therapeutic opportunities for muscarinic receptors in the central nervous system. J. Med. Chem. 43: 4333–4353, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Felder, C. C., Porter, A. C., Skillman, T. L., Zhang, L., Bymaster, F. P., Nathanson, N. M., Hamilton, S. E., Gomeza, J., Wess, J. and McKinzie, D. L.: Elucidating the role of muscarinic receptors in psychosis. Life Sci. 68: 2605–2613, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S. S.: Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53: 1–24, 2001.

    PubMed  CAS  Google Scholar 

  • Fernandez-Fernandez, J. M., Wanaverbecq, N., Halley, P., Caulfield, M. P. and Brown, D. A.: Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones. J. Physiol. (Lond.) 515: 631–637, 1999.

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez, J. M., Abogadie, F. C., Milligan, G., Delmas, P. and Brown, D. A.: Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native Gi-proteins do so in situ. Eur. J. Neurosci. 14: 283–292, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fisahn, A., Yamada, M., Duttaroy, A., Gan, J. W., Deng, C. X., McBain, C. J. and Wess, J.: Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33: 615–624, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Flier, J. S. and Maratos-Flier, E.: Obesity and the hypothalamus: novel peptides for new pathways. Cell 92: 437–440, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, D. D., Reever, C. M. and Ferrari-Dileo, G.: Pharmacological strategies to selectively label and localize muscarinic receptor subtypes. Drug. Dev. Res. 40: 104–116, 1997.

    Article  CAS  Google Scholar 

  • Forster, G. L., Yeomans, J. S., Takeuchi, J. and Blaha, C. D.: M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J. Neurosci. 22: RC190, 2002.

    PubMed  Google Scholar 

  • Franken, C., Trankle, C. and Mohr, K.: Testing the specificity of allosteric modulators of muscarinic receptors in phylogenetically closely related histamine H1-receptors. Naunyn Schmiedebergs Arch. Pharmacol. 361: 107–112, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, C. M., Wang, C. D., Robinson, D. A., Gocayne, J. D. and Venter, J. C.: Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: conserv ed aspartic acids play important roles in receptor function. Mol. Pharmacol. 36: 840–847, 1989.

    PubMed  CAS  Google Scholar 

  • Fromm, C., Coso, O. A., Montaner, S., Xu, N. and Gutkind, J. S.: The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc. Natl. Acad. Sci. U.S.A. 94: 10098–10103, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara, S., Marinissen, M. J., Chiariello, M. and Gutkind, J. S.: Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Gaq and Ga12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras and Rho-independent pathway. J. Biol. Chem. 275: 21730–21736, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Garrington TP and Johnson GL: Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell. Biol. 11: 211–218, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Gattaz, W. F., Maras, A., Cairns, N. J., Levy, R. and Forstl, H.: Decreased phospholipase A2 activity in Alzheimer brains. Biol. Psychiatry 37: 13–17, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, D. J., Sotnikova, T. D., Gainetdinov, R. R., Huang, S. Y., Caron, M. G. and Tonegawa, S.: Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 98: 15312–15317, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gharagozloo, P., Lazareno, S., Popham, A. and Birdsall, N. J.: Allosteric interactions of quaternary strychnine and brucine derivatives with muscarinic acetylcholine receptors. J. Med. Chem. 42: 438–445, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Giacobini, E.: Cholinomimetic replacement of cholinergic function in Alzheimer’s disease. In: “Treatment of Dementias,” E. M. Meyer, J. W. Simpkins, J. Yamamoto and F. T. Crews, Eds., pp. 19–34, Plenum Press, New York, 1992.

    Google Scholar 

  • Gloge, H., Lullmann, H. and Mutschler, E.: The action of tertiary and quaternary arecaidine and dihydroarecaidine esters on the guinea pig isolated ileum. Br. J. Pharmacol. 27: 185–195, 1966.

    CAS  Google Scholar 

  • Gomeza, J., Shannon, H., Kostenis, E., Felder, C., Zhang, L., Brodkin, J., Grinberg, A., Sheng, H. and Wess, J.: Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 96: 1692–1697, 1999a.

    Article  PubMed  CAS  Google Scholar 

  • Gomeza, J., Zhang, L., Kostenis, E., Felder, C., Bymaster, F., Brodkin, J., Shannon, H., Xia, B., Deng, C. and Wess, J.: Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 96: 10483–10488, 1999b.

    Article  PubMed  CAS  Google Scholar 

  • Gouldson, P. R., Snell, C. R., Bywater, R. P., Higgs, C. and Reynolds, C. A.: Domain swapping in G-protein coupled receptor dimers. Protein Eng. 11: 1181–1193, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Guo, F. F., Kumahara, E. and Saffen, D.: A CalDAG-GEFI/Rap1/B-Raf cassette couples M1 muscarinic acetylcholine receptors to the activation of ERK1/2. J. Biol. Chem. 276: 25568–25581, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gurwitz, D., Haring, R., Heldman, E., Fraser, C. M., Manor, D. and Fisher, A.: Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. Eur. J. Pharmacol. 267: 21–31, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, E. and Rousell, J.: Regulation of the expression and function of the M2 muscarinic receptor. Trends Pharmacol. Sci. 19: 322–327, 1998.

    Article  CAS  Google Scholar 

  • Haga, K., Haga, T. and Ichiyama, A.: Reconstitution of the muscarinic acetylcholine receptor. Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (Gi and G0). J. Biol. Chem. 261: 10133–10140, 1986.

    PubMed  CAS  Google Scholar 

  • Haj-Dahmane, S. and Andrade, R.:Ionic mechanism of the slow after-depolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol. 80: 1197–1210, 1998.

    PubMed  CAS  Google Scholar 

  • Hamilton, S. E., Loose, M. D., Qi, M., Levey, A. I., Hille, B., McKnight, G. S., Idzerda, R. L. and Nathanson, N. M.: Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. U.S.A. 94: 13311–13316, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, R. and Giachetti, A.: Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 31: 2991–2998, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, R., Berrie, C. P., Birdsall, N. J., Burgen, A. S. and Hulme, E. C.: Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283: 90–92, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Han, X., Kobzik, L., Severson, D. and Shimoni, Y.: Characteristics of nitric oxide-mediated cholinergic modulation of calcium current in rabbit sino-atrial node. J. Physiol. 509: 741–754, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Haring, R., Fisher, A., Marciano, D., Pittel, Z., Kloog, Y., Zuckerman, A., Eshhar, N. and Heldman, E.: Mitogen-activated protein kinase-dependent and protein kinase C-dependent pathways link the m1 muscarinic receptor to beta-amyloid precursor protein secretion. J. Neurochem. 71: 2094–2103, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hawes, B. E., van Biesen, T., Koch, W. J., Luttrell, L. M. and Lefkowitz, R. J.: Distinct pathways of Gi-and Gq-mediated mitogen-activated protein kinase activation. J. Biol. Chem. 270: 17148–17153, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M. K. and Haga, T.: Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail. Arch. Biochem. Biophys. 340: 376–382, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Heasley, L. E., Storey, B., Fanger, G. R., Butterfield, L., Zamarripa, J., Blumberg, D. and Maue, R. A.: GTPase-deficient G alpha 16 and G alpha q induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases. Mol. Cell. Biol. 16: 648–656, 1996.

