Skip to main content

How Actin Assembly Is Modulated at Filament Barbed Ends in Motile Processes

  • Chapter
Actin-Monomer-Binding Proteins

Abstract

This short review is a survey of the biochemical mechanisms of control of actin filament barbed end assembly in motile processes. Regulated filament treadmilling is at the origin of barbed end growth. Barbed end nucleating, signal-responsive machineries specify the sites of filament assembly at the membrane to elicit polarized migration and determine the number of force-producing filaments. The rate of barbed end growth is controlled both by barbed end-bound factors (leaky cappers, processive motors of actin assembly) and by proteins that associate with monomeric actin and modify the rate of actin association to barbed ends. The flux of assembly at barbed ends of the different complexes of monomeric actin itself is controlled by barbed end capping proteins and by proteins that affect the rate of pointed end depolymerization, which is rate-limiting in the treadmilling cycle. While many actin-binding proteins fulfill one defined regulatory function, some of them can combine two different functions, or switch from one function to the other in a regulated fashion. Understanding the full complexity of motile behavior of living cells requires the biochemical analysis of individual actin regulatory proteins and the development of biomimetic motile systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pantaloni D, Le Clainche C, Carlier MF. Mechanism of actin-based motility. Science 2001; 292(5521):1502–6.

    Article  PubMed  CAS  Google Scholar 

  2. Small JV, Stradal T, Vignal E et al. The lamellipodium: Where motility begins. Trends Cell Biol 2002; 12(3):112–20.

    Article  PubMed  CAS  Google Scholar 

  3. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112(4):453–65.

    Article  PubMed  CAS  Google Scholar 

  4. Vallotton P, Gupton SL, Waterman-Storer CM et al. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc Natl Acad Sci USA 2004; 101(26):9660–5.

    Article  PubMed  CAS  Google Scholar 

  5. Ponti A, Machacek M, Gupton SL et al. Two distinct actin networks drive the protrusion of migrating cells. Science 2004; 305(5691):1782–6.

    Article  PubMed  CAS  Google Scholar 

  6. Small JV, Resch GP. The comings and goings of actin: Coupling protrusion and retraction in cell motility. Curr Opin Cell Biol 2005; 17(5):517–23.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper JA, Schafer DA. Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 2000; 12(1):97–103.

    Article  PubMed  CAS  Google Scholar 

  8. Zigmond SH. Beginning and ending an actin filament: Control at the barbed end. Curr Top Dev Biol 2004; 63:145–88.

    Article  PubMed  CAS  Google Scholar 

  9. Mogilner A, Oster G. Polymer motors: Pushing out the front and pulling up the back. Curr Biol 2003; 13(18):R721–33.

    Article  PubMed  CAS  Google Scholar 

  10. Wiesner S, Heifer E, Didry D et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J Cell Biol 2003; 160(3):387–98.

    Article  PubMed  CAS  Google Scholar 

  11. Marcy Y, Prost J, Carlier MF et al. Forces generated during actin-based propulsion: A direct measurement by micromanipulation. Proc Natl Acad Sci USA 2004; 101(16):5992–7.

    Article  PubMed  CAS  Google Scholar 

  12. Shemesh T, Geiger B, Bershadsky AD et al. Focal adhesions as mechanosensors: A physical mechanism. Proc Natl Acad Sci USA 2005; 102(35):12383–8.

    Article  PubMed  CAS  Google Scholar 

  13. Loisel TP, Boujemaa R, Pantaloni D et al. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 1999; 401(6753):613–6.

    Article  PubMed  CAS  Google Scholar 

  14. Upadhyaya A, van Oudenaarden A. Biomimetic systems for studying actin-based motility. Curr Biol 2003; 13(18):R734–44.

    Article  PubMed  CAS  Google Scholar 

  15. Carlier MF, Le Clainche C, Wiesner S et al. Actin-based motility: From molecules to movement. Bioessays 2003; 25(4):336–45.

    Article  PubMed  CAS  Google Scholar 

  16. Silacci P, Mazzolai L, Gauci C et al. Gelsolin superfamily proteins: Key regulators of cellular functions. Cell Mol Life Sci 2004; 61(19–20):2614–23.

