Curcumin, a compound in the human food supply, represents a nearperfect starting point for drug discovery. Consequently, a number of research groups have taken the natural product as a starting point to prepare and biologically evaluate a wide variety of curcumin analogues.


Breast Cancer Cell Line Chronic Myeloid Leukemia Tissue Factor Human Prostate Cancer Cell Line Unsaturated Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. B. J. Druker, C. L. Sawyers, H. Kantarjian, D. J. Resta, S. F. Reese, J. M. Ford, R. Capdeville, and M. Talpaz, Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344(14), 1038–1042 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    2. M. A. Cobleigh, C. L. Vogel, D. Tripathy, N. J. Robert, S. Scholl, L. Fehrenbacher, J. M. Wolter, V. Paton, S. Shark, G. Lieberman, and D. J. Slamon, Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9), 2639–2648 (1999).PubMedGoogle Scholar
  3. 3.
    3. R. B. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. J. Gralla, D. L. Trump, J. R. Baker, Jr., D. A. Van Echo, D. D. Van Hoff, and B. Leyland-Jones, Hypersensitivity reactions from taxol. J Clin Oncol 8(7), 1263–1268 (1990).PubMedGoogle Scholar
  4. 4.
    4. E. A. Eisenhauer, W. W. ten Bokkel Huinink, K. D. Swenerton, L. Gianni, J. Myles, M. E. van der Burg, I. Kerr, J. B. Vermorken, K. Buser, and N. Colombo, European–Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high dose versus low-dose and long versus short infusion. J Clin Oncol 12(12), 2654–2666 (1994).PubMedGoogle Scholar
  5. 5.
    5. D. Raghavan, B. Koczwara, and M. Javle, Evolving strategies of cytotoxic chemotherapy for advanced prostate cancer. Eur J Cancer 33(4), 566–574 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    6. S. Shishodia, G. Sethi, and B. B. Aggarwal, Curcumin: Getting back to the roots. Ann NY Acad Sci 1056, 206–217 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    7. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen, C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh, Phase I clinical trials of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B), 2895–2900 (2001).PubMedGoogle Scholar
  8. 8.
    8. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23(1A), 363–398 (2003).PubMedGoogle Scholar
  9. 9.
    9. A. Duviox, R. Blasius, S. Delhalle, M. Schnekenburger, F. Morceau, E. Henry, M. Dicato, and M. Diederich, Chemopreventive and therapeutic effects of curcumin, Cancer Lett 223(2), 181–190 (2005).CrossRefGoogle Scholar
  10. 10.
    10. R. A. Sharma, A. J. Gescher, and W. P. Steward, Curcumin: The story so far. Eur J Cancer 41(13), 1955–1968 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    11. A. T. Dinkova-Kostova, C. Abeygunawardana, and P. Talalay, Chemoprotective properties of phenylpropenoids, bis(benzylidene)cycloalkanones, and related Michael reaction acceptors: Correlation of potencies as phase 2 enzyme inducers and radical scavengers. J Med Chem 41(26), 5287–5296 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    12. B. Mutus, J. D. Wagner, C. J. Talpas, J. R. Dimmock, O. A. Phillips, and R. S. Reid, 1-p-chlorophenyl-4,4-dimethyl-5-ethylamino-1-penten-3-one hydrobromide, a sulfhydryl-specific compound which reacts irreversibly with protein thiols but reversibly with smaller molecular weight thiols. Anal Biochem 177(2), 237–243 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    13. S. Mathews and M. N. A. Rao, Interaction of curcumin with glutathione. Int J Pharm 76(3), 257–259 (1991).CrossRefGoogle Scholar
  14. 14.
    14. S. Awasthi, U. Pandya, S. S. Singhal, J. T. Lin, V. Thiviyanathan, W. E. Seifert, Y. C. Awasthi, and G. A. S. Ansara, Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. Chemico-Biol Interact 128(1), 19–38 (2000).CrossRefGoogle Scholar
  15. 15.