    PubMed  CAS  Google Scholar 

  • Hebert, T. E. and Bouvier, M.: Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem. Cell Biol. 76: 1–10, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hilf, G. and Jakobs, K. H.: Agonist-independent inhibition of G protein activation by muscarinic acetylcholine receptor antagonists in cardiac membranes. Eur. J. Pharmacol. (Molec. Pharmacol. Sec.) 225: 245–252, 1992.

    CAS  Google Scholar 

  • Hilf, G., Gierschik, P. and Jakobs, K. H.: Muscarinic acetylcholine receptor-stimulated binding of guanosine 5′-O-(3-thiotriphosphate) to guaninenucleotide-binding proteins in cardiac membranes. Eur. J. Biochem. 186: 725–731, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J. J. and Peralta, E. G.: Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. J. Biol. Chem. 276: 5505–5510, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., Beech, D. J., Bernheim, L., Mathie, A., Shapiro, M. S. and Wollmuth, L. P.: Multiple G-protein-coupled pathways inhibit N-type Ca channels of neurons. Life Sci. 56: 989–992, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi, T. and Saffen, D.: M1 muscarinic acetylcholine receptors activate zif268 gene expression via small G-protein Rho-dependent and lambda-independent pathways in PC12D cells. Eur. J. Biochem. 267: 2525–2532, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg, B. T. and Schimerlick, M. I.: A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J. Biol. Chem. 269: 26127–26135, 1994.

    PubMed  CAS  Google Scholar 

  • Hogger, P., Shockley, M. S., Lameh, J. and Sadee, W.: Activating and inactivating mutations in N-and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors. J. Biol. Chem. 270: 7405–7410, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Holzgrabe, U. and Mohr, K.: Allosteric modulators of ligand binding to muscarinic acetylcholine receptors. Drug Discov. Today 3: 214–222, 1998.

    Article  CAS  Google Scholar 

  • Horn, F., van der Wenden, E. M., Oliveira, L., Ijzerman, A. P. and Vriend, G.: Receptors coupling to G proteins: is there a signal behind the sequence? Proteins 41: 448–459, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Y., Azpiazu, I., Smrcka, A. and Gautam, N.: Selective role of G protein gamma subunits in receptor interaction. J. Biol. Chem. 275: 38961–38964, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Y., Chang, V., Capper, A. B., Taussig, R. and Gautam, N.: G Protein beta subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-beta 2/3. J. Biol. Chem. 276: 19982–19988, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hulme, E. C., Birdsall, N. J. M. and Buckley, N. J.: Muscarinic receptor subtypes. Ann. Rev. Pharmacol. Toxicol. 30: 633–673, 1990.

    Article  CAS  Google Scholar 

  • Hulme, E. C., Curtis, C. A., Page, K. M. and Jones, P. G.: The role of charge interactions in muscarinic agonist binding, and receptor-response coupling. Life Sci. 56: 891–898, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ince, E., Ciliax, B. J. and Levey, A. I.: Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27: 357–366, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jakubík, J., Bacaková, L., El-Fakahany, E. E. and Tucek, S.: Constitutive activity of the M1-M4 subtypes of muscarinic receptors in transfected CHO cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett. 377: 275–279, 1995a.

    Article  PubMed  Google Scholar 

  • Jakubík, J., Bacáková, L., El-Fakahany, E. E. and Tucek, S.: Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 274: 1077–1083, 1995b.

    PubMed  Google Scholar 

  • Jakubík, J., Bacakova, L., Lisa, V., El-Fakahany, E. E. and Tucek, S.: Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc. Natl. Acad. Sci. U.S.A. 93: 8705–8709, 1996.

    Article  PubMed  Google Scholar 

  • Jakubík, J., Bacakova, L., El-Fakahany, E. E. and Tucek, S.: Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 52: 172–179, 1997.

    PubMed  Google Scholar 

  • Jakubík, J., Haga, T. and Tucek, S.: Effects of an agonist, allosteric modulator, and antagonist on guanosine-g-[35S]thiotriphosphate binding to liposomes with varying muscarinic receptor/Go protein stoichiometry. Mol. Pharmacol. 54: 899–906, 1998.

    PubMed  Google Scholar 

  • Jakubík, J., Tucek, S. and El-Fakahany, E. E.: Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 301: 1033–1041, 2002.

    Article  PubMed  Google Scholar 

  • Janssen, L. J. and Sims, S. M.: Muscarinic regulation of ion channels in smooth muscle. In: “Cellular Aspects of Smooth Muscle Function,” C. Y. Kao and M. E. Carsten, Eds., pp. 132–168, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  • Jeong, S. W. and Wurster, R. D.: Muscarinic receptor activation modulates Ca2+ channels in rat intracardiac neurons via a PTX-and voltage-sensitive pathway. J. Neurophysiol. 78: 1476–1490, 1997.

    PubMed  CAS  Google Scholar 

  • Jones, D., Morgan, C. and Cockcroft, S.: Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim. Biophys. Acta 1439: 229–244, 1999.

    PubMed  CAS  Google Scholar 

  • Jones, S. V.: Muscarinic receptor subtypes: modulation of ion channels. Life Sci. 52: 457–464, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Katz, A., Wu, D. and Simon, M. I.: Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 360: 686–689, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kavalali, E. T., Zhuo, M., Bito, H. and Tsien, R. W.: Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18: 651–663, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, H., Palmieri, C. and Avoli, M.: Muscarinic receptor activation induces depolarizing plateau potentials in bursting neurons of the rat subiculum. J. Neurophysiol. 82: 2590–2601, 1999.

    PubMed  CAS  Google Scholar 

  • Kenakin, T.: Agonist-receptor efficacy I: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol. Sci. 16: 188–192, 1995a.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin, T.: Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16: 232–238, 1995b.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin, T.: The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol. Rev. 48: 413–463, 1996.

    PubMed  CAS  Google Scholar 

  • Kenakin, T.: Differences between natural and recombinant G protein-coupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol. Sci. 18: 456–464, 1997a.

    PubMed  CAS  Google Scholar 

  • Kenakin, T. P.: “Pharmacologic Analysis of Drug-Receptor Interaction,” Lippincott-Raven, Philadelphia, 1997b.

    Google Scholar 

  • Kenakin, T., Morgan, P. and Lutz, M.: On the importance of the “antagonist assumption” to how receptors express themselves. Biochem. Pharmacol. 50: 17–26, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kilbinger, H., Halim, S., Lambrecht, G., Weiler, W. and Wessler, I.: Comparison of affinities of muscarinic antagonists to pre-and postjunctional receptors in the guinea-pig ileum. Eur. J. Pharmacol. 103: 313–320, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. Y., Yang, M. S., Oh, C. D., Kim, K. T., Ha, M. J., Kang, S. S. and Chun, J. S.: Signalling pathway leading to an activation of mitogen-activated protein kinase by stimulating M3 muscarinic receptor. Biochem. J. 337: 275–280, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kirchhausen, T., Bonifacino, J. S. and Riezman, H.: Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell. Biol. 9: 488–495, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Koch, W. J., Hawes, B. E., Allen, L. F. and Lefkowitz, R. J.: Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc. Natl. Acad. Sci. U.S.A. 91: 12706–12710, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, J. and Edwardson, J. M.: Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol. Sci. 18: 276–287, 1997.

