BENEFICIAL ROLE OF CURCUMIN IN SKIN DISEASES

  • Rajesh L. Thangapazham
  • Anuj Sharma
  • Radha K. Maheshwari
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 595)

Abstract

In recent years, considerable interest has been focused on curcumin a compound, isolated from turmeric. Curcumin is used as a coloring, flavoring agent and has been traditionally used in medicine and cuisine in India. The varied biological properties of curcumin and lack of toxicity even when administered at higher doses makes it attractive to explore its use in various disorders like tumors of skin, colon, duodenum, pancreas, breast and other skin diseases. This chapter reviews the data on the use of curcumin for the chemoprevention and treatment of various skin diseases like scleroderma, psoriasis and skin cancer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. Maitre, M. Hours, V. Bonneterre, J. Arnaud, M. T. Arslan, P. Carpentier, A. Bergeret, and R. de Gaudemaris, Systemic sclerosis and occupational risk factors: Role of solvents and cleaning products. J Rheumatol 31, 2395 (2004).PubMedGoogle Scholar
  2. 2.
    2. M. Bovenzi, F. Barbone, F. E. Pisa, A. Betta, L. Romeo, A. Tonello, D. Biasi, and P. Caramaschi, A case-control study of occupational exposures and systemic sclerosis. Int Arch Occup Environ Health 77, 10 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    3. C. T. Derk and S. A. Jimenez, Systemic sclerosis: Current views of its pathogenesis. Autoimmun Rev 2, 181 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    4. S. A. Jimenez, S. Gaidarova, B. Saitta, N. Sandorfi, D. J. Herrich, J. C. Rosenbloom, U. Kucich, W. R. Abrams, and J Rosenbloom, Role of protein kinase C-delta in the regulation of collagen gene expression in scleroderma fibroblasts. J Clin Invest 108, 1395 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    5. G. S. Bogatkevich, E. Gustilo, J. C. Oates, C. Feghali-Bostwick, R. A. Harley, R. M. Silver, and A. Ludwicka-Bradley, Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts. Am J Physiol Lung Cell Mol Physiol 288, L190 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    6. E. Tourkina, P. Gooz, J. Pannu, M. Bonner, D. Scholz, S. Hacker, R. M. Silver, M. Trojanowska, and S. Hoffman, Opposing effects of protein kinase Calpha and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling, J Biol Chem 280, 13,879 (2005).CrossRefGoogle Scholar
  7. 7.
    7. E. Tourkina, P. Gooz, J. C. Oates, A. Ludwicka-Bradley, R. M. Silver, and S. Hoffman, Curcumin-induced apoptosis in scleroderma lung fibroblasts: Role of protein kinase cepsilon. Am J Respir Cell Mol Biol 31, 28 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    8. M. V. Panchenko, H. W. Farber, and J. H. Korn, Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts. Am J Physiol: Cell Physiol 278, C92 (2000).Google Scholar
  9. 9.
    9. A. T. Dinkova-Kostova and P. Talalay, Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 20, 911 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    10. E. Balogun, M. Hoque, P. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam, and R. Motterlini, Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371, 887 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    11. K. Itoh, T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima, An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236, 313 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    12. B. Pool-Zobel, S. Veeriah, and F. D. Bohmer, Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res 591, 74 (2005).PubMedGoogle Scholar
  13. 13.
    13. D. A. Bloom and A. K. Jaiswal, Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278, 44,675 (2003).CrossRefGoogle Scholar
  14. 14.
    14. S. A. Rushworth, R. M. Ogborne, C. A. Charalambos, and M. A. O'Connell, Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341, 1007 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    15. M. Kastelan, L. P. Massari, and I. Brajac, IApoptosis mediated by cytolytic molecules might be responsible for maintenance of psoriatic plaques. Med Hypotheses 21, 21 (2006).Google Scholar
  16. 16.
    16. A. Pol, M. Bergers, and J. Schalkwijk, Comparison of antiproliferative effects of experimental and established antipsoriatic drugs on human keratinocytes, using a simple 96-well-plate assay. In Vitro Cell Dev Biol Anim 39, 36 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    17. B. Bosman, Testing of lipoxygenase inhibitors, cyclooxygenase inhibitors, drugs with immunomodulating properties and some reference antipsoriatic drugs in the modified mouse tail test, an animal model of psoriasis. Skin Pharmacol 7, 324 (1994).PubMedGoogle Scholar
  18. 18.
