• Sumitra Miriyala
  • Manikandan Panchatcharam
  • Puvanakrishnan Rengarajulu


Curcumin, a major active component of turmeric, is extracted from the powdered dry rhizome of Curcuma longa Linn (Zingiberaceae) and it has been used for centuries in indigenous medicine.We have shownthat curcumin has a protective role against myocardial necrosis in rats. The antioxidant activity of curcumin could be attributed to the phenolic and methoxy groups in conjunction with the 1,3-diketone-conjugated diene system, for scavenging of the oxygen radicals. In addition, curcumin is shown to enhance the activities of detoxifying enzymes such as glutathione-S-transferase in vivo. We have also shown that oxygen free radicals exacerbate cardiac damage and curcumin induces cardioprotective effect and it also inhibits free-radical generation in myocardial ischemia in rats.


Platelet Aggregation Cardioprotective Effect Arterioscler Thromb Vasc Biol Caffeic Acid Phenethyl Ester Curcuma Longa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. H. P. T. Ammon and M. A. Wahl, Pharmacology of Curcuma longa. Planta Med 57, 1–7 (1991).PubMedGoogle Scholar
  2. 2.
    2. R. C. Srimal, Turmeric. A brief review of medicinal properties. Fitoterapia. 68, 483–493 1997).Google Scholar
  3. 3.
    3. S. Toda, Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull33, 1725–1728 (1985).PubMedGoogle Scholar
  4. 4.
    4. Y. Abe, S. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39, 41–47 (1999).PubMedGoogle Scholar
  5. 5.
    5. J. L. Quiles, M. D. Mesa, C. L. Ramirez-Tortosa, C. M. Aguilera, M. Battino, A. Gil, M. C. Ramirez-Tortosa, Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol 22,1225–1231 (2002).PubMedGoogle Scholar
  6. 6.
    6. L. Pilgeram, Atherogenesis and fibrinogen: Historical perspective and current status. Naturwissenschaften 80, 547–555 (1993).PubMedGoogle Scholar
  7. 7.
    7. K. Von Rokitansky, Handbuch der Pathologischen Anatomie, Vols. 1–3. Vienna: Braunmuller und Seidel, 1846.Google Scholar
  8. 8.
    8. C. Anitschow, In: E. V. Cowdry, ed. Arteriosclerosis: A Survey of the Problem. New York: McMillan, New York, 1933, pp. 107–121.Google Scholar
  9. 9.
    9. R. O. Hynes, Integrins: A family of cell surface receptors. Cell 48, 549–554 (1987).PubMedGoogle Scholar
  10. 10.
    10. S. S. Smyth, C. C. Joneckis, and L. V. Parise, Regulation of vascular integrins. Blood 81, 2827–2843 (1993).PubMedGoogle Scholar
  11. 11.
    11. W. H. Frishman, B. Burns, B. Atac, N. Alturk B. Altajar, and K. Lerrick, Novel antiplatelet therapies for treatment of patients with ischemic heart disease: Inhibitors of the platelet glycoprotein IIb/IIIa integrin receptor. Am Heart J 130, 877–892 (1995).PubMedGoogle Scholar
  12. 12.
    12. K. C. Srivastava and T. Mustafa, Spices: Antiplatelet activity and prostanoid metabolism. Prostaglandins Leukotr Essent Fatty Acids 8, 255–266 (1989).Google Scholar
  13. 13.
    13. K. C. Srivastava and O. D. Tyagi, Effects of a garlic-derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets. Prostaglandins Leukotr Essent Fatty Acids 49, 587–595 (1993).Google Scholar
  14. 14.
    14. K. C. Srivastava, Extracts of two frequently consumed spices—cumin (Cuminum cyminum) and turmeric (Curcuma longa)—inhibit aggregation and alter eicosanoid biosynthesis in human blood platelets. Prostaglandins Leukotr Essent Fatty Acids 37, 57–64 (1989).Google Scholar
  15. 15.
    15. K. C. Srivastava, A. Bordia, and S. K. Verma, Curcumin, a major component of food spice turmeric (Curcuma longa), inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukotr Essent Fatty Acids 52, 223–227 (1995).Google Scholar
  16. 16.