    15. H. M. Wortelboer, M. Usta, A. E. Van der Velde, M. G. Boersma, B. Spenkelink, J. J. Van Zanden, J. Jelmer, I. M. C. M. Rietjens, P. J. Van Bladeren, and N. H. Cnubben, Interplay between MRP inhibition and metabolism of MRP inhibitors: The case of curcumin. Chem Res Toxicol 16(12), 1642–1651 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    16. Y. J. Wang, M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12), 1867–1876 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    17. M. J. Ansari, S. Ahmad, K. Kohli, J. Ali, and R. K. Khar, Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J Pharm Biomed Anal 9(1–2), 132–138 (2005).CrossRefGoogle Scholar
  18. 18.
    18. J. R. Dimmock, P. Kumar, A. J. Nazarali, N. L. Motaganahalli, T. P. Kowalchuk, M. A. Beazely, J. W. Quail, E. O. Oloo, T. M. Allen, J. Szydlowski, E. De Clerq, and J. Balzarini, Cytotoxic 2,6-bis(arylidene)cyclohexanones and related compounds. Eur J Med Chem 35(11), 967–977 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    19. J. R. Dimmock, M. P. Padmanilayam, G. A. Zello, K. H. Nienaber, T. M. Allen, C. L. Santos, E. De Clerq, J. Balzarini, E. K. Manavathu, and J. P. Stables, Cytotoxic analogues of 2,6-bis(arylidene)cyclohexanones. Eur J Med Chem 38(2), 169–177 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    20. J. R. Dimmock, M. P. Padmanilayam, R. N. Puthucode, A. J. Nazarali, N. L. Motaganahalli, G. A. Zello, J. W. Quail, E. O. Oloo, H.-B. Kraatz, J. S. Prisciak, T. M. Allen, C. L. Santos, J. Balzarini, E. De Clerq, and E. K. Manavathu, A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J Med Chem 44(4), 586–593 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    21. J. R. Dimmock, A. Jha, G. A. Zello, J. W. Quail, E. O. Oloo, K. H. Nienaber, E. S. Kowalczyk, T. M. Allen, C. L. Santos, E. De Clerq, J. Balzerini, E. K. Manavathu, and J. P. Stables, Cytotoxic N-[4-(3-aryl-3-oxo-1-propenyl)phenylcarbonyl]-3,5-bis(phenylmethylene)-4-piperidones and related compounds. Eur J Med Chem 37(12), 961–972 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    22. H. I. El-Subbagh, S. M. Abu-Zaid, M. A. Mahran, F. A. Badria, and A. M. Al-Obaid, Synthesis and biological evaluation of certain α, β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem 43(14), 2915–2921 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    23. J. R. Dimmock, U. Das, H. I. Gul, M. Kawase, H. Sakagami, Z. Baráth, I. Ocsovsky, and J. Molnár, 3-Arylidene-1(4-nitrophenylmethylene)-3,4-dihydro-1H-naphthalen-2-ones and related compounds displaying selective toxicity and reversal of multidrug resistance in neoplastic cells. Bioorg Med Chem Lett 15, 1633–1636 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    24. N. M. Pandya, N. S. Dhalla, and D. D. Santani, Angiogenesis: A new target for future therapy. Vasc Pharmacol 44(5), 265–274 (2006).CrossRefGoogle Scholar
  25. 25.
    25. J. L. Arbiser, N. Klauber, R. Rohan, R. Van Leeuwen, M. Huang, C. Fisher, E. Flynn, and H. R. Byers, Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6), 376–383 (1998).PubMedGoogle Scholar
  26. 26.
    26. T. P. Robinson, T. Ehlers, R. B. Hubbard, X. Bai, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin. Bioorg Med Chem Lett 13(1), 115–117 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    27. J. R. Dimmock, N. M. Kandepu, M. Hetherington, J. W. Quail, U. Pugazhenthi, A. M. Sudom, M. Chamankhah, P. Rose, E. Pass, T. M. Allen, S. Halleran, J. Szydlowski, B. Mutus, M. Tannous, E. K. Manavathu, T. G. Meyers, De Clerq, E., and J. Balzarini, Cytotoxic activities of Mannich bases of chalcones and related compounds. J Med Chem 41(7), 1014–1026 (1998).PubMedCrossRefGoogle Scholar
  28. 28.