    18. J. Miquel, A. Bernd, J. M. Sempere, J. Diaz-Alperi, and A. Ramirez, The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 34, 37 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    19. C. Hanselmann, C. Mauch, and S. Werner, Haem oxygenase-1: A novel player in cutaneous wound repair and psoriasis? Biochem J 353, 459 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    20. M. Lebwohl, Innovations in the treatment of psoriasis. J Am Acad Dermatol 51, S40 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    21. M. C. Heng, M. K. Song, and M. K. Heng, Elevated phosphorylase kinase activity in psoriatic epidermis: Correlation with increased phosphorylation and psoriatic activity. Br J Dermatol 130, 298 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    22. M. C. Heng, M. K. Song, J. Harker, and M. K. Heng, Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 143, 937 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    23. H. H. Tonnesen, H. de Vries, J. Karlsen, and G. Beijersbergen van Henegouwen, Studies on curcumin and curcuminoids. IX: Investigation of the photobiological activity of curcumin using bacterial indicator systems. J Pharm Sci 76, 371 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    24. L. Kondapalli, K. Soltani, and M. E. Lacouture, The promise of molecular targeted therapies: Protein kinase inhibitors in the treatment of cutaneous malignancies. J Am Acad Dermatol 53, 291 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    25. C. C. Ramirez, D. G. Federman, and R. S. Kirsner, Skin cancer as an occupational disease: The effect of ultraviolet and other forms of radiation. Int J Dermatol 44, 95 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    26. W. Ding, L. G. Hudson, and K. J. Liu, Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279, 105 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    27. M. A. Azuine and S. V. Bhide, Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in Swiss mice. Nutr Cancer 17, 77 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    28. M. Nagabhushan and S. V. Bhide, Curcumin as an inhibitor of cancer. J Am Coll Nutr 11, 192 (1992).PubMedGoogle Scholar
  29. 29.
    29. M. T. Huang, Z. Y. Wang, C. A. Georgiadis, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis 13, 2183 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    30. Y. P. Lu, R. L. Chang, M. T. Huang, and A. H. Conney, Inhibitory effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced increase in ornithine decarboxylase mRNA in mouse epidermis. Carcinogenesis 14, 293 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    31. Y. P. Lu, R. L. Chang, Y. R. Lou, M. T. Huang, H. L. Newmark, K. R. Reuhl, and A. H. Conney, Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate- and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis. Carcinogenesis 15, 2363 (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    32. C. Ishizaki, T. Oguro, T. Yoshida, C. Q. Wen, H. Sueki, and M. Iijima, Enhancing effect of ultraviolet A on ornithine decarboxylase induction and dermatitis evoked by 12-O-tetradecanoylphorbol-13-acetate and its inhibition by curcumin in mouse skin. Dermatology 193, 311(1996).PubMedCrossRefGoogle Scholar
  33. 33.
    33. G. T. Bowden, Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4, 23 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    34. A. Grandjean-Laquerriere, S. C. Gangloff, R. Le Naour, C. Trentesaux, W. Hornebeck, and M. Guenounou, Relative contribution of NF-kappaB and AP-1 in the modulation by curcumin and pyrrolidine dithiocarbamate of the UVB-induced cytokine expression by keratinocytes. Cytokine 18, 168 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    35. J. W. Cho, K. Park, G. R. Kweon, B. C. Jang, W. K. Baek, M. H. Suh, C. W. Kim, K. S. Lee, and S. I. Suh, Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37, 186 (2005).PubMedGoogle Scholar
  36. 36.
    36. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y. J. Surh, Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24, 1515 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    37. N. Ahmad, S. K. Katiyar, and H. Mukhtar, Antioxidants in chemoprevention of skin cancer. Curr Probl Dermatol 29, 128 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    38. I. Aukhil, Biology of wound healing. Periodontology 22, 44 (2000).CrossRefGoogle Scholar
  39. 39.
    39. J. Slavin, The role of cytokines in wound healing. J Pathol 178, 5–10 (196).Google Scholar
  40. 40.
    40. J. Folkman and Y. Shing, Angiogenesis. J Biol Chem 267, 10,931 (1992).Google Scholar
  41. 41.