    PubMed  CAS  Google Scholar 

  • Kopf, S. R. and Baratti, C. M.: Enhancement of the post-training cholinergic tone antagonizes the impairment of retention induced by a nitric oxide synthase inhibitor in mice. Neurobiol. Learn. Mem. 65: 207–212, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kords, H., Lullmann, H., Ohnesorge, F. K. and Wassermann, O.: Action of atropine and some hexane-1,6-bis-ammonium derivatives upon the toxicity of DFP in mice. Eur. J. Pharmacol. 3: 341–346, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Kostenis, E., Holzgrabe, U. and Mohr, K.: Allosteric effect on muscarinic M2-receptors of derivatives of the alkane-bis-ammonium compound W84. Comparison with bispyridinium-type allosteric modulators. Eur. J. Med. Chem. 29: 947–953, 1994.

    Article  CAS  Google Scholar 

  • Kostenis, E., Conklin, B. R. and Wess, J.: Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant Gaq subunits. Biochemistry 36: 1487–1495, 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Kostenis, E., Degtyarev, M. Y., Conklin, B. R. and Wess, J.: The N-terminal extension of Gaq is critical for constraining the selectivity of receptor coupling. J. Biol. Chem. 272: 19107–19110, 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Kostenis, E., Gomeza, J., Lerche, C. and Wess, J.: Genetic analysis of receptor-Galphaq coupling selectivity. J. Biol. Chem. 272: 23675–23681, 1997c.

    Article  PubMed  CAS  Google Scholar 

  • Kostenis, E., Zeng, F. Y. and Wess, J.: Functional characterization of a series of mutant G protein aq subunits displaying promiscuous receptor coupling properties. J. Biol. Chem. 273: 17886–17892, 1998a.

    Article  PubMed  CAS  Google Scholar 

  • Kostenis, E., Zeng, F. Y. and Wess, J.: Structure-function analysis of muscarinic acetylcholine receptors. J. Physiol. (Paris) 92: 265–268, 1998b.

    Article  CAS  Google Scholar 

  • Krejci, A. and Tucek, S.: Quantitation of mRNAs for M1 to M5 subtypes of muscarinic receptors in rat heart and brain cortex. Mol. Pharmacol. 61: 1267–1272, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Krupnick, J. G. and Benovic, J. L.: The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38: 289–319, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K. et al.: Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323:411–416, 1986a.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Maeda, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, K. et al.: Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett. 209: 367–372, 1986b.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Bujo, H., Akiba, J., Mishina, M. and Numa, S.: Location of a region of the muscarinic receptor involved in selective effector coupling. FEBS Lett. 241: 119–125, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Kumahara, E., Ebihara, T. and Saffen, D.: Protein kinase inhibitor H7 blocks the induction of immediate-early genes zif268 and c-fos by a mechanism unrelated to inhibition of protein kinase C but possibly related to inhibition of phosphorylation of RNA polymerase II. J. Biol. Chem. 274: 10430–10438, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, M. T. and Peralta, E. G.: Charged amino acids required for signal transduction by the m3 muscarinic acetylcholine receptor. Embo. J. 12: 3809–3815, 1993.

    PubMed  CAS  Google Scholar 

  • Kurtenbach, E., Pedder, E. K., Curtis, C. A. and Hulme, E. C.: The putative disulphide bond in muscarinic receptors. Biochem. Soc. Trans. 18: 442–443, 1990.

    PubMed  CAS  Google Scholar 

  • Lachowicz, J. E., Lowe, D., Duffy, R. A., Ruperto, V., Taylor, L. A., Guzik, H., Brown, J., Berger, J. G., Tice, M., McQuade, R., Kozlowski, J., Clader, J., Strader, C. D. and Murgolo, N.: SCH 57790: a novel M2 receptor selective antagonist. Life Sci. 64: 535–539, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lanzafame, A., Christopoulos, A. and Mitchelson, F.: Interactions of agonists with an allosteric antagonist at muscarinic acetylcholine M2 receptors. Eur. J. Pharmacol. 316: 27–32, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lanzafame, A. A., Christopoulos, A. and Mitchelson, F.: Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors and Channels 9: 241–260, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lazareno, S. and Birdsall, N. J. M.: Pharmacological characterization of acetylcholine-stimulated [35S]-GTPgS binding mediated by human muscarinic m1–m4 receptors: antagonist studies. Br. J. Pharmacol. 109: 1120–1127, 1993.

    PubMed  CAS  Google Scholar 

  • Lazareno, S. and Birdsall, N. J. M.: Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 48: 362–378, 1995.

    PubMed  CAS  Google Scholar 

  • Lazareno, S., Gharagozloo, P., Kuonen, D., Popham, A. and Birdsall, N. J. M.: Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: Radioligand binding studies. Mol. Pharmacol. 53: 573–589, 1998.

    PubMed  CAS  Google Scholar 

  • Lazareno, S., Popham, A. and Birdsall, N. J.: Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-3H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol. Pharmacol. 58: 194–207, 2000.

    PubMed  CAS  Google Scholar 

  • Lazareno, S., Popham, A. and Birdsall, N. J.: Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol. Pharmacol. 62: 1492–1505, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lechleiter, J., Hellmiss, R., Duerson, K., Ennulat, D., David, N., Clapham, D. and Peralta, E.: Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor subtypes. Embo. J. 9: 4381–4390, 1990.

    PubMed  CAS  Google Scholar 

  • Lee, K. B., Pals-Rylaarsdam, R., Benovic, J. L. and Hosey, M. M.: Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J. Biol. Chem. 273:12967–12972, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N. H., Geoghagen, N. S., Cheng, E., Cline, R. T. and Fraser, C. M.: Alanine scanning mutagenesis of conserved arginine/lysine-arginine/lysine-X-X-arginine/lysine G protein-activating motifs on m1 muscarinic acetylcholine receptors. Mol. Pharmacol. 50: 140–148, 1996.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J.: G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273: 18677–18680, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Leppik, R. A., Miller, R. C., Eck, M. and Paquet, J. L.: Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the m2 muscarinic acetylcholine receptor. Mol. Pharmacol. 45: 983–990, 1994.

    PubMed  CAS  Google Scholar 

  • Levey, A. I., Kitt, C. A., Simonds, W. F., Price, D. L. and Brann, M. R.: Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11: 3218–3226, 1991.

    PubMed  CAS  Google Scholar 

  • Levey, A. I., Edmunds, S. M., Heilman, C. J., Desmond, T. J. and Frey, K. A.: Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63: 207–221, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Yasuda, R. P., Wall, S. J., Wellstein, A. and Wolfe, B. B.: Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol. Pharmacol. 40: 28–35, 1991.

    PubMed  CAS  Google Scholar 

  • Liang, J. S., Carsi-Gabrenas, J., Krajewski, J. L., McCafferty, J. M., Purkerson, S. L., Santiago, M. P., Strauss, W. L., Valentine, H. H. and Potter, L. T.: Anti-muscarinic toxins from Dendroaspis angusticeps. Toxicon 34: 1257–1267, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch, M., Czarny, M., Fiucci, G. and Tang, X.: Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J. 345: 401–415, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Conklin, B. R., Blin, N., Yun, J. and Wess, J.: Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. Proc. Natl. Acad. Sci. U.S.A. 92:11642–11646, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Blin, N., Conklin, B. R. and Wess, J.: Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis. J. Biol. Chem. 271: 6172–6178, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. and Wetzker, R.: Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275: 394–397, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Loudon, J. M., Bromidge, S. M., Brown, F., Clark, M. S., Hatcher, J. P., Hawkins, J., Riley, G. J., Noy, G. and Orlek, B. S.: SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J. Pharmacol. Exp. Ther. 283: 1059–1068, 1997.