    16. J. Lefkovits, E. F. Plow, and E. J. Topol, Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 332, 1553–1559 (1995).PubMedGoogle Scholar
  17. 17.
    17. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities ischemia in rats. Int J Biochem Cell Biol 36, 1967–1980 (1991).Google Scholar
  18. 18.
    18. P. Manikandan, M. Sumitra, S. Aishwarya, B. M. Manohar, B. Lokanadam, and R. Puvanakrishnan, Curcumin modulates free radical quenching in myocardial in mouse epidermis. Cancer Res 51, 813–819 (2004).Google Scholar
  19. 19.
    19. S. Offermans, Kl. Laugwitz, K. Spicher, and G. Schultz, G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91, 504–508 (1994).Google Scholar
  20. 20.
    20. S. D. Shukla, C. C. Franklin, and M. G. Carter, Activation of phospholipase C in platelets by platelet activating factor and thrombin causes hydrolysis of a common pool of phosphatidylinositol 4,5- bisphosphate. Biochim Biophys Acta 929, 134–141 (1987).PubMedGoogle Scholar
  21. 21.
    21. M. R. James-Kracke, R. B. Sexe, and S. D. Shukla, Picomolar platelet activating factor mobilizes Ca21 to change platelet shape without activating phospholipase C or protein kinase C; simultaneous measurements of intracellular free Ca21 concentration and aggregation. J Pharmacol Exp Ther 271, 824–831 (1994).PubMedGoogle Scholar
  22. 22.
    22. W. Siess, Molecular mechanisms of platelet activation. Physiol Rev 69, 58–178 (1989).PubMedGoogle Scholar
  23. 23.
    23. J. W. M. Heemskerk and O. Sage, Calcium signaling in platelets and other cells. Platelets 5, 295–316 (1994).Google Scholar
  24. 24.
    24. D. E. Clapham, Calcium signaling. Cell 80, 259–268 (1995).PubMedGoogle Scholar
  25. 25.
    25. M. Crabos, D. Fabbro, S. Stabel, and P. Erne, Effect of tumor promoting phorbol ester, thrombin platelets and regulation by calcium. Biochem J 288, 891–896 (1992).PubMedGoogle Scholar
  26. 26.
    26. A. C. Newton, Protein kinase C: Structure, function and regulation. J Biol Chem 270, 28,495–28,498 (1995).Google Scholar
  27. 27.
    27. T. M. Quinton and W. L. Dean, Multiple inositol 1,4,5-triphosphate receptor isoforms are present in platelets. Biochem Biophys Res Commun 224, 740–746 (1996).PubMedGoogle Scholar
  28. 28.
    28. L. F. Brass, J. A. Hoxie, and D. R. Manning, Signaling through G proteins and G protein-coupled receptors during platelet activation. Thromb Haemost 70, 217–223 (1993).PubMedGoogle Scholar
  29. 29.
    29. W. Siess, B. Grunberg, and K. Luber, Functional relationship between cyclic AMP-dependent protein phosphorylation and platelet inhibition. Adv Exp Med Biol 344, 229–235 (1993).PubMedGoogle Scholar
  30. 30.
    30. S. M. O. Hourani and D. A. Hall, Receptors for ADP on human blood platelets. Trends Pharmacol Sci 15, 103–108 (1994).PubMedGoogle Scholar
  31. 31.
    31. W. Chao and M. S. Olson, Platelet-activating factor: Receptors and signal transduction. Biochem J 292, 617–629 (1993).PubMedGoogle Scholar
  32. 32.
    32. S. A. Saeed and B. H. Shah, Diversity of agonist-mediated signal transduction pathways in human platelets. Adv Exp Med Biol 407, 531–535 (1997).PubMedGoogle Scholar
  33. 33.
    33. B. H. Shah, D. J. McEwan, and G. Milligan, Gonadotrophin releasing hormone receptor agonist-mediated down-regulation of Gqa/G11 a (pertussis toxin-insensitive) G proteins in aT3–1 gonadotroph cells reflects increased G protein turnover but not alterations in mRNA levels. Proc Natl Acad Sci USA 92, 1886–1889 (1995).PubMedGoogle Scholar
  34. 34.