    Article  PubMed  CAS  Google Scholar 

  17. Wear MA, Cooper JA. Capping protein: New insights into mechanism and regulation. Trends Biochem Sci 2004; 29(8):418–28.

    Article  PubMed  CAS  Google Scholar 

  18. Chuang JZ, Lin DC, Lin S. Molecular cloning, expression, and mapping of the high affinity actin-capping domain of chicken cardiac tensin. J Cell Biol 1995; 128(6):1095–109.

    Article  PubMed  CAS  Google Scholar 

  19. Disanza A, Carlier MF, Stradal TE et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 2004; 6(12):1180–8.

    Article  PubMed  CAS  Google Scholar 

  20. Heifer E, Nevalainen E, Naumanen P et al. Mammalian twinfilin sequesters ADP-G-actin and caps filament barbed ends: Implications in motility. EMBO J 2006; 25(6):1184–95.

    Article  CAS  Google Scholar 

  21. Carlier MF, Pantaloni D. Control of actin dynamics in cell motility. J Mol Biol 1997; 269(4):459–67.

    Article  PubMed  CAS  Google Scholar 

  22. Walsh TP, Weber A, Higgins J et al. Effect of villin on the kinetics of actin polymerization. Biochemistry 1984; 23(12):2613–21.

    Article  PubMed  CAS  Google Scholar 

  23. Schafer DA, Jennings PB, Cooper JA. Dynamics of capping protein and actin assembly in vitro: Uncapping barbed ends by polyphosphoinositides. J Cell Biol 1996; 135(1):169–79.

    Article  PubMed  CAS  Google Scholar 

  24. Carlier MF, Pantaloni D, Korn ED. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. J Biol Chem 1984; 259(16):9983–6.

    PubMed  CAS  Google Scholar 

  25. Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 2003; 65:761–89, (Epub 2002 May 1. Review).

    Article  PubMed  CAS  Google Scholar 

  26. Yang C, Pring M, Wear MA et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell 2005; 9(2):209–21.

    Article  PubMed  CAS  Google Scholar 

  27. Uruno T, Remmert K, Hammer JA. CARMIL is a potent Capping Protein antagonist: Identification of a conserved CARMIL domain that inhibits the activity of the Capping Protein and uncaps capped actin filaments. J Biol Chem 2006; 281(15):10635–50.

    Article  PubMed  CAS  Google Scholar 

  28. Dickinson RB, Caro L, Purich DL. Force generation by cytoskeletal filament end-tracking proteins. Biophys J 2004; 87(4):2838–54.

    Article  PubMed  CAS  Google Scholar 

  29. Kovar DR. Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 2005.

    Google Scholar 

  30. Rose R, Weyand M, Lammers M et al. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 2005; 435(7041):513–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lammers M, Rose R, Scrima A et al. The regulation of mDial by autoinhibition and its release by Rho*GTP. EMBO J 2005; 24(23):4176–87.

    Article  PubMed  CAS  Google Scholar 

  32. Xu Y, Moseley JB, Sagot I et al. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell 2004; 116(5):711–23.

    Article  PubMed  CAS  Google Scholar 

  33. Otomo T, Tomchick DR, Otomo C et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 2005; 433(7025):488–94.

    Article  PubMed  CAS  Google Scholar 

  34. Kovar DR, Pollard TD. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci USA 2004; 101(41):14725–30.

    Article  PubMed  CAS  Google Scholar 

  35. Romero S, Le Clainche C, Didry D et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 2004; 119(3):419–29.

    Article  PubMed  CAS  Google Scholar 

  36. Yang HC, Pon LA. Actin cable dynamics in budding yeast. Proc Natl Acad Sci USA 2002; 99(2):751–6.

    Article  PubMed  CAS  Google Scholar 

  37. Mejillano MR, Kojima S, Applewhite DA et al. Lamellipodial versus filopodial mode of the actin nanomachinery: Pivotal role of the filament barbed end. Cell 2004; 118(3):363–73.

    Article  PubMed  CAS  Google Scholar 

  38. Miki H, Takenawa T. Regulation of actin dynamics by WASP family proteins. J Biochem (Tokyo) 2003; 134(3):309–13.

    Article  PubMed  CAS  Google Scholar 

  39. Innocenti M, Gerboth S, Rottner K et al. Abil regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nat Cell Biol 2005; 7(10):969–76.