    PubMed  CAS  Google Scholar 

  • Lu, Z. L. and Hulme, E. C.: The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis. J. Biol. Chem. 274: 7309–7315, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z. L. and Hulme, E. C.: A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor. J. Biol. Chem. 275: 5682–5686, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z. L., Curtis, C. A., Jones, P. G., Pavia, J. and Hulme, E. C.: The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: Mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Mol. Pharmacol. 51: 234–241, 1997.

    PubMed  CAS  Google Scholar 

  • Lu, Z. L., Saldanha, J. W. and Hulme, E. C.: Transmembrane domains 4 and 7 of the m1 muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch. J. Biol. Chem. 276: 34098–34104, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z. L., Saldanha, J. W. and Hulme, E. C.: Seven-transmembrane receptors: crystals clarify. Trends Pharmacol. Sci. 23: 140–146, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lüllman, H., Ohnesorge, F. K., Schauwecker, G.-C. and Wasserman, O.: Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane-bis-ammonium compounds. Eur. J. Pharmacol. 6: 241–247, 1969.

    Article  Google Scholar 

  • Luttrell, L. M. and Lefkowitz, R. J.: The role of betaarrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115: 455–465, 2002.

    PubMed  CAS  Google Scholar 

  • Lysikova, M., Fuksova, K., Elbert, T., Jakubik, J. and Tucek, S.: Subtype-selective inhibition of [methyl- 3 H]-N-methylscopolamine binding to muscarinic receptors by a-truxillic acid esters. Br. J. Pharmacol. 127: 1240–1246, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, R., Vogel, Z. and Wess, J.: Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc. Natl. Acad. Sci. U.S.A. 90: 3103–3107, 1993a.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, R., Vogel, Z. and Wess, J.: Reconstitution of functional muscarinic receptors by co-expression of amino-and carboxyl-terminal receptor fragments. FEBS Lett. 319: 195–200, 1993b.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, R., Barbier, P., Colelli, A., Salvadori, F., Demontis, G. and Corsini, G. U.: G protein-linked receptors: Pharmacological evidence for the formation of heterodimers. J. Pharmacol. Exp. Ther. 291: 251–257, 1999.

    PubMed  CAS  Google Scholar 

  • Marinissen, M. J., Chiariello, M., Pallante, M. and Gutkind, J. S.: A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol. Cell. Biol. 19: 4289–4301, 1999.

    PubMed  CAS  Google Scholar 

  • Marrion, N. V.: Control of M-current. Annu. Rev. Physiol. 59: 483–504, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, S. J., Trouslard, J., Leaney, J. L. and Brown, D. A.: Synergistic regulation of a neuronal chloride current by intracellular calcium and muscarinic receptor activation: a role for protein kinase C. Neuron 15: 729–737, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Mash, D. C. and Potter, L. T.: Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain. Neuroscience 19: 551–564, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Mash, D. C., Flynn, D. D. and Potter, L. T.: Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228: 1115–1117, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, H., Lazareno, S. and Birdsall, N. J.: Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol. Pharmacol. 47: 88–98, 1995.

    PubMed  CAS  Google Scholar 

  • Matsui, M., Motomura, D., Karasawa, H., Fujikawa, T., Jiang, J., Komiya, Y., Takahashi, S. and Taketo, M. M.: Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc. Natl. Acad. Sci. U.S.A. 97: 9579–9584, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mattera, R., Pitts, B. J., Entman, M. L. and Birnbaumer, L.: Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo-and heterotropic cooperativity in ligand binding analyzed by computer-assisted curve fitting. J. Biol. Chem. 260: 7410–7421, 1985.

    PubMed  CAS  Google Scholar 

  • May, L. T. and Christopoulos, A.: Allosteric modulators of G protein-coupled receptors. Curr. Opin. Pharmacol. 3: 551–556, 2003.

    Article  PubMed  CAS  Google Scholar 

  • McClatchy, D. B., Knudsen, C. R., Clark, B. F., Kahn, R. A., Hall, R. A. and Levey, A. I.: Novel interaction between the M4 muscarinic acetylcholine receptor and elongation factor 1A2. J. Biol. Chem. 277: 29268–29274, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Meier, E., Frederiksen, D., Nielsen, M., Lemboel, H. L., Pedersen, H. and Hyttel, J.: Pharmacological in vitro characterization of the arecoline bioisostere, Lu 25-109-T, a muscarinic compound with M1-agonist and M2/M3-antagonist properties. Drug. Dev. Res. 40: 1–16, 1997.

    Article  CAS  Google Scholar 

  • Melchiorre, C., Minarini, A., Angeli, P., Giardina, D., Gulini, U. and Quaglia, W.: Polymethylene tetraamines as muscarinic receptor probes. Trends Pharmacol. Sci., Supplt.: 55–59, 1989.

    Google Scholar 

  • Melliti, K., Meza, U. and Adams, B.: Muscarinic stimulation of alpha1E Ca channels is selectively blocked by the effector antagonist function of RGS2 and phospholipase C-beta1. J. Neurosci. 20: 7167–7173, 2000.

    PubMed  CAS  Google Scholar 

  • Meza, U., Bannister, R., Melliti, K. and Adams, B.: Biphasic, opposing modulation of cloned neuronal alpha1E Ca channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J. Neurosci. 19: 6806–6817, 1999.

    PubMed  CAS  Google Scholar 

  • Michal, P., Lysikova, M. and Tucek, S.: Dual effects of muscarinic M2 acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. Br. J. Pharmacol. 132: 1217–1228, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mitchelson, F.: Muscarinic receptor differentiation. Pharmacol. Ther. 37: 357–423, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa, T., Yamada, M., Duttaroy, A. and Wess, J.: Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21: 5239–5250, 2001.

    PubMed  CAS  Google Scholar 

  • Mohr, K., Staschen, C. M. and Ziegenhagen, M.: Equipotent allosteric effect of W84 on [3H]NMS-binding to cardiac muscarinic receptors from guinea-pig, rat, and pig. Pharmacol. Toxicol. 70: 198–200, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Mutschler, E., Moster, U., Wess, J. and Lambrecht, G.: Muscarinic receptor subtypes—pharmacological, molecular biological and therapeutical aspects. Pharma. Acta Helv. 69: 243–258, 1995.

    Article  CAS  Google Scholar 

  • Nagao, M., Yamauchi, J., Kaziro, Y. and Itoh, H.: Involvement of protein kinase C and Src family tyrosine kinase in Galphaq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J. Biol. Chem. 273: 22892–22898, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa-Yagi, Y., Saito, Y., Takada, Y. and Takayama, M.: Carbachol enhances forskolin-stimulated cyclic AMP accumulation via activation of calmodulin system in human neuroblastoma SH-SY5Y cells. Biochem. Biophys. Res. Commun. 178: 116–123, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Nathanson, N. M.: Molecular properties of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci. 10: 195–236, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Neubig, R. R. and Siderovski, D. P.: Regulators of G-protein signalling as new central nervous system drug targets. Nat. Rev. Drug. Discov. 1: 187–197, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Offermanns, S., Wieland, T., Homann, D., Sandmann, J., Bombien, E., Spicher, K., Schultz, G. and Jakobs, K. H.: Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. Mol. Pharmacol. 45: 890–898, 1994.