    34. J. Kawabe, G. Iwami, T. Ebina, S. Ohno, T. Katada, Y. Ueda, C. J. Homcy, and Y. Ishikawa, Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem 269, 16,554–16,558 (1994).Google Scholar
  35. 35.
    35. J. Y. Liu, S. J. Lin, and J. K. Lin, JInhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoylphorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14, 857–861 (1993).PubMedGoogle Scholar
  36. 36.
    36. J. K. Lin, Y. C. Chen, Y. T. Huang, and S. Y. Lin-Shiau, Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J Cell Biochem Suppl 28–29, 39–48 (1997).PubMedGoogle Scholar
  37. 37.
    37. X. Wang, S. Yanagi, C. Yang, R. Inatome, and H. Yamamura, Tyrosine phosphorylation and SYK activation are involved in thrombin-induced aggregation of epinephrine-potentiated platelets. J Biochem 121, 325–330 (1997).PubMedGoogle Scholar
  38. 38.
    38. Y. Banno, T. Asano, and Y. Nozawa, Stimulation by G protein bg subunits of phospholipase Cb isoforms in human platelets. Thromb Haemost 79, 1008–1013 (1998).PubMedGoogle Scholar
  39. 39.
    39. K. L. Kaplan. and A. Bini, Thrombosis in atherogenesis. Crit Rev Oncol Hematol 9, 305–318 (1989).PubMedGoogle Scholar
  40. 40.
    40. E. B. Smith, R. S. Slater, and J. A. Hunter, Quantitative studies on fibrinogen and low-density lipoprotein in human aortic intima. Atherosclerosis 55, 171–178 (1973).Google Scholar
  41. 41.
    41. E. Ernst and K. L. Resch, Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med 118, 956–963 (1993).PubMedGoogle Scholar
  42. 42.
    42. A. Ramý'rez-Bosca', M. A Carrio'n Gutie'rrez, A. Soler, et al., Effects of the antioxidant turmeric on lipoprotein peroxides: Implications for the prevention of atherosclerosis. Age 20,165–168 (1997).Google Scholar
  43. 43.
    43. A. Ramý'rez-Bosca', A. Soler, M. A. Carrio'n-Gutie'rrez, A. Laborda Alvarez, and E. Quintanilla Almagro, Antioxidant curcuma extracts decrease the blood lipid peroxide levels of human subjects. Age 18, 167–169 (1995).Google Scholar
  44. 44.
    44. A. Claus, Fibrinogens. Acta Haemat 7, 237 (1957).CrossRefGoogle Scholar
  45. 45.
    45. T. Masuda, J. Isobe, A. Jitoe, and N. Nakatani, Antioxidative curcuminoids from rhizomes of Curcumaxantorrhyza. Phytochemistry 31, 3645–3647 (1992).Google Scholar
  46. 46.
    46. T. N. Bhavani Shankar, N. V. Shantha, H. P. Ramesh, I. A. S. Murthy, and V. S. Murthy, Toxicity studies on turmeric (Curcuma longa): Acute toxicity studies in rats, guinea pigs and monkeys. Ind J Exp Biol 18, 73–75 (1980).Google Scholar
  47. 47.
    47. G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352, 1685–1695 (2005).PubMedGoogle Scholar
  48. 48.
    48. A. Doria, Y. Sherer, P. L. Meroni and Y. Shoenfeld, Inflammation and accelerated atherosclerosis: Basic mechanisms. Rheum Dis Clin North Am 31, 355–362 (2005).PubMedGoogle Scholar
  49. 49.
    49. J. Miquel, M. Martínez, A. Diez, E. De Juan, A. Solar, A. Ramírez-Boscâ, J. Laborda, and M. Carriona, Effects of turmeric on blood and liver lipoperoxide levels of mice: Lack of toxicity. Age 18, 171–174 (1995).Google Scholar
  50. 50.