    Article  PubMed  CAS  Google Scholar 

  40. Jung G, Remmert K, Wu X et al. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 2001; 153(7):1479–97.

    Article  PubMed  CAS  Google Scholar 

  41. Sarmiere PD, Bamburg JR. Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J Neurobiol 2004; 58(1):103–17.

    Article  PubMed  CAS  Google Scholar 

  42. Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 2005; 7(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  43. Carlier MF, Laurent V, Santolini J et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility. J Cell Biol 1997; 136(6):1307–22.

    Article  PubMed  CAS  Google Scholar 

  44. Gupton SL, Anderson KL, Kole TP et al. Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 2005; 168(4):619–31.

    Article  PubMed  CAS  Google Scholar 

  45. Gunning PW, Schevzov G, Kee AJ et al. Tropomyosin isoforms: Divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15(6):333–41.

    Article  PubMed  CAS  Google Scholar 

  46. Galkin VE, VanLoock MS, Orlova A et al. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin’s sequence and structure. Curr Biol 2002; 12(7):570–5.

    Article  PubMed  CAS  Google Scholar 

  47. Orlova A, Prochniewicz E, Egelman EH. Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol 1995; 245(5):598–607.

    Article  PubMed  CAS  Google Scholar 

  48. Carlier MF, Jean C, Rieger KJ et al. Modulation of the interaction between G-actin and thymosin beta 4 by the ATP/ADP ratio: Possible implication in the regulation of actin dynamics. Proc Natl Acad Sci USA 1993; 90(11):5034–8.

    Article  PubMed  CAS  Google Scholar 

  49. Paavilainen VO, Bertling E, Falck S et al. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 2004; 14(7):386–94.

    Article  PubMed  CAS  Google Scholar 

  50. Palmgren S, Ojala PJ, Wear MA et al. Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol 2001; 155(2):251–60.

    Article  PubMed  CAS  Google Scholar 

  51. Pantaloni D, Carlier MF. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 1993; 75(5):1007–14.

    Article  PubMed  CAS  Google Scholar 

  52. Bubb MR, Yarmola EG, Gibson BG et al. Depolymerization of actin filaments by profilin. Effects of profilin on capping protein function. J Biol Chem 2003; 278(27):24629–35.

    Article  PubMed  CAS  Google Scholar 

  53. Paunola E, Mattila PK, Lappalainen P. WH2 domain: A small, versatile adapter for actin monomers. FEBS Lett 2002; 513(1):92–7.

    Article  PubMed  CAS  Google Scholar 

  54. Hertzog M, van Heijenoort C, Didry D et al. The beta-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell 2004; 117(5):611–23.

    Article  PubMed  CAS  Google Scholar 

  55. Irobi E, Aguda AH, Larsson M et al. Structural basis of actin sequestration by thymosin-beta4: Implications for WH2 proteins. EMBO J 2004; 23(18):3599–608.

    Article  PubMed  CAS  Google Scholar 

  56. Chereau D, Kerff F, Graceffa P et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci USA 2005; 102(46):16644–9.

    Article  PubMed  CAS  Google Scholar 

  57. Hertzog M, Yarmola EG, Didry D et al. Control of actin dynamics by proteins made of beta-thymosin repeats: The actobindin family. J Biol Chem 2002; 277(17):14786–92.

    Article  PubMed  CAS  Google Scholar 

  58. Boquet I, Boujemaa R, Carlier MF et al. Ciboulot regulates actin assembly during Drosophila brain metamorphosis. Cell 2000; 102(6):797–808.

    Article  PubMed  CAS  Google Scholar 

  59. Van Troys M, Ono K, Dewitte D et al. TetraThymosinbeta is required for actin dynamics in Caenorhabditis elegans and acts via functionally different actin-binding repeats. Mol Biol Cell 2004; 15(10):4735–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Carlier, MF., Pantaloni, D., Romero, S., Le Clainche, C. (2007). How Actin Assembly Is Modulated at Filament Barbed Ends in Motile Processes. In: Actin-Monomer-Binding Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46407-7_1

Download citation

Publish with us

Policies and ethics