    PubMed  CAS  Google Scholar 

  • Ohara, K., Uchiyama, H., Haga, T. and Ichiyama, A.: Interaction of deglycosylated muscarinic receptors with ligands and G proteins. Eur. J. Pharmacol. 189: 341–346, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Olianas, M. C. and Onali, P.: Characterization of the G protein involved in the muscarinic stimulation of adenylyl cyclase of rat olfactory bulb. Mol. Pharmacol. 49: 22–29, 1996.

    PubMed  CAS  Google Scholar 

  • Olianas, M. C., Ingianni, A. and Onali, P.: Role of G protein betagamma subunits in muscarinic receptor-induced stimulation and inhibition of adenylyl cyclase activity in rat olfactory bulb. J. Neurochem. 70: 2620–2627, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Onali, P. and Olianas, M. C.: Bimodal regulation of cyclic AMP by muscarinic receptors. Involvement of multiple G proteins and different forms of adenylyl cyclase. Life Sci. 56: 973–980, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. and Miyano, M.: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289: 739–745, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam, R. and Hosey, M. M.: Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor. J. Biol. Chem. 272: 14152–14158, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam, R., Xu, Y., Witt-Enderby, P., Benovic, J. L. and Hosey, M. M.: Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms. J. Biol. Chem. 270: 29004–29011, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam, R., Gurevich, V. V., Lee, K. B., Ptasienski, J. A., Benovic, J. L. and Hosey, M. M.: Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and-dependent pathways. J. Biol. Chem. 272: 23682–23689, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Park, P., Sum, C. S., Hampson, D. R., Van Tol, H. H. and Wells, J. W.: Nature of the oligomers formed by muscarinic m2 acetylcholine receptors in Sf9 cells. Eur. J. Pharmacol. 421: 11–22, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Pemberton, K. E., Hill-Eubanks, L. J. and Jones, S. V.: Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3T3 cells. Pflugers Arch. 440: 452–461, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pepitoni, S., Mallon, R. G., Pai, J. K., Borkowski, J. A., Buck, M. A. and McQuade, R. D.: Phospholipase D activity and phosphatidylethanol formation in stimulated HeLa cells expressing the human m1 muscarinic acetylcholine receptor gene. Biochem. Biophys. Res. Commun. 176: 453–458, 1991.

    CAS  Google Scholar 

  • Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J. and Capon, D. J.: Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. Embo. J. 6: 3923–3929, 1987.

    PubMed  CAS  Google Scholar 

  • Perez, M., Jorand-Lebrun, C., Pauwels, P. J., Pallard, I. and Halazy, S.: Dimers of 5HT1 ligands preferentially bind to 5HT1B/1D receptor subtypes. Bioorg. Med. Chem. Lett. 8: 1407–1412, 1998a.

    Article  PubMed  CAS  Google Scholar 

  • Perez, M., Pauwels, P. J., Fourrier, C., Chopin, P., Valentin, J. P., John, G. W., Marien, M. and Halazy, S.: Dimerization of sumatriptan as an efficient way to design a potent, centrally and orally active 5-HT1B agonist. Bioorg. Med. Chem. Lett. 8: 675–680, 1998b.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffendorf, M., Batink, H. D., Trankle, C., Mohr, K. and van Zwieten, P. A.: Probing the selectivity of allosteric modulators of muscarinic receptors at other G-protein-coupled receptors. J. Auton. Pharmacol. 20: 55–62, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher, J. A., Freedman, N. J. and Lefkowitz, R. J.: G protein-coupled receptor kinases. Annu. Rev. Biochem. 67: 653–692, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Pittel, Z. and Wess, J.: Intramolecular interactions in muscarinic acetylcholine receptor studied with chimeric m2/m5 receptors. Mol. Pharmacol. 45: 61–64, 1994.

    PubMed  CAS  Google Scholar 

  • Porter, A. C., Bymaster, F. P., DeLapp, N. W., Yamada, M., Wess, J., Hamilton, S. E., Nathanson, N. M. and Felder, C. C.: M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res. 944: 82–89, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Portoghese, P. S.: Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol. Sci. 10: 230–235, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Potter, L. T.: Snake toxins that bind specifically to individual subtypes of muscarinic receptors. Life Sci. 68: 2541–2547, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Potter, L. T. and Ferrendelli, C. A.: Affinities of different cholinergic agonists for the high and low affinity states of hippocampal M1 muscarine receptors. J. Pharmacol. Exp. Ther. 248: 974–978, 1989.

    PubMed  CAS  Google Scholar 

  • Potter, L. T., Ballesteros, L. A., Bichajian, L. H., Ferrendelli, C. A., Fisher, A., Hanchett, H. E. and Zhang, R.: Evidence for paired M2 muscarinic receptors. Mol. Pharmacol. 39: 211–221, 1991.

    PubMed  CAS  Google Scholar 

  • Proska, J. and Tucek, S.: Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 45: 709–717, 1994.

    PubMed  CAS  Google Scholar 

  • Proska, J. and Tucek, S.: Competition between positive and negative allosteric effectors on muscarinic receptors. Mol. Pharmacol. 48: 696–702, 1995.

    PubMed  CAS  Google Scholar 

  • Raiteri, M., Marchi, M., Paudice, P. and Pittaluga, A.: Muscarinic receptors mediating inhibition of gamma-aminobutyric acid release in rat corpus striatum and their pharmacological characterization. J. Pharmacol. Exp. Ther. 254: 496–501, 1990.

    PubMed  CAS  Google Scholar 

  • Rajeswaran, W. G., Cao, Y., Huang, X. P., Wroblewski, M. E., Colclough, T., Lee, S., Liu, F., Nagy, P. I., Ellis, J., Levine, B. A., Nocka, K. H. and Messer, W. S., Jr.: Design, synthesis, and biological characterization of bivalent 1-Methyl-1,2,5,6-tetrahy-dropyridyl-1,2,5-thiadiazole derivatives as selective muscarinic agonists. J. Med. Chem. 44: 4563–4576, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Randall, A. D. and Tsien, R. W.: Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36: 879–893, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Reever, C. M., Ferrari-DiLeo, G. and Flynn, D. D.: The M5 (m5) receptor subtype: fact or fiction? Life Sci. 60: 1105–1112, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S. G., Suh, P. G., Ryu, S. H. and Lee, S. Y.: Studies of inositol phospholipid-specific phospholipase C. Science 244: 546–550, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Riker, W. F. and Wescoe, W. C.: The pharmacology of flaxedil with observations on certain analogs. Ann. N.Y. Acad. Sci. 54: 373–394, 1951.

    Article  PubMed  CAS  Google Scholar 

  • Rogalski, S. L., Cyr, C. and Chavkin, C.: Activation of the endothelin receptor inhibits the G protein-coupled inwardly rectifying potassium channel by a phospholipase A2-mediated mechanism. J. Neurochem. 72: 1409–1416, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Roseberry, A. G. and Hosey, M. M.: Trafficking of M2 muscarinic acetylcholine receptors. J. Biol. Chem. 274: 33671–33676, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, K., Futter, M., Jones, M., Hulme, E. C. and Bliss, T. V.: ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J. Neurosci. 20: 977–985, 2000.