    50. M. C. Ramírez-Tortosa, M. D. Mesa, M. C. Aguilera, J. L. Quiles, L. Baró, C. L. Ramírez-Tortosa, E. Martínez-Victoria, and A. Gil, Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effect in rabbits with experimental atherosclerosis. Atherosclerosis 147, 371–378 (1999).PubMedGoogle Scholar
  51. 51.
    51. H. W. Chen and H. C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124, 1029–1040 (1998).PubMedGoogle Scholar
  52. 52.
    52. K. C. Srivastava, Evidence for the mechanism by which garlic inhibits platelet aggregation. Prostaglandins Leukotr Med 22, 313–321 (1986).Google Scholar
  53. 53.
    53. C. C. Araujo, and L. L. Leon, Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 96,723–728 (2001).PubMedGoogle Scholar
  54. 54.
    54. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23, 363–398 (2003).PubMedGoogle Scholar
  55. 55.
    55. A. Duvoix, R. Blasius, S. Delhalle, M. Schnekenburger, F. Morceau, E. Henry, et al., Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223, 181–190 (2005).PubMedGoogle Scholar
  56. 56.
    56. J. A. Piedrahita, S. H. Zhang, J. R. Hagaman, P. M. Oliver, and N. Maeda, Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89, 4471–4475 (1992).PubMedGoogle Scholar
  57. 57.
    57. S. Ishibashi, J. Herz, N. Maeda, J. L. Goldstein, and M. S. Brown, The two-receptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci USA 91, 4431–4435 (1994).PubMedGoogle Scholar
  58. 58.
    58. Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14, 133–140 (1994).PubMedGoogle Scholar
  59. 59.
    59. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. Srinivas, Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64, 353–356 (1998).PubMedGoogle Scholar
  60. 60.
    60. C. Monaco and E. Paleolog, Nuclear factor kappaB: A potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 61, 671–682 (2004).PubMedGoogle Scholar
  61. 61.
    61. J. Jawien, M. Gajda, L. Mateuszuk, R. Olszanecki, A. Jakubowski, A Szlachcic, et al., Inhibition of nuclear factor-kappaB attenuates artherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 56, 483–489 (2005).PubMedGoogle Scholar
  62. 62.
    62. K. Hishikawa, T. Nakaki, and T. Fujita, Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25, 442–446 (2005).PubMedGoogle Scholar
  63. 63.
    63. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol 21, 745–757 (1999).PubMedGoogle Scholar
  64. 64.
    64. K. A. Hoekstra, D. V. Godin, and K. M. Cheng, Protective role of heme oxygenase in the blood vessel wall during atherogenesis. Biochem Cell Biol 82, 351–359 (2004).PubMedGoogle Scholar
  65. 65.
    65. N. G. Abraham and A. Kappas, Heme oxygenase and the cardiovascular-renal system. Free Radical Biol Med 39, 1–25 (2005).Google Scholar
  66. 66.
    66. S. H. Juan, T. S. Lee, K. W. Tseng, J. Y. Liou, S. K. Shyue, K. K. Wu, et al., Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E deficient mice. Circulation. 104, 1519–1525 (2001).PubMedGoogle Scholar
  67. 67.
    67. S. F. Yet, M. D. Layne X. Liu, Y. H. Chen, B. Ith, N. E. Sibinga, et al., Absence of heme oxygenase-1e xacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J 17, 1759–1761 (2003).PubMedGoogle Scholar
  68. 68.
    68. R. Motterlini, R. Foresti, R. Bassi, and C. J. Green, Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol Med 28, 1303–1312 (2000).Google Scholar
  69. 69.
    69. E. Middleton, Jr., C. Kandaswami, T. C. Theoharides, The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52, 673–751 (2000).PubMedGoogle Scholar
  70. 70.
    70. S. Schmitt-Schillig, S. Schaffer, C. C. Weber, G. P. Eckert, and W. E. Muller, Flavonoids and the aging brain. J Physiol Pharmacol 56(Suppl 1), 23–36 (2005).PubMedGoogle Scholar
  71. 70a.