    41. J. Folkman and Y. Shing, Control of angiogenesis by heparin and other sulfated polysaccharides. Adv Exp Med Biol 313, 355 (1992).PubMedGoogle Scholar
  42. 42.
    42. G. S. Ashcroft, T. Greenwell-Wild, M. A. Horan, S. M. Wahl, and M. W. Ferguson, Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 55, 1137 (1999).Google Scholar
  43. 43.
    43. E. Letterer, Morphological manifestations of allergic-hyperergic processes during infectious diseases. Acta Allergol Suppl (Copenh) 3, 79 (1953).Google Scholar
  44. 44.
    44. J. A. Belperio, M. P. Keane, D. A. Arenberg, C. L. Addison, J. E. Ehlert, M. D. Burdick, and R. M. Strieter, CXC chemokines in angiogenesis. J Leukocyte Biol 68, 1 (2000).PubMedGoogle Scholar
  45. 45.
    45. K. M. Nadkarni, Curcuma longa. In: K. M. Nadkarni, ed. Indian Materia Medica, Bombay: Popular Prakashan Publishing, 1976.Google Scholar
  46. 46.
    46. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci 78, 2081 (2006).PubMedCrossRefGoogle Scholar
  47. 47.
    47. S. Swarnakar, K. Ganguly, P. Kundu, A. Banerjee, P. Maity, and A. V. Sharma, Curcumin regulates expression and activity of matrix metalloproteinases-9 and -2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280, 9409 (2005).PubMedCrossRefGoogle Scholar
  48. 48.
    48. D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, and R. Jayakumar, Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25, 1911 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    49. T. T. Phan, P. See, S. T. Lee, and S. Y. Chan, Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J Trauma 51, 927 (2001).PubMedCrossRefGoogle Scholar
  50. 50.
    50. L. M. Khachigian, V. Lindner, A. J. Williams, and T. Collins, Egr-1-induced endothelial gene expression: A common theme in vascular injury. Science 271, 1427 (1997).CrossRefGoogle Scholar
  51. 51.
    51. U. R. Pendurthi and L. V. Rao, Suppression of transcription factor Egr-1 by curcumin. Thromb Res 97, 179 (2000).PubMedCrossRefGoogle Scholar
  52. 52.
    52. G. S. Sidhu, A. K. Singh, D. Thaloor, K. K. Banaudha, G. K. Patnaik, R. C. Srimal, and R. K. Maheshwari, Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6, 167 (1998).PubMedCrossRefGoogle Scholar
  53. 53.
    53. W. H. Goodson 3rd. and T. Hunt, Wound healing and the diabetic patient. Surg Gynecol Obstet 149, 600 (1997).Google Scholar
  54. 54.
    54. M. P. Cohen, V. Y. Wu, and J. A. Cohen, Glycated albumin stimulates fibronectin and collagen IV production by glomerular endothelial cells under normoglycemic conditions. Biochem Biophys Res Commun 239, 91 (1997).PubMedCrossRefGoogle Scholar
  55. 55.
    55. J. S. Van de Berg, M. C. Robson, and R. J. Mikhail, Extension of the life span of pressure ulcer fibroblasts with recombinant human interleukin-1 beta. Am J Pathol 146, 1273 (1995).Google Scholar
  56. 56.
    56. K. Moore, F. Ruge, and K. G. Harding, T lymphocytes and the lack of activated macrophages in wound margin biopsies from chronic leg ulcers. Br J Dermatol 137, 188 (1997).PubMedCrossRefGoogle Scholar
  57. 57.
    57. L. Pari and P. Murugan, Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. J Basic Clin Physiol Pharmacol 16, 257 (2005).PubMedGoogle Scholar
  58. 58.
    58. P. Suryanarayana, M. Saraswat, T. Mrudula, T. P. Krishna, K. Krishnaswamy, and G. B. Reddy, Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46, 2092 (2005).PubMedCrossRefGoogle Scholar
  59. 59.
    59. S. Sharma, S. K. Kulkarni, J. N. Agrewala, and K. Chopra, Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 536, 256 (2006).PubMedCrossRefGoogle Scholar
  60. 60.
    60. T. Osawa and Y. Kato, Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann NY Acad Sci 1043, 440 (2005).PubMedCrossRefGoogle Scholar
  61. 61.
    61. G. S. Sidhu, H. Mani, J. P. Gaddipati, A. K. Singh, P. Seth, K. K. Banaudha, G. K. Patnaik, and R. K. Maheshwari, Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7, 362 (1999).PubMedCrossRefGoogle Scholar
  62. 62.