    PubMed  CAS  Google Scholar 

  • Roszkowski, A. P.: An unusual type of sympathetic ganglionic stimulant. J. Pharmacol. Exp. Ther. 132: 156–170, 1961.

    PubMed  CAS  Google Scholar 

  • Rumenapp, U., Geiszt, M., Wahn, F., Schmidt, M. and Jakobs, K. H.: Evidence for ADP-ribosylation-factor-mediated activation of phospholipase D by m3 muscarinic acetylcholine receptor. Eur. J. Biochem. 234: 240–244, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Rumenapp, U., Asmus, M., Schablowski, H., Woznicki, M., Han, L., Jakobs, K. H., Fahimi-Vahid, M., Michalek, C., Wieland, T. and Schmidt, M.: The M3 muscarinic acetylcholine receptor expressed in HEK-293 cells signals to phospholipase D via G12 but not Gq-type G proteins: regulators of G proteins as tools to dissect pertussis toxin-resistant G proteins in receptor-effector coupling. J. Biol. Chem. 276: 2474–2479, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sagi, S. A., Seasholtz, T. M., Kobiashvili, M., Wilson, B. A., Toksoz, D. and Brown, J. H.: Physical and functional interactions of Gaq with Rho and its exchange factors. J. Biol. Chem. 276: 15445–15452, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sah, V. P., Seasholtz, T. M., Sagi, S. A. and Brown, J. H.: The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40: 459–489, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sauerberg, P., Olesen, P. H., Nielsen, S., Treppendahl, S., Sheardown, M. J., Honore, T., Mitch, C. H., Ward, J. S., Pike, A. J., Bymaster, F. P., Sawyer, B. D. and Shannon, H. E.: Novel functional M1 selective agonists. Synthesis and structure-activity relationships of 3-(1,2,5-thiadiazolyl)-1,2,5,6-tetar-hydro-1-methylpyridines. J. Med. Chem. 35: 2274–2283, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sauerberg, P., Jeppesen, L., Olesen, P. H., Rasmussen, T., Swedberg, M. D. B., Sheardown, M. J., Fink-Jensen, A., Thomsen, C., Thogersen, H., Rimvall, K., Ward, J. S., Calligaro, D. O., DeLapp, N. W., Bymaster, F. P. and Shannon, H. E.: Muscarinic agonists with antipsychotic-like activity: structure-activity relationships of 1,2,5-thiadiazole analogues with functional dopamine antagonist activity. J. Med. Chem. 41: 4378–4384, 1998a.

    Article  PubMed  CAS  Google Scholar 

  • Sauerberg, P., Jeppesen, L., Olesen, P. H., Sheardown, M. J., Fink-Jensen, A., Rasmussen, T., Rimvall, K., Shannon, H. E., Bymaster, F. P., DeLapp, N. W., Calligaro, D. O., Ward, J. S., Whitesitt, C. A. and Thomsen, C.: Identification of side chains on 1,2,5-thiadiazole-azacycles optimal for muscarinic M1 receptor activation. Bioorg. Med. Chem. Lett. 8: 2897–2902, 1998b.

    Article  PubMed  CAS  Google Scholar 

  • Savarese, T. M., Wang, C. D. and Fraser, C. M.: Sitedirected mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. J. Biol. Chem. 267: 11439–11448, 1992.

    PubMed  CAS  Google Scholar 

  • Schlador, M. L. and Nathanson, N.M.: Synergistic regulation of m2 muscarinic acetylcholine receptor desensitization and sequestration by G protein-coupled receptor kinase-2 and b-arrestin-1. J. Biol. Chem. 272: 18882–18890, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M., Bienek, C., van Koppen, C. J., Michel, M. C. and Jakobs, K. H.: Differential calcium signalling by m2 and m3 muscarinic acetylcholine receptors in a single cell type. Naunyn Schmiedebergs Arch. Pharmacol. 352: 469–476, 1995a.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M., Fasselt, B., Rumenapp, U., Bienek, C., Wieland, T., van Koppen, C. J. and Jakobs, K. H.: Rapid and persistent desensitization of m3 muscarinic acetylcholine receptor-stimulated phospholipase D. Concomitant sensitization of phospholipase C. J. Biol. Chem. 270: 19949–19956, 1995b.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M., Lohmann, B., Hammer, K., Haupenthal, S., Nehls, M. V. and Jakobs, K. H.: Gi-and protein kinase C-mediated heterologous potentiation of phospholipase C signaling by G protein-coupled receptors. Mol. Pharmacol. 53: 1139–1148, 1998.

    PubMed  CAS  Google Scholar 

  • Schmidt, M., Voss, M., Weernink, P. A., Wetzel, J., Amano, M., Kaibuchi, K. and Jakobs, K. H.: A role for rho-kinase in rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. J. Biol. Chem. 274: 14648–14654, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Schöneberg, T., Liu, J. and Wess, J.: Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J. Biol. Chem. 270: 18000–18006, 1995.

    Article  PubMed  Google Scholar 

  • Schwarz, R. D., Spencer, C. J., Jaen, J. C., Mirzadegan, T., Moreland, D., Tecle, H. and Thomas, A. J.: Mutations of aspartate 103 in the Hm2 receptor and alterations in receptor binding properties of muscarinic agonists. Life Sci. 56: 923–929, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Seasholtz, T. M., Majumdar, M. and Brown, J. H.: Rho as a mediator of G protein-coupled receptor signaling. Mol. Pharmacol. 55: 949–956, 1999.

    PubMed  CAS  Google Scholar 

  • Seifert, R. and Wenzel-Seifert, K.: Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch. Pharmacol. 366: 381–416, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, H. E., Bymaster, F. P., Calligaro, D. O., Greenwood, B., Mitch, C. H., Sawyer, B. D., Ward, J. S., Wong, D. T., Olesen, P. H., Sheardown, M. J., Swedberg, M. D. B., Suzdak, P. D. and Sauerberg, P.: Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J. Pharmacol. Exp. Ther. 269: 271–281, 1994.

    PubMed  CAS  Google Scholar 

  • Shannon, H. E., Rasmussen, K., Bymaster, F. P., Hart, J. C., Peters, S. C., Swedberg, M. D., Jeppesen, L., Sheardown, M. J., Sauerberg, P. and Fink-Jensen, A.: Xanomeline, an M1/M4 preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr. Res. 42: 249–259, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, M. S., Loose, M. D., Hamilton, S. E., Nathanson, N. M., Gomeza, J., Wess, J. and Hille, B.: Assignment of muscarinic receptor subtypes mediating G-protein modulation of Ca(2+) channels by using knockout mice. Proc. Natl. Acad. Sci. U. S.A. 96: 10899–108904, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R. A., Scherer, N. M., Habecker, B. A., Subers, E. M. and Nathanson, N. M.: Isolation, sequence, and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J. Biol. Chem. 263: 18397–18403, 1988.