    28. Y. Satomi, Inhibitory effects of 3′-methyl-3-hydroxychalcone on proliferation of human malignant tumor cells and on skin carcinogenesis. Int J Cancer 55(3), 506–514 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    29. L. W. Wattenberg, J. B. Coccia, and A. R. Galbraith, Inhibition of carcinogen-induced pulmonary and mammary carcinogenesis by chalcone administered subsequent to carcinogen exposure. Cancer Lett 83(1–2), 165–169 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    30. M. L. Edwards, D. M. Stemerick, and P. S. Sunkara, Chalcones: A new class of antimitotic agents. J Med Chem 33(7), 1948–1954 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    31. Y. Xia, Z. Yang, P. Xia, K. F. Bastow, Y. Nakanishi, and K. Lee, Antitumor agents. Part 202: Novel 2′-aminochalcones: Design, synthesis, and biological evaluation. Bioorg Med Chem Lett 10(8), 699–701 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    32. T. P. Robinson, R. B. Hubbard, T. J. Ehlers, J. L. Arbiser, D. J. Goldsmith, and J. P. Bowen, Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg Med Chem 13(12), 4007–4013 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    33. C. M. Ahn, W. Shin, H. B. Woo, S. Lee, and H. Lee, Synthesis of symmetrical bis-alkynyl or alkyl pyridine and thiophene derivatives and their antiangiogenic activities. Bioorg Med Chem Lett 14(15), 3893–3896 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    34. J. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H. Park, B. S. Shim, S. H. Choi, and H. J. Kwon, Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 10(8), 695–704 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    35. E. Hahm, Y. S. Gho, S. Park, C. Park, K. Kim, and C. Yang, Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem Biophys Res Commun 321(2), 337–344 (2004).PubMedCrossRefGoogle Scholar
  36. 36.
    36. K. Singletary and C. MacDonald, Inhibition of benzo[a]pyrene- and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells by dibenzoylmethane and sulforaphane. Cancer Lett 155(1), 47–54 (2000).PubMedCrossRefGoogle Scholar
  37. 37.
    37. H. Ohtsu, Z. Xiao, J. Ishida, M. Nagai, H. Wang, H. Itokawa, C. Su, C. Shih, T. Chiang, E. Chang, Y. Lee, M. Tsai, C. Chang, and K. Lee, Antitumor Agents 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J Med Chem 45(23), 5037–5042 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    38. L. Lin, Q. Shi, A. K. Nyarko, K. F. Bastow, C.-C. Wu, C. Y. Su, C. C. Shih, and K. H. Lee, Antitumor Agents 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J Med Chem 49(13), 3963–3972 (2006).PubMedCrossRefGoogle Scholar
  39. 39.
    39. Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 24, No 18S (June 20 Supplement), 2006: 14151, American Society of Clinical Oncology;; cf. Houston Chronicle, July 11, 2005, In Cancer fight, a spice brings hope to the table. Available from
  40. 40.
    40. A. C. Bharti, S. Shishodia, J. M. Reuben, D. Weber, R. Alexanian, S. Raj-Vadhan ETALN. Donato, and B. B. Aggarwal, Nulear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors lead to apoptosis. Blood 103(8), 3175–3184 (2004).PubMedCrossRefGoogle Scholar
  41. 41.
    41. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-kappaB is suppressed by curcumin (diferuloylmethane). J Biol Chem 270(42), 24,995–25,000 (1995).Google Scholar
  42. 42.
    42. S. M. Plummer, K. A. Holloway, A. Karen, M. M. Manson, R. J. L. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signaling complex. Oncogene 18(44), 6013–6020 (1999).PubMedCrossRefGoogle Scholar
  43. 43.
    43. C. E. Eberhart and R. N. Dubois, Eicosanoids and the gastrointestinal tract. Gastroenterology 109(1), 285–301 (1995).PubMedCrossRefGoogle Scholar
  44. 44.
    44. C. Thiemermann, The spice of life: curcumin reduces the mortality associated with experimental sepsis. Crit Care Med 34, 2009–2011 (2006).PubMedCrossRefGoogle Scholar
  45. 45.
    45. A. M. Siddiqui, X. Cui, R. Wu, W. Dong, M. Zhou, M. Hu, H. H. Simms, and P. Wang, The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma. Crit Care Med 34, 1874–1882 (2006).PubMedCrossRefGoogle Scholar
  46. 46.
    46. M. L. P. S. van Iersel, J. H. T. M. Ploemen, I. Struik, C. van Amersfoort, A. E. Keyzer, J. G. Schefferlie, and P. J. Van Bladeren, Inhibition of glutathione S-transferase activity in human melanoma cells by alpha, beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem-Biol Interact 102(2), 117–132 (1996).PubMedCrossRefGoogle Scholar
  47. 47.
