Advertisement

NEPHROPROTECTIVE AND HEPATOPROTECTIVE EFFECTS OF CURCUMINOIDS

Chapter
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 595)

Abstract

Curcumin (U1) has a wide spectrum of therapeutic effects such as antitumor and anti-inflammatory effects, including antibacterial, antiviral, antifungal, and antispasmodic activities. By comparison of the structure–activity relationship, tetrahydrocurcumin (THU1), one of the major metabolites, showed the highest antioxidative activity in both in vitro and in vitro systems.

Keywords

Rosmarinic Acid Aberrant Crypt Focus HEPATOPROTECTIVE Effect Quinone Reductase Antispasmodic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. K. M. Nadkarni, Curcuma longa. In: K. M. Narkarni, ed. India Materia Medica. Bombay, Popular Prakashan Publishing, 1976, pp. 414–416.Google Scholar
  2. 2.
    2. K. Kohli, J. Ali, M. J. Ansari, and Z. Raheman, Curcumin: A natural anti-inflmmatory agent. Ind J Pharmacol 37, 141–147 (2005).Google Scholar
  3. 3.
    3. A. H. Conney, Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The Seventh DeWitt S. Goodman lecture. Cancer Res 63, 7005–7031 (2003).PubMedGoogle Scholar
  4. 4.
    4. Y. Sugiyama, S. Kawakishi, and T. Osawa, Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52, 519–525 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    5. Y. Nakamura, Y. Ohto, A. Murakami, T. Osawa, and H. Ohigashi, Inhibitory effects of curcumin and tetrahydro- curcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn J Cancer Res 89, 361–370 (1998).PubMedGoogle Scholar
  6. 6.
    6. J. P. Gaddipati, S. V. Sundar, J. Calemine, P. Seth, G. S. Sidhu, and R. K. Maheshwari, Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19,150–156 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    7. C. D. Huang, O. Tliba, R. A. Panettieri, Jr., and Y. Amrani Bradykinin induces interleukin-6 production in human airway smooth muscle cells: Modulation by Th2 cytokines and dexamethasone. Am J Respir Cell Mol Biol 28, 330–338 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    8. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168, 6506–6513 (2002).PubMedGoogle Scholar
  9. 9.
    9. U. R. Pendurthi, J. T. Williums, and L. V. Rao, Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1 and NF kappa B. Arterioscler Thromb Vasc Biol 17, 3406–3413 (1997).PubMedGoogle Scholar
  10. 10.
    10. A. Bierhaus, Y. Zhang, P. Quehenberger, T. Luther, M. Haase and M. Muller, The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb Haemost 77, 772–782 (1997).PubMedGoogle Scholar
  11. 11.
    11. S. W. Perkins, R. D. Verschoyle, K. Hill, L. Parveen, M. D. Threadgill, R. A. Sharma, RM. L. Williams, W. P. Steward, and A. J. Gescher, Chemopreventive efficacy and pharmacokinetics of U1 in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomark Prev 11, 535–540 (2002).Google Scholar
  12. 12.
    12. P. Limtrakul, S. Lipigorngoson, O. Namwong, A. Apisariyakul, and F. W. Dunn, Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett 116, 197–203 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    13. S. W. E. Chuang, M. L. Kuo, C. H. Hsu, C.R. Chen, J. K. Lin, G. M. Lai, C. Y. Hsieh, and A. L. Cheng, Curcumin-containing diet inhibits diethylnitrosamine- induced murine hepatocarcinogenesis. Carcinogenesis 21, 331–335 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    14. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, and T. Osawa, Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21, 1836–1841 (2000).Google Scholar
  15. 15.
    15. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi, Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 20, 1011–1018 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    16. G. M. Holder, J. L. Plummer, and A. J. Ryan, The metabolism and excretion of curcumin in the rat. Xenobiotica 8, 761–768 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    17. M.-H. Pan, T.-M. Huang, and J.-K. Lin, Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 27, 486–494 (1999).PubMedGoogle Scholar
  18. 18.
    18. J.-M. Kim, D.-J. Arakis, Kim, C.-B. Park, N. Takasuka, H. Baba-Toriyama, T. Ota, Z. Nir, F. Khachik, N. Shimizu, Y. Tanaka, and T. Osawa, Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine Initiation. Carcinogenesis 19, 81–85 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    19. T. Osawa, Y. Sugiyama, M. Inayoshi, and S. Kawakishi, Antioxidative activity of tetrahydrocurcuminoids. Biosci Biotech Biochem 59, 1609–1612 (1995).CrossRefGoogle Scholar