    PubMed  CAS  Google Scholar 

  • Sharon, D., Vorobiov, D. and Dascal, N.: Positive and negative coupling of the metabotropic glutamate receptors to a G protein-activated K+ channel, GIRK, in Xenopus oocytes. J. Gen. Physiol. 109: 477–490, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Simonds, W. F.: G protein regulation of adenylate cyclase. Trends Pharmacol. Sci. 20: 66–73, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. D., Annis, S. J., Ehlert, F. J. and Leslie, F. M.: N-[3H]methylscopolamine labeling of non-M1, non-M2 muscarinic receptor binding sites in rat brain. J. Pharmacol. Exp. Ther. 256: 1173–1181, 1991.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., Chang, K. J., Kuhar, M. J. and Yamamura, H. I.: Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed. Proc. 34: 1915–1921, 1975.

    PubMed  CAS  Google Scholar 

  • Son, H., Hawkins, R. D., Martin, K., Kiebler, M., Huang, P. L., Fishman, M. C. and Kandel, E. R.: Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87: 1015–1023, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Spalding, T. A., Birdsall, N. J., Curtis, C. A. and Hulme, E. C.: Acetylcholine mustard labels the binding site aspartate in muscarinic acetylcholine receptors. J. Biol. Chem. 269: 4092–4097, 1994.

    PubMed  CAS  Google Scholar 

  • Spalding, T. A., Burstein, E. S., Brauner-Osborne, H., Hill-Eubanks, D. and Brann, M. R.: Pharmacology of a constitutively active muscarinic receptor generated by random mutagenesis. J. Pharmacol. Exp. Ther. 275: 1274–1279, 1995.

    PubMed  CAS  Google Scholar 

  • Spalding, T. A., Trotter, C., Skjaerbaek, N., Messier, T. L., Currier, E. A., Burstein, E. S., Li, D., Hacksell, U. and Brann, M. R.: Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol. Pharmacol. 61: 1297–1302, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, D. G., Jr., Horvath, E. and Traber, J.: Direct autoradiographic determination of M1 and M2 muscarinic acetylcholine receptor distribution in the rat brain: relation to cholinergic nuclei and projections. Brain Res. 380: 59–68, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Starke, K., Gothert, M. and Kilbinger, H.: Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69: 864–989, 1989.

    PubMed  CAS  Google Scholar 

  • Stevens, E. B., Shah, B. S., Pinnock, R. D. and Lee, K.: Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Mol. Pharmacol. 55: 1020–1027, 1999.

    PubMed  CAS  Google Scholar 

  • Stockton, J. M., Birdsall, N. J. M., Burgen, A. S. V. and Hulme, E. C.: Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 23: 551–557, 1983.

    PubMed  CAS  Google Scholar 

  • Strader, C. D., Fong, T. M., Tota, M. R. and Underwood, D.: Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 63: 101–132, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sugita S., Uchimura N., Jiang Z. G. and North R. A.: Distinct muscarinic receptors inhibit release of gamma-aminobutyric acid and excitatory amino acids in mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 88:2608–2611, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Suh, B. C. and Hille, B.: Recovery from muscarinic modulation of M current channels requires phospha-tidylinositol 4,5-bisphosphate synthesis. Neuron 35: 507–520, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sunahara, R. K., Dessauer, C. W. and Gilman, A. G.: Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol. 36: 461–480, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., VanDort, M. and Neubig, R. R.: Receptor and membrane interaction sites on Gb. A receptor-derived peptide binds to the carboxyl terminus. J. Biol. Chem. 271: 3336–3339, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Tottene, A., Volsen, S. and Pietrobon, D.: a1E subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J. Neurosci. 20: 171–178, 2000.

    PubMed  CAS  Google Scholar 

  • Tränkle, C. and Mohr, K.: Divergent modes of action among cationic allosteric modulators of muscarinic M2 receptors. Mol. Pharmacol. 51: 674–682, 1997.

    PubMed  Google Scholar 

  • Tränkle, C., Mies-Klomfass, E., Cid, M. H. B., Holzgrabe, U. and Mohr, K.: Identification of a [3H]Ligand for the common allosteric site of muscarinic acetylcholine M2 receptors. Mol. Pharmacol. 54: 139–145, 1998.

    PubMed  Google Scholar 

  • Tränkle, C., Weyand, O., Schroter, A. and Mohr, K.: Using a radioalloster to test predictions of the cooperativity model for gallamine binding to the allosteric site of muscarinic acetylcholine M2 receptors. Mol. Pharmacol. 56: 962–965, 1999.

    PubMed  Google Scholar 

  • Tsuga, H., Okuno, E., Kameyama, K. and Haga, T.: Sequestration of human muscarinic acetylcholine receptor hm1-hm5 subtypes: Effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6. J. Pharmacol. Exp. Ther. 284: 1218–1226, 1998.

    PubMed  CAS  Google Scholar 

  • Tucek, S., Musilkova, J., Nedoma, J., Proska, J., Shelkvnikov, S. and Vorlicek, J.: Positive cooperativity in the binding of alcuronium and N-methylsco-polamine to muscarinic acetylcholine receptors. Mol. Pharmacol. 38: 674–680, 1990.

    PubMed  CAS  Google Scholar 

  • Tucek, S., Michal, P. and Vlachova, V.: Dual effects of muscarinic M2 receptors on the synthesis of cyclic AMP in CHO cells: background and model. Life Sci. 68: 2501–2510, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Urbansky, M., Proska, J., Ricny, J. and Drasar, P.: Truxillic acid derivatives, neuromuscular blocking agents with very high affinity for the allosteric site of muscarinic acetylcholine receptors. Collect. Czech. Chem. Commun. 64: 1980–1992, 1999.

    Article  CAS  Google Scholar 

  • van Biesen, T., Hawes, B. E., Raymond, J. R., Luttrell, L. M., Koch, W. J. and Lefkowitz, R. J.: G(o)-protein alpha-subunits activate mitogen-activated protein kinase via a novel protein kinase C-dependent mechanism. J. Biol. Chem. 271: 1266–1269, 1996.

    Article  PubMed  Google Scholar 

  • van Koppen, C. J. and Nathanson, N. M.: Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. Analysis of the role of N-glycosylation in receptor expression and function. J. Biol. Chem. 265: 20887–20892, 1990.

    PubMed  Google Scholar 

  • Vilaro, M. T., Palacios, J. M. and Mengod, G.: Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res. Mol. Brain Res. 21: 30–46, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Vögler, O., Bogatkewitsch, G. S., Wriske, C., Krummenerl, P., Jakobs, K. H. and van Koppen, C. J.: Receptor subtype-specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. Distinct sequestration of m2 receptors. J. Biol. Chem. 273: 12155–12160, 1998.

    Article  PubMed  Google Scholar 

  • Vögler, O., Nolte, B., Voss, M., Schmidt, M., Jakobs, K. H. and van Koppen, C. J.: Regulation of muscarinic acetylcholine receptor sequestration and function by b-Arrestin. J. Biol. Chem. 274: 12333–12338, 1999.

    Article  PubMed  Google Scholar 

  • Voigtlander, U., Johren, K., Mohr, M., Raasch, A., Tränkle, C., Buller, S., Ellis, J., Holtje, H.-D. and Mohr, K.: Allosteric site on muscarinic acetylcholine receptors: Identification of two amino acids in the M2 muscarinic receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine occupied receptors. Mol. Pharmacol. 64: 21–31, 2003.

    Article  PubMed  Google Scholar 

  • Waelbroeck, M., Tastenoy, M., Camus, J. and Christophe, J.: Binding of selective antagonists to four muscarinic receptors (M1 to M4) in rat forebrain. Mol. Pharmacol. 38: 267–273, 1990.