    70a. O. S. Zayachkivska, S. J. Konturek, D. Drozdowicz, P. C. Konturek, T. Brzozowski, and M. R. Ghegotsky, Gastroprotective effects of flavonoids in plant extracts. J Physiol Pharmacol 56, 219–231 (2005).PubMedGoogle Scholar
  72. 71.
    71. C. Manach, A. Mazur, and A. Scalbert, Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16, 77–84 (2005).PubMedGoogle Scholar
  73. 72.
    72. M. Aviram and B. Fuhrman, wine flavonoids protect against LDL oxidation and atherosclerosis. Ann NY Acad Sci 957, 146–161 (2002).PubMedCrossRefGoogle Scholar
  74. 73.
    73. R. Olszanecki, A. Gebska, V. I. Kozlovski, and R. J. Gryglewski, Flavonoids and nitric oxide synthase. J Physiol Pharmacol 53, 571–584 (2002).PubMedGoogle Scholar
  75. 74.
    74. S. J. Duffy and J. A. Vita, Effects of phenolics on vascular endothelial function. Curr Opin Lipidol 14, 21–27 (2003).PubMedGoogle Scholar
  76. 75.
    75. M. Strzelecka, M. Bzowska, J. Koziel, B. Szuba, O. Dubiel, N. D. Riviera, et al., Anti-inflammatory effects of extracts from some traditional Mediterranean diet plants. J Physiol Pharmacol 56, 139–156 (2005).PubMedGoogle Scholar
  77. 76.
    76. J. C. Ruf, Wine and polyphenols related to platelet aggregation and atherothrombosis. Drugs Exp Clin Res 25, 125–131 (1999).PubMedGoogle Scholar
  78. 77.
    77. N. Venkatesan, Pulmonary protective effects of curcumin against paraquat toxicity. Life Sci 66, 21–28 (2000).Google Scholar
  79. 78.
    78. S. Toda, T. Miyase, H. Arichi, H. Tanizawa, and Y. Takino, Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharma Bull 33, 1725–1728 (1985).Google Scholar
  80. 79.
    79. A. C. Reddy and B. R. Lokesh, Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137, 1–8 (1994).PubMedGoogle Scholar
  81. 80.
    80. M. K. Unnikrishnan and M. N. Rao, Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146, 35–37 (1995).PubMedGoogle Scholar
  82. 81.
    81. N. Sreejayan and M. N. A. Rao, Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol. 49, 105–107 (1997).PubMedGoogle Scholar
  83. 82.
    82. A. C. Reddyand B. R. Lokesh, Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111, 117–124 (1992).Google Scholar
  84. 83.
    83. N. Sreejayan and M. N. A. Rao, Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46, 1013–1016 (1994).PubMedGoogle Scholar
  85. 84.
    84. H. H. Cohly, A. Taylor, M. F. Angel, and A. K. Salahudeen, Effect of turmeric, turmeric and curcumin on H2O2-induced renal epithelial (LLCPK1) cell injury. Free Radical Biol Med 24, 49–54 (1998).Google Scholar
  86. 85.
    85. M. Dikshit, L. Rastogi, R. Shukla, and R. C. Srimal, Prevention of ischemia-induced biochemical changes by curcumin and quinidine in the cat heart. Ind J Med Res 101, 31–35 (1995).Google Scholar
  87. 86.
    86. C. Nirmala and R. Puvanakrishnan, Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochem Pharmacol 51, 47–51 (1996).PubMedGoogle Scholar
  88. 87.
    87. C. Nirmala and R. Puvanakrishnan, Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159, 85–93 (1996).PubMedGoogle Scholar
  89. 88.
    88. C. Nirmala, S. Anand, and R. Puvanakrishnan, Curcumin treatment modulates collagen metabolism in isoproterenol induced myocardial necrosis in rats. Mol Cell Biochem 197, 31–37 (1999).PubMedGoogle Scholar
  90. 89.
    89. J. P. Gaddipati, S. V. Sundar, J. Calemine, P. Seth, G. S. Sidhu, and R. K. Maheshwari, Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19, 150–156 (2003).PubMedGoogle Scholar
  91. 90.