  20. 20.
    20. A. C. Reddy and B. R. Lokesh, Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137, 1–8 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    21. N. Sreejayan and M. N. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46, 169–171 (1996).PubMedGoogle Scholar
  22. 22.
    22. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).PubMedGoogle Scholar
  23. 23.
    23. M. K. Unnikrishnan and M. N. Rao, Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146, 35–37 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    24. N. Sreejayan and M. N. Rao, Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49, 105–107 (1997).PubMedGoogle Scholar
  25. 25.
    25. A. J. Ruby, G. Kuttan, K. D. Babu, K. N. Rajasekharan, nd R. Kuttan, Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94, 79–83 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    26. M. Naito, X. Wu, H. Nomura, M. Kodama, Y. Kato, and T. Osawa, The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J Atehroscler Thromb 9, 243–250 (2002).Google Scholar
  27. 27.
    27. K. Okada, C. Wanpoengfrakul, T. Tanaka, S. Toyokuni, K. Uchida, and T. Osawa, Curcumin and especially tetrahydricurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr 131, 2090–2095 (2001).PubMedGoogle Scholar
  28. 28.
    28. K. Itakura, T. Osawa, and K. Uchida, Structure of a fluorescent compound from 4-hydroxy-2-nonenal and Nɛ-hippuryllysine: A Model for fluorophores derived from protein modifications by lipid peroxidation. J Org Chem 63, 185–187 (1998).PubMedCrossRefGoogle Scholar
  29. 29.
    29. S. Yamada, S. Kumazawa, J. Ishii, T. Nakagawa, K. Itakura, N. Shibata, M. Kobayashi, K. Suzuki, T. Osawa, and K. Uchida, Lipofuscin-like fluorescent pigments derived from malondialdehyde. J Lipid Res 42, 1187–1196 (2001).PubMedGoogle Scholar
  30. 30.
    30. K. Uchida, M. Kanematsu, K. Sakai, T. Matsuda, N. Hattori, Y. Mizuno, D. Suzuki, T. Miyata, N. Noguchi, E. Niki, and T. Osawa, Protein-Bound acrolein: Potential markers for oxidative stress. Proc Natl Acad Sci USA 95, 4882–4887 (1998).PubMedCrossRefGoogle Scholar
  31. 31.
    31. K. Ichihashi, T. Osawa, S. Toyokuni, and K. Uchida, KEndogenous formation of protein adducts with carcinogenic aldehydes. Implication for oxidative stress. J Biol Chem 276, 23,903–23,913 (2001).CrossRefGoogle Scholar
  32. 32.
    32. Y. Kato, Y. Makino, and T. Osawa, Characterization of a specific polyclonal antibody against 13-hydroperoxyoctadecadienoic acid-modified protein. Formation of lipid hydroperoxide-modified apo B-100 in oxidized LDL. J Lipid Res 38, 1334–1346 (1997).PubMedGoogle Scholar
  33. 33.
    33. Y. Kato, W. Maruyama, M. Naoi, Y. Hashizume, and T. Osawa, Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. FEBS Lett 439, 231–234 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    34. Y. Kato, Y. Mori, Y. Morimitsu, S. Hiroi, T. Ishikawa, and T. Osawa, Formation of Nɛ-(Hexanonyl)lysine in protein exposed to lipid hydroperoxide: A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 274, 20,406–20,414 (1999).Google Scholar
  35. 35.
    35. H. Esterbauer, R. J. Schaur, and H. Zdlner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical. Biol Med 11, 81–128 (1991).CrossRefGoogle Scholar
  36. 36.
    36. K. Tsuji, Y. Kawai, Y. Kato, and T. Osawa, Formation of Nɛ-(hexanoyl)ethanolamine, a novel phosphatidylethanolamine adduct, during the oxidation of erythrocyte membrane and low-density lipoprotein. Biochem. Biophys Res Commun. 306, 706–711 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    37. Y. Kato, X. Wu, M. Naito, H. Nomura, N. Kitamoto, and T. Osawa, Preparation of a monoclonal antibody to Nɛ-(hexanonyl)lysine: application to the evaluation of protective effects of flavonoid supplementation against exercise-induced oxidative stress in rat skeletal muscle. Biochem Biophys Res Commun 274, 389–393 (2000).PubMedCrossRefGoogle Scholar
  38. 38.
    38. K. Minato, Y. Miyake, S. Fukumoto, K. Yamamoto, Y. Shimomura, and T. Osawa, Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver. Life Sci 72, 1609–1616 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    39. N. Osakabe, A. Yasuda, M. Natsume, C. Sanbongi, Y. Kato, T. Osawa, and T. Yoshikawa, Rosmarinic acid, a major polyphenolic component of Perilla Frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radical Biol Med 33, 798–806 (2002).CrossRefGoogle Scholar
