Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

Angiogenesis, the formation of new blood vessels from host vasculature, is critical for tumor growth and metastases. Curcumin, a novel smallmolecular- weight compound, has been shown to inhibit carcinogenesis in different organs and the common link between these actions is its antiangiogenic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. J. Folkman, Tumor angiogenesis: Therapeutic implications. New Engl J Med 285, 1182–1186 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. 2. J. Folkman, Angiogenesis and apoptosis. Semin Cancer Biol 13(2), 159–167 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. 3. T. P. Robinson, T. Ehlers, R. B. Hubbard IV, X. Bai, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin. Bioorg Med Chem Lett 13(1), 115–117 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. 4. M. S. Furness, T. P. Robinson, T. Ehlers, R. B. Hubbard 4th, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Antiangiogenic agents: Studies on fumagillin and curcumin analogs. Curr Pharm Des 11, 357–373 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. 5. J. Folkman and D. Hanahan, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  PubMed  Google Scholar 

  6. 6. J. L. Arbiser, M. A. Moses, C. A. Fernandez, N. Ghiso, Y. Cao, N. Klauber, D. Frank, M. Brownlee, E. Flynn, S. Parangi, H. R. Byers, and J. Folkman, Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94(3), 861–866 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. 7. J. L. Arbiser, N. Klauber, R. Rohan, R. van Leeuwen, M. T. Huang, C. Fisher E. Flynn, and H. R. Byers, Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4, 376–383 (1998).

    PubMed  CAS  Google Scholar 

  8. 8. R. Klafer and J. L. Arbiser, Regulation of angiogenesis and tumorigenesis by signal transduction cascades: lessons from benign and malignant endothelial tumors. J Investig Dermatol Symp Proc 5(1), 79–82 (2000).

    Article  Google Scholar 

  9. 9. G. N. Naumov, E. Bender, D. Zurakowski, S. Y. Kang, D. Sampson, E. Flynn, R. S. Watnick, O. Straume, L. A. Akslen, J. Folkman, and N. Almog, A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5), 316–325 (2006).

    Article  PubMed  Google Scholar 

  10. 10. R. Bianco, D. Melisi, F. Ciardiello, G. Tortora, Key cancer cell signal transduction pathways as therapeutic targerts, Eur J Cancer 42, 290–294 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. 11. W. H. Chen, Y. Chen, and G. H. Cui, Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells on angiogenesis in ECV304 cells. Chin Med J (Engl) 118(24), 2052–2057 (2005).

    CAS  Google Scholar 

  12. 12. S. Sawant, S. Aparicio, A. R. Tink, N. Lara, C. J. Barnstable, and J. Tombran-Tink, Regulation of factors controlling angiogenesis in liver development: A role for PEDF in the formation and maintenance of normal vasculature. Biochem Biophys Res Commun. 325(2), 408–413 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. 13. K. Q. Hu, C. H. Yu, Y. Mineyama, J. D. McCracken, D. J. Hillebrand, and M. Hasan, Inhibited proliferation of cyclooxygenase-2 expressing human hepatoma cells by NS-398, a selective COX-2 inhibitor, Int J Oncol 22(4), 757–763 (2003).

    PubMed  CAS  Google Scholar 

  14. 14. F. Millanta, S. Citi, D. Della Santa, M. Porciani, and A. Poli, COX-2 expression in canine and feline invasive mammary carcinomas: Correlation with clinicopathological features and prognostic molecular markers. Breast Cancer Res Treat. 98(1), 115–120 (2006) Mar 15; [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  15. 15. P. Yoysungnoen, P Wirachwong, P Bhattarakosol, H. Niimi, and S. Patumraj, Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 34(1–2), 109–115 (2006).

    PubMed  CAS  Google Scholar 

  16. 16. L. Li, F. S. Braiteh, and R. Kurzrock, Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104(6), 1322–1331 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. 17. K. C. Kent, S. Mii, E. O. Harrington, J. D. Chang, S. Mallette, and J. A. Ware, Requirement for protein kinase C activation in basic fibroblast growth factor-induced human endothelial cell proliferation. Cir Res 77, 231–238 (1995).

    CAS  Google Scholar 

  18. 18. B. B. Aggarwal and K. Natarajan, Tumor necrosis factor: Developments during the last decade. Eur Cytokine Netw 7, 93–124 (1996).

    PubMed  CAS  Google Scholar 

  19. 19. A. Noel, C. Gilles, K. Bajou, L. Devy, F. Kebers, J. M. Lewalle, et al., Emerging roles for proteinases in cancer. Invasion Metastasis 17, 221–239 (1997).

    PubMed  CAS  Google Scholar 

  20. 20. D. B. Rifkin, R. Mazzieri, J. S. Munger, I. Noguera, and J. Sung, Proteolytic control of growth factor availability. APMIS 107, 80–85 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. 21. M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nature Rev 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  22. 22. S. S. Twining, Regulation of proteolytic activity in tissues. Crit Rev Biochem Mol Biol 29, 315–383 (1994).

    PubMed  CAS  Google Scholar 

  23. 23. H. Li, C. Soria, F. Griscelli, P. Opolon, J. Soria, P. Yen, C. Legrand, J. P. Vannier, D. Belin, M. Perricaudet, and H. Lu, Amino-terminal fragment of urokinase inhibits tumor cell invasion in vitro and in vivo: Respective contribution of the urokinase plasminogen activator receptor-dependent or -independent pathway. Hum Gene Ther 16(10), 1157–1167 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. 24. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23(1A), 363–398 (2003).