    90. P. Rafiee, Y. Shi, K. A. Pritchard, H. Ogawa, A. L. Eis, R. A. Komorowski, C. M. Fitzpatrick, J. S. Tweddell, S. B. Litwin, K. Mussatto, R. D. Jaquiss, and J. E. Baker, Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: Role of protein kinases. J Biol Chem 278, 43,636–43,644 (2003).Google Scholar
  92. 91.
    91. P. Rafiee, Y. Shi, X., Kong, K. A. Pritchard, Jr., J. S. Tweddell, S. B. Litwin, K. Mussatto, R. D. Jaquiss, J. Su, and J. E. Baker, Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: Role in cardioprotection. Circulation 106, 239–245 (2002).PubMedGoogle Scholar
  93. 92.
    92. N. Sreejayan and M. N. A. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 6, 169–171 (1996).Google Scholar
  94. 93.
    93. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).PubMedGoogle Scholar
  95. 94.
    94. A. J. Ruby, G. Kuttan, K. D. Babu, K. N. Rajasekharan, and R. Kuttan, Anti-tumor and antioxidant activity of natural curcuminoids. Cancer Lett 94, 79–83 (1995).PubMedGoogle Scholar
  96. 95.
    95. J. M. McCord, Oxygen-derived free radicals in post-ischaemic tissue injury. N Eng J Med 312, 159–163 (1985).CrossRefGoogle Scholar
  97. 96.
    96. Y. Xia and J. L. Zweier, Substrate control of free radical generation from xanthine oxidase in the post-ischaemic heart. J Biol Chem 270, 18,797–18,803 (1995).Google Scholar
  98. 97.
    97. W. F. Saavedra, N. Paolocci, M. E. St John, M. W. Skaf, G. C. Stewart, J. S. Xie, et al., Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 90, 297–304 (2002).PubMedGoogle Scholar
  99. 98.
    98. L. S. Terada, D. M. Guidot, J. A. Leff, I. R. Willingham, M. E. Hanley, D. Piermattei, and J. E. Repine, Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc Natl Acad Sci USA 89, 3362–3366 (1992).PubMedGoogle Scholar
  100. 99.
    99. E. Kunchandy and M. N. A. Rao, Oxygen radical scavenging activity of curcumin. Int J Pharm 58, 237–240 (1990).Google Scholar
  101. 100.
    100. T. Matsuyama, Free radical-mediated cerebral damage after hypoxia/ischemia and stroke. In: G. J. Ter Horst and J. Korf, eds. Clinical Pharmacology of Cerebral Ischemia. Totowa, NJ: Humana Press, 1997. pp. 153–184.Google Scholar
  102. 101.
    101. M. Pan, T. Huang, and J. Lin, Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27, 486–494 (1999).PubMedGoogle Scholar
  103. 102.
    102. J. A. Thomas, Oxidative stress, oxidant defense, and dietary constituents. In Modern Nutrition in Health and Disease, 8th ed. Lea & Febiger, Phil.; 1994, pp. 501–512.Google Scholar
  104. 103.
    103. M. Seif-El-Nasr and A. A. Abd-El-Fattah, Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischemia: Effect of Ginkgo biloba extract. Pharmacol Res 32, 273–278 (1995).PubMedGoogle Scholar
  105. 104.
    104. S. Mathews and M. N. A. Rao, Interaction of curcumin with glutathione. Int J Pharm 76, 257–259 (1991).Google Scholar
  106. 105.
    105. 105. S. V. Jovanovic, C. W. Boone, S. Steenken, M. Trinoga, and R. B. Kaskey, How curcumin works preferentially with water-soluble antioxidants. J Am Chem Soc 123, 3064–3068 (2001).PubMedGoogle Scholar
  107. 106.
    106. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci 78, 2081–2087 (2006).PubMedGoogle Scholar
  108. 107.
    107. K. I. Priyadarsini, Free radical reactions of curcumin in membrane models. Free Radical Biol Med 23, 838–843 (1997).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sumitra Miriyala
  • Manikandan Panchatcharam
  • Puvanakrishnan Rengarajulu

There are no affiliations available

Personalised recommendations