  40. 40.
    40. T. Tsuda, F. Horio, Y. Kato, and T. Osawa, Cyanidin 3-O-β-D-glucoside attenuates the hepatic ischemia–reperfusion injury through a decrease in the neutrophil chemoattractant production in rats. J Nutr Sci Vitaminol 48, 134–141 (2002).PubMedGoogle Scholar
  41. 41.
    41. Y. Ueno, F. Horio, K. Uchida, M. Naito, M. Nomura, Y. Kato, T. Tsuda, S. Toyokuni, and T. Osawa, Increase in oxidative stress in kidneys of diabetic Akita mice. Biosci Biotechno. Bioche. 66, 869–872 (2002).CrossRefGoogle Scholar
  42. 42.
    42. Y. Kato, A. Yoshida, M. Naito, Y. Kawai, K. Tsuji, M. Kitamura, N. Kitamoto, and T. Osawa, Identification and Quantification of Nɛ-(hexanoyl)lysine in human urine by liquid chromatography/tandem mass spectrometry. Free Radical. Biol Med 37, 1864–1874 (2004).CrossRefGoogle Scholar
  43. 43.
    43. Y. Kato, X. Wu, M. Naito, H. Nomura, N. Kitamoto, and T. Osawa, Immunochemical detection of protein dityrosine in atherosclerotic lesion of apo-E-deficient mice using a novel monoclonal antibody. Biochem Biophys Res Commun 275, 11–15 (2000).PubMedCrossRefGoogle Scholar
  44. 44.
    44. E. C. Garcia-Cohen, J. Marin, L. D. Diez-Picazo, A. B. Baena, M. Salaices, and M. A. Rodriguez-Martinez, Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats: role of cyclooxygenase-2 isoform. J Pharmacol Exp Ther 293, 75–81 (2000).PubMedGoogle Scholar
  45. 45.
    45. D. A. Shoskes, Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: A new class of renoprotective agents. Transplantation 66(2), 147–152 (1998).PubMedCrossRefGoogle Scholar
  46. 46.
    46. J. Mason, Pharmacology of cyclosporine (sandimmune). VII. Pathophysiology and toxicology of cyclosporine in humans and animals. Pharmacol Rev 41, 423–434 (1990).PubMedGoogle Scholar
  47. 47.
    47. G. Remuzzi and N. Perico, Cyclosporine-induced renal dysfunction in experimental animals and humans. Kidney Int 52(Suppl), S70–S74 (1995).Google Scholar
  48. 48.
    48. E. A. Jones and D. A. Shoskes, The effect of mycophenolate mofetil and polyphenolic bioflavonoids on renal ischemia reperfusion injury and repair. J Urol. 163, 999–1004 (2000).PubMedCrossRefGoogle Scholar
  49. 49.
    49. Y. Ueno, M. Kizaki, R. Nakagiri, T. Kamiya, H. Sumi, and T. Osawa, Dietary glutathion protects rats from diabetic nephropathy and neuropathy.J. Nutr 132, 897–900 (2002).PubMedGoogle Scholar
  50. 50.
    50. K. B. Soni, M. Lahiri, P. Chackradeo, S. V. Bhide, and R. Kuttan, Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Lett 115, 129–133 (1997).PubMedCrossRefGoogle Scholar
  51. 51.
    51. P. F. Firozi, V. S. Aboobaker, and R. K. Bhattacharya, Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem-Biol Interact 100, 41–51 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    52. S. S. Deshpande and G. B. Maru, Effects of curcumin on the formation of benzo[a]pyrene derived DNA adducts in vitro. Cancer Lett 96, 71–80 (1995).PubMedCrossRefGoogle Scholar
  53. 53.
    53. R. Thapliyal, S. S. Deshpande, and G. B. Maru, Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. J Environ Pathol Toxicol Oncol 20, 59–63 (2001).PubMedGoogle Scholar
  54. 54.
    54. E. J. Park, C. H. Jeon, G. Ko, J. Kim, and D. H. Sohn, Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52, 437–440 (2000).PubMedCrossRefGoogle Scholar
  55. 55.
    55. T. Sugiyama, J. Nagata, A. Yamagishi, K. Endoh, M. Saito, K. Yamada, S. Yamada, and K. Umegaki, Selective protection of curcumin against carbon tetrachloride-induced inactivation of hepatic cytochrome P450 isozymes in rats. Life Sci 78, 2188–2193 (2006).PubMedCrossRefGoogle Scholar
  56. 56.
    56. A. A. Nanji, K. Jokelainen, G. L. Tipoe, A. Rahemtulla, P. Thomas, and A. J. Dannenberg, Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol: Gastrointest Liver Physiol 284(2), G321–G327 (2003).Google Scholar
  57. 57.
    57. J. T. Piper, S. S. Singhal, M. S. Salameh, R. T. Torman, Y. C. Awasthi, and S. Awasthi, Mechanisms of anticarcinogenic properties of curcumin: The effect of curcumin on glutathione linked detoxification enzymes in rat liver. Intl J Biochem Cell Biol 30, 445–456 (1998).CrossRefGoogle Scholar
  58. 58.
    58. M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 92(1), 33–38 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

There are no affiliations available

Personalised recommendations