    47. A. T. Dinkova-Kostova and P. Talalay, Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 20(5), 911–914 (1999).PubMedCrossRefGoogle Scholar
  48. 48.
    48. A. T. Dinkova-Kostova, M. A. Massiah, R. E. Bozak, R. J. Hicks, and P. Talalay, Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci USA 98(6), 3404–3409 (2001).PubMedCrossRefGoogle Scholar
  49. 49.
    49. W. M. Weber, L. A. Hunsaker, S. F. Abcouwer, L. M. Deck, J. Vander, and L. David, Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13(11), 3811–3820 (2005).PubMedCrossRefGoogle Scholar
  50. 50.
    50. K. M. Youssef and M. A. El-Sherbeny, Synthesis and antitumor activity of some curcumin analogs. Arch Pharmazie (Weinheim, Germany) 338(4), 181–189 (2005).CrossRefGoogle Scholar
  51. 51.
    51. K. M. Youssef, A. M. Ezzo, M. I. El-Sayed, A. A. Hazzaa, A. H. El-Medany, and M. Arafa, Curcumin analogs as anticancer agents: 1) preclinical safety evaluation in mice and rats. 2) Chemopreventive effects in DMH-Induced colon cancer in albino rats model, submitted.Google Scholar
  52. 52.
    52. B. M. Markaverich, T. H. Schauweker, R. R. Gregory, M. Varma, F. S. Kittrell, D. Medina, and R. S. Rajender, Nuclear type II sites and malignant cell proliferation: Inhibition by 2,6-bisbenzylidenecyclohexanones. Cancer Res 52(9), 2482–2488 (1992).PubMedGoogle Scholar
  53. 53.
    53. B. K. Adams, E. M. Ferstl, M. C. Davis, M. Herold, S. Kurtkaya, R. F. Camalier, M. G. Hollingshead, G. Kaur, E. A. Sausville, F. R. Rickles, J. P. Snyder, D. C. Liotta, and M. Shoji, Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12(14), 3871–3883 (2004).PubMedCrossRefGoogle Scholar
  54. 54.
    54. R. J. Anto, J. George, K. V. Dinesh Babu, K. N. Rajasekharan, and R. Kuttan, Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoids. Mutat Res 370(2), 127–131 (1996).PubMedCrossRefGoogle Scholar
  55. 55.
    55. S. M. McElvain and R. E. McMahon, Piperidine derivatives. XXI. 4-Piperidone, 4-piperidinol, and certain of their derivatives. J Am Chem Soc 71, 901–906 (1949).CrossRefGoogle Scholar
  56. 56.
    56. B. K. Adams, J. Cai, J. Armstrong, M. Harold, Y. J. Lu, A. Sun, J. P. Snyder, D. C. Liotta, D. P. Jones, and M. Shoji, EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anti-cancer Drugs 16(3), 263–275 (2005).PubMedCrossRefGoogle Scholar
  57. 57.
    57. C. Syung-ai, A. L. Kumari, and A. Khar, Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2. Mol Cancer Ther 3, 1101–1108 (2004).Google Scholar
  58. 58.
    58. A. Laurent, C. Nicco, C. Chéreau, C. Goulvestre, J. Alexandre, A. Alves, E. Lévy, F. Goldwasser, Y. Panis, O. Soubrane, B. Weill, and F. Batteux, Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65, 948–956 (2005).PubMedGoogle Scholar
  59. 59.
    59. R. M. Kluck, E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer, The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303), 1132–1136 (1997).PubMedCrossRefGoogle Scholar
  60. 60.
    60. T. Kuwana and D. D. Newmeyer, Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15(16), 691–699 (2003).PubMedCrossRefGoogle Scholar
  61. 61.
    61. H. Zou, W. J. Henzel, X. Liu, A. Lutschg, and X. Wang, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3), 405–413 (1997).PubMedCrossRefGoogle Scholar
  62. 62.
    62. N. A. Thornberry and Y. Lazebnik, Caspases: Enemies within, Science 281(5381), 1312–1316 (1998).PubMedCrossRefGoogle Scholar
  63. 63.