    PubMed  CAS  Google Scholar 

  25. 25. J. F. Santibanez, M. Quintanilla, and J. Martinez, Genistein and curcumin block TGF-beta 1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr Cancer 37(1), 49–54 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. 26. P. C. Smith, J. F. Santibanez, J. P. Morales, and J. Martinez, Epidermal growth factor stimulates urokinase-type plasminogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin. J Periodontal Res 39(6), 380–387 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. 27. M. Parra, F. Lluis, F. Miralles, C. Caelles, and P. Munox-Canoves, The cJun N-terminal kinase (JNK) signaling pathway mediates induction of urokinase-type plasminogen activator (uPA) by the alkylating agent MNNG. Blood 96(4), 1415–1424 (2000).

    PubMed  CAS  Google Scholar 

  28. 28. T. Collins, M. A. Read, A. S. Neish, M. Z. Whitley, D. Thanos, and T. Maniatis, Transcriptional regulation of endothelial cell adhesion molecules: NF-κ B and cytokine-inducible enhancers. FASEB J 9(10), 899–909 (1995).

    PubMed  CAS  Google Scholar 

  29. 29. W. G. Stetler-Stevenson, Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J Clin Invest 103(9), 1237–1241 (1999).

    PubMed  CAS  Google Scholar 

  30. 30. A. Kumar, S. Dhawan, N. J. Hardegen, and B. B. Aggarwal, Curcumin inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-κ B activation. Biochem Pharamcol 55, 775–783 (1998).

    Article  CAS  Google Scholar 

  31. 31. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol. 21, 745–757 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. 32. Aggarwal, D. Thaloor, A. K. Singh, G. S. Sidhu, P. V. Prasad, H. K. Kleinman, R. K. Maheshwari, Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell growth Differ 9(4), 305–312 (1998).

    Google Scholar 

  33. 33. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα Kinase and Akt activation. Mol Pharmacol 69(1), 195–206 (2006).

    PubMed  CAS  Google Scholar 

  34. 34. D. R. Siwak, S. Shishodia, B. B. Aggarwal, and R. Kurzrock, Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104(4), 879–890 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. 35. J. A. Bush, K.-J. Cheung, Jr., and G. Li, Curcumin induces apoptosis in human melanoma cells through a Fas receptor/easpase 8 pathway independent of p53. Exp Cell Res 271, 305–314 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. 36. P. Dhawan and A. Richmond, A novel NF-κB-inducing kinase-MAPK kinase signaling pathway up-regulates NF-κB activity in melanoma cells. J Biol Chem 277(10), 7920–7928 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. 37. L. V. Madrid, C. Y. Wang, D. C. Guttridge, A. J. Schottelius, A. S. Baldwin, Jr., and M. W. Mayo, Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF–κB. Mol Cell Biol 20, 1626–1638 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. 38. M. Fujita, D. A. Norris, H. Yagi, et al., Overexpression of mutant ras in human melanoma increases invasiveness, proliferation, and anchorage-independent growth in vitro and induces tumour formation and cachexia in vivo. Melanoma Res 9, 279–291 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. 39. J. M. Stahl, M. Cheung, A. Sharma, N. R. Trivedi, S. Shanmugam, and G. P. Robertson, Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res 63, 2881–2890 (2003).

    PubMed  CAS  Google Scholar 

  40. 40. A. Jetzt, J. A. Howe, M. T. Horn, E. Maxwell, Z. Yin, D. Johnson, C. C. Kumar, Adeno et al., Adenoviral-mediated expression of a kinase-dead mutant of Akt induces apoptosis selectively in tumor cells and suppresses tumor growth in mice. Cancer Res 63, 6697–6706 (2003).

    PubMed  CAS  Google Scholar 

  41. 41. E. Hoffmann, O. Dittrich-Breiholtz, O. Holtmann, and M. Kracht, Multiple control of interleukin-8 gene expression. J Leuk Biol 72, 847–855 (2002).

    CAS  Google Scholar 

  42. 42. X. Le, Q. Shi, B. Wang, et al., Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res 20, 935–946 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. 43. L. I. Lin, Y. F. Ke, Y. C. Ko, and J. K. Lin, Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell Invasion in vitro and suppresses matrix metalloproteinase-9 secretion Oncology. 55, 349–353 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. 44. P. L. Fox, PG. Sa, S. F. Dobrowolski, and D. W. Stacey, The regulation of endothelial cell motility by p21 ras. Oncogene 9(12), 3519–3526 (1994).

    PubMed  CAS  Google Scholar 

  45. 45. E. Y. Shin, S. Y. Kim, E. G. Kim, C-Jun N-terminal kinase is involved in motility of endothelial cell. Exp Mol Med 33(4), 276–83 (2001).

    PubMed  CAS  Google Scholar 

  46. 46. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κ B and IκBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101(3), 1053–1062 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. 47. A. Mukhopadhyay, S. Banerjee, L. J. Stafford, C. Xia, M. Liu, B. B. Aggarwal. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclic D1 expression and CDK4-medicated retinoblastoma protein phosphorylation. Oncogene 21(57), 8852–8861 (2002.)

    Article  PubMed  CAS  Google Scholar 

  48. 48. Y. Sun, M. P. Wilson, and P. W. Majerus, Inositol 1,3,4-trisphosphate 5/6-kinase associates with the COP9 signalosome by binding to CSN1. J Biol Chem 277(48), 45759–4564 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bhandarkar, S.S., Arbiser, J.L. (2007). CURCUMIN AS AN INHIBITOR OF ANGIOGENESIS. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_7

Download citation

Publish with us

Policies and ethics