    62. H. Mani, G. S. Sidhu, R. Kumari, J. P. Gaddipati, P. Seth, and R. K. Maheshwari, Curcumin differentially regulates TGF-beta1, its receptors and nitric oxide synthase during impaired wound healing. Biofactors 16, 29 (2002).PubMedGoogle Scholar
  63. 63.
    63. R. E. Shore, Overview of radiation-induced skin cancer in humans. Int J Radiat Biol 57, 809 (1990).PubMedCrossRefGoogle Scholar
  64. 64.
    64. Q. Gu, D. Wang, C. Cui, Y. Gao, G. Xia, and X. Cui, Effects of radiation on wound healing. J Environ Pathol Toxicol Oncol 17, 117 (1998).PubMedGoogle Scholar
  65. 65.
    65. R. Rudolph, J. Van de Berge, J. A. Schneider, J. C. Fisher, and W. L. Poolman, Slowed growth of cultured fibroblasts from human radiation wounds. Plast Reconstr Surg 18, 669 (1998).Google Scholar
  66. 66.
    66. J. F. Qu, T. M. Cheng, L. S. Xu, C. M. Shi, and X. Z. Ran, Effects of total body irradiation injury on the participation of dermal fibroblasts in tissue repair. Sheng Li Xue Bao 54, 395 (2002).PubMedGoogle Scholar
  67. 67.
    67. S. Song and T. Cheng, The effect of systemic and local irradiation on wound macrophage and repair promoting action of phenytion sodium. Zhonghma Yi Xue Za Zhi 77, 54 (1997).Google Scholar
  68. 68.
    68. G. C. Jagetia and G. K. Rajanikant, Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gamma-irradiation. Plast Reconstr Surg 115, 515 (2005).PubMedCrossRefGoogle Scholar
  69. 69.
    69. G. C. Jagetia and G. K. Rajanikant, Effect of curcumin on radiation-impaired healing of excisional wounds in mice. J Wound Care 13, 107 (2004).PubMedGoogle Scholar
  70. 70.
    70. G. C. Jagetia and G. K. Rajanikant, Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of gamma-radiation. J Surg Res 120, 127 (2004).PubMedCrossRefGoogle Scholar
  71. 71.
    71. J. H. Distler, J. R. Kalden, S. Gray, and O. Distler, [Vascular changes in the pathogenesis of systemic sclerosis]. Z Rheumatol 63, 446 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    72. T. T. Leong, U. Fearon, and D. J. Veale, Angiogenesis in psoriasis and psoriatic arthritis: Clues to disease pathogenesis. Curr Rheumatol Rep 7, 325 (2005).PubMedCrossRefGoogle Scholar
  73. 73.
    73. J. L. Arbiser, X. C. Li, C. F. Hossain, D. G. Nagle, D. M. Smith, P. Miller, B. Govindarajan, J. DiCarlo, K. R. Landis-Piwowar, and Q. P. Dou, Naturally occurring proteasome inhibitors from mate tea (Ilex paraguayensis) serve as models for topical proteasome inhibitors. J Invest Dermatol 125, 207 (2005).PubMedGoogle Scholar
  74. 74.
    74. M. H. Oak, J. El Bedoui, and V. B. Schini-Kerth, Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem 16, 1 (2005).PubMedCrossRefGoogle Scholar
  75. 75.
    75. A. K. Singh, G. S. Sidhu, T. Deepa, and R. K. Maheshwari, Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett 107, 109 (1996).PubMedCrossRefGoogle Scholar
  76. 76.
    76. D. Thaloor, A. K. Singh, G. S. Sidhu, P. V. Prasad, H. K. Kleinman, and R. K. Maheshwari, Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Differ 9, 305 (1998).PubMedGoogle Scholar
  77. 77.
    77. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen, C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh, Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21, 2895 (2001).PubMedGoogle Scholar
  78. 78.
    78. V. Charles and S. X. Charles, The use and efficacy of Azadirachta indica ADR (‘Neem’) and Curcuma longa (‘Turmeric’) in scabies. A pilot study. Trop Geogr Med 44, 178 (1992).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Rajesh L. Thangapazham
  • Anuj Sharma
  • Radha K. Maheshwari

There are no affiliations available

Personalised recommendations