    PubMed  CAS  Google Scholar 

  • Wall, S. J., Yasuda, R. P., Hory, F., Flagg, S., Martin, B. M., Ginns, E. I. and Wolfe, B. B.: Production of antisera selective for m1 muscarinic receptors using fusion proteins: distribution of m1 receptors in rat brain. Mol. Pharmacol. 39: 643–649, 1991a.

    PubMed  CAS  Google Scholar 

  • Wall, S. J., Yasuda, R. P., Li, M. and Wolfe, B. B.: Development of an antiserum against m3 muscarinic receptors: distribution of m3 receptors in rat tissues and clonal cell lines. Mol. Pharmacol. 40: 783–789, 1991b.

    PubMed  CAS  Google Scholar 

  • Wang, H. S., Pan, Z., Shi, W., Brown, B. S., Wymore, R. S., Cohen, I. S., Dixon, J. E. and McKinnon, D.: KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282: 1890–1893, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. Z., Lee, S. Y., Zhu, S. Z. and el-Fakahany, E. E.: Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology 53: 271–280, 1996.

    PubMed  CAS  Google Scholar 

  • Wang, S. Z., Lee, S. Y., Zhu, S. Z., Wotta, D. R., Parsons, A. M. and el-Fakahany, E. E.: Activation of neuronal nitric oxide synthase by M2 muscarinic receptors associated with a small increase in intracellular calcium. Pharmacology 55: 10–17, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ward, S. D., Curtis, C. A. and Hulme, E. C.: Alaninescanning mutagenesis of transmembrane domain 6 of the M1 muscarinic acetylcholine receptor suggests that Tyr381 plays key roles in receptor function. Mol. Pharmacol. 56: 1031–1041, 1999.

    PubMed  CAS  Google Scholar 

  • Weiner, D. M., Levey, A. I. and Brann, M. R.: Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 87: 7050–7054, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Werbonat, Y., Kleutges, N., Jakobs, K. H. and van Koppen, C. J.: Essential role of dynamin in internalization of M2 muscarinic acetylcholine and angiotensin AT1A receptors. J. Biol. Chem. 275: 21969–21974, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wess, J.: Molecular basis of muscarinic acetylcholine function. Trends Pharmacol. Sci. 14: 308–313, 1993a.

    Article  PubMed  CAS  Google Scholar 

  • Wess, J.: Mutational analysis of muscarinic acetylcholine receptors: Structural basis of ligand/receptor/G protein interactions. Life Sci. 53: 1447–1463, 1993b.

    Article  PubMed  CAS  Google Scholar 

  • Wess, J.: Molecular biology of muscarinic acetylcholine receptors. Crit. Rev. Neurobiol. 10: 69–99, 1996.

    PubMed  CAS  Google Scholar 

  • Wess, J.: Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80: 231–264, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wess, J., Brann, M. R. and Bonner, T. I.: Identification of a small intracellular region of the muscarinic m3 receptor as a determinant of selective coupling to PI turnover. FEBS Lett. 258: 133–136, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Wess, J., Bonner, T. I. and Brann, M. R.: Chimeric m2/ m3 muscarinic receptor: role of carboxyl terminal domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Mol. Pharmacol. 38: 82–87, 1990.

    Google Scholar 

  • Wess, J., Liu, J., Bluml, K., Yun, N., Schoneberg, T. and Blin, N.: Mutational analysis of muscarinic receptors: structural basis of ligand binding and G protein recognition. In: “Molecular Mechanisms of Muscarinic Acetylcholine Receptor Function,” J. Wess, Ed., pp. 1–18, R.G. Landes Company, Austin, 1995.

    Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M. and Marshall, F. H.: Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396: 679–682, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T. and Delon, M. R.: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237–1239, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Wickman, K. and Clapham, D. E.: Ion channel regulation by G proteins. Physiol. Rev. 75: 865–885, 1995.

    PubMed  CAS  Google Scholar 

  • Wong, S. K., Parker, E. M. and Ross, E. M.: Chimeric muscarinic cholinergic: beta-adrenergic receptors that activate Gs in response to muscarinic agonists. J. Biol. Chem. 265: 6219–6224, 1990.

    PubMed  CAS  Google Scholar 

  • Wregget, K. A. and Wells, J. W.: Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem. 270: 22488–22499, 1995.

    Article  Google Scholar 

  • Wu, G., Bogatkevich, G. S., Mukhin, Y. V., Benovic, J. L., Hildebrandt, J. D. and Lanier, S. M.: Identification of Gbetagamma binding sites in the third intracellular loop of the M(3)-muscarinic receptor and their role in receptor regulation. J. Biol. Chem. 275: 9026–9034, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L. G., Borst, J. G. and Sakmann, B.: R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. U.S.A. 95: 4720–4725, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Lamping, K. G., Duttaroy, A., Zhang, W., Cui, Y., Bymaster, F. P., McKinzie, D. L., Felder, C. C., Deng, C. X., Faraci, F.M. and Wess, J.: Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 98: 14096–14101, 2001a.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Miyakawa, T., Duttaroy, A., Yamanaka, A., Moriguchi, T., Makita, R., Ogawa, M., Chou, C. J., Xia, B., Crawley, J. N., Felder, C. C., Deng, C. X. and Wess, J.: Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410: 207–212, 2001b.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, J., Kaziro, Y. and Itoh, H.: Differential regulation of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7) by signaling from G protein beta gamma subunit in human embryonal kidney 293 cells. J. Biol. Chem. 274: 1957–1965, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, J., Tsujimoto, G., Kaziro, Y. and Itoh, H.: Parallel regulation of mitogen-activated protein kinase kinase 3 (MKK3) and MKK6 in Gq-signaling cascade. J. Biol. Chem. 276: 23362–23372, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, R. P., Ciesla, W., Flores, L. R., Wall, S. J., Li, M., Satkus, S. A., Weisstein, J. S., Spagnola, B. V. and Wolfe, B. B.: Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol. Pharmacol. 43: 149–157, 1993.

    PubMed  CAS  Google Scholar 

  • Zeng, F. Y. and Wess, J.: Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem. 274: 19487–19497, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, X. P., Le, F. and Richelson, E.: Muscarinic m4 receptor activation by some atypical antipsychotic drugs. Eur. J. Pharmacol. 321: 349–354, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Ferguson, S. S., Barak, L. S., Menard, L. and Caron, M. G.: Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J. Biol. Chem. 271: 18302–18305, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Basile, A. S., Gomeza, J., Volpicelli, L. A., Levey, A. I. and Wess, J.: Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J. Neurosci. 22: 1709–1717, 2002a.

    PubMed  CAS  Google Scholar 

  • Zhang, W., Yamada, M., Gomeza, J., Basile, A. S. and Wess, J.: Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J. Neurosci. 22: 6347–6352, 2002b.

    PubMed  CAS  Google Scholar 

  • Zorn, S. H., Jones, S. B., Ward, K. M. and Liston, D. R.: Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur. J. Pharmacol. 269: R1–R2, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Christopoulos, A. (2007). Muscarinic Acetylcholine Receptors in the Central Nervous System: Structure, Function, and Pharmacology. In: Karczmar, A.G. (eds) Exploring the Vertebrate Central Cholinergic Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46526-5_5

Download citation

Publish with us

Policies and ethics