    63. P. Li, D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, and X. Wang, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4), 479–489 (1997).PubMedCrossRefGoogle Scholar
  64. 64.
    64. M. H. Pan, W. L. Chang, S. Y. Lin-Shiau, C. T. Ho, and J. K. Lin, Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspase in human leukemia HL-60 cells. J Agric Food Chem 49(3), 1464–1474 (2001).PubMedCrossRefGoogle Scholar
  65. 65.
    65. D. Morin, S. Barthelemy, R. Zini, S. Labidalle, and J. Tillement, Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 495(1–2), 131–136 (2001).PubMedCrossRefGoogle Scholar
  66. 66.
    66. R. J. Anto, A. Mukhopadhyay, K. Denning, and B. B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogensis 23(1), 143–150 (2002).CrossRefGoogle Scholar
  67. 67.
    67. L. Ghibelli, S. Coppola, G. Rotilio, E. Lafavia, V. Maresca, and M. R. Ciriolo, Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Commun 216(1), 462–469 (1995).CrossRefGoogle Scholar
  68. 68.
    68. S. Tan, Y. Sagara, Y. Liu, P. Maher, and D. Schubert, The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141(16), 1423–1432 (1998).PubMedCrossRefGoogle Scholar
  69. 69.
    69. H. Fu, S. Thomas, D. C. Liotta, and J. P. Snyder, in preparation.Google Scholar
  70. 70.
    70. A. Brown, H. Shim, and J. P. Snyder, in preparation.Google Scholar
  71. 71.
    71. A. Sun, S. Mao, Y. Lu, M. Shojii, D. C. Liotta, and J. P. Snyder, in preparation.Google Scholar
  72. 72.
    72. T. Ouchi, E. Yamabe, K. Hara, M. Hirai, and Y. Ohya, Design of attachment type of drug delivery systems by complex formation of avidin with biotinyl drug model and biotinyl saccharide, J Cont Release 94, 281–291 (2004).CrossRefGoogle Scholar
  73. 73.
    73. G. Schoellmann and E. Shaw, Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry 2, 252–255 (1963).PubMedCrossRefGoogle Scholar
  74. 74.
    74. N. S. Callander, N. Varki, and L. V. Rao, Immunohistochemical identification of tissue factor in solid tumors. Cancer 70(5), 1194–1201 (1992).PubMedCrossRefGoogle Scholar
  75. 75.
    75. J. Contrino, G. Hair, D. L. Kreutzer, and F. R. Rickles, In situ detection of tissue factor in vascular endothelial cells: Correlation with the malignant phenotype of human breast disease. Nature Med 2(2), 209–215 (1996).PubMedCrossRefGoogle Scholar
  76. 76.
    76. C. B. Hansen, C. Pyke, L. C. Petersen, and L. V. M. Rao, Tissue factor-mediated endocytosis, recycling, and degradation of factor VIIa by a clathrin-independent mechanism not requiring the cytoplasmic domain of tissue factor. Blood 97(6), 1712–1720 (2001).PubMedCrossRefGoogle Scholar
  77. 77.
    77. A. Sun, M. Shoji, Y. J. Lu, D. C. Liotta, and J. P. Snyder, Synthesis of EF24-tripeptide chloromethylketone: A novel curcumin-related anticancer drug delivery system. J Med Chem 49(11), 3153–3158 (2006).PubMedCrossRefGoogle Scholar
  78. 78.
    78. M. Shoji, A. Sun, W. Kisiel, Yang J. Lu, H. Shim, B. E. McCarey, C. Nichols, E. T. Parker, J. Pohl, A. R. Alizadeh, C. Mosley, D. C. Liotta, and J. P. Snyder, submitted.Google Scholar
  79. 79.
    79. C. Kettner and E. Shaw, Synthesis of peptides of arginine chloromethyl ketone. Selective inactivation of human plasma kallikrein. Biochemistry 17(1), 4778–4784 (1978).PubMedCrossRefGoogle Scholar
  80. 80.
    80. S. A. Buhrow, J. M. Reid, L. Jia, M. Shojii, J. P. Snyder, D. C. Liotta, and M. M. Ames. AACR abstract (2005); part of an NCI subcontract to the Mayo Clinic under the Rapid Access to NCI Discovery (RAND) program sponsored by the NCI.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

There are no affiliations available

Personalised recommendations