Turmeric, the bright yellow spice extracted from the tuberous rhizome of the plant Curcuma longa, has been used in traditional Indian and Chinese systems of medicine for centuries to treat a variety of ailments, including jaundice and hepatic disorders, rheumatism, anorexia, diabetic wounds, and menstrual difficulties. Most of the medicinal effects of turmeric have been attributed to curcumin, the principal curcumanoid found in turmeric.


Bone Marrow Stromal Cell Curcuma Longa Transcription Factor Nuclear Factor Curcumin Supplementation Dietary Curcumin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. R. C. Srimal and B. N. Dhawan, Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25, 447–452 (1973).PubMedGoogle Scholar
  2. 2.
    2. A. Mukhopadhyay, N. Basu, N. Ghatak, and P. K. Gujral, Matory and irritant activities of curcumin. Agents Actions 12, 508–515 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    3. M. T Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).PubMedGoogle Scholar
  4. 4.
    4. S. D. Deodhar, R. Sethi, and R. C. Srimal, Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71, 632–634 (1980).PubMedGoogle Scholar
  5. 5.
    5. R. R. Satoskar, S. J. Shah, and S. G. Shenoy, Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Pharmacol Ther Toxicol 24, 651–654 (1986).Google Scholar
  6. 6.
    6. B. Lal, A. K. Kapoor, O. P. Asthana, P. K. Agrawal, R. Prasad, and P. Kumar, Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res 13, 318–322 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    7. B. Lal, A. K. Kapoor, O. P. Asthana, and R. C. Srimal, Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother Res 14, 443–447 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    8. J. Hong, M. Bose, J. Ju, J. H. Ryu, X. Chen, S. Sang, M. J. Lee, and C. S. Yang, Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    9. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    10. A. Goel, C. R. Boland, and D. P. Chauhan, Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172, 111–118 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    11. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y. J. Surh, Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-κB activation. Carcinogenesis 24, 1515 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    12. D. L. Flynn, M. F. Rafferty, and A. M. Boctor, Inhibition of human neutrophil 5-lipooxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds. Prostaglandins Leukot Med 24, 195–198 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    13. G. Y. Kim, K. H. Kim, S. H. Lee, M. S. Yoon, H. J. Lee, D. O. Moon, C. M. Lee, S. C. Ahn, Y. C. Park, and Y. M. Park, Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κ B as potential targets. J Immunol 174, 8116 (2005).PubMedGoogle Scholar
  14. 14.
    14. S. Bhaumik, M. D. Jyothi, and A. Khar, Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett 483, 78–82 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    15. I. Brouet and H. Ohshima, Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533–540 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    16. S. Antony, R. Kuttan, and G. Kuttan, Immunomodulatory activity of curcumin. Immunol Invest 28, 291 (1999).PubMedGoogle Scholar
  17. 17.
    17. S. Yasni, K. Yoshiie, H. Oda, M. Sugano, and K. Imaizumi, Dietary Curcuma xanthorrhiza Roxb. increases mitogenic responses of splenic lymphocytes in rats, and alters populations of the lymphocytes in mice. J Nutr Sci Vitaminol (Tokyo) 39, 345 (1993).Google Scholar
  18. 18.
    18. M. Churchill, A. Chadburn, R. T. Bilinski, and M. M. Bertagnolli, Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J Surg Res 89, 169 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    19. S. Pal, S. Bhattacharyya, T. Choudhuri, G. K. Datta, T. Das, and G. Sa, Amelioration of immune cell number depletion and potentiation of depressed detoxification system of tumor-bearing mice by curcumin. Cancer Detect Prev 29, 470 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    20. J. S. James, Curcumin: Clinical trial finds no antiviral effect. AIDS Treat News 242, 1 (1996).Google Scholar
  21. 21.
    21. X. Li X. Liu, Effect of curcumin on immune function of mice. J Huazhong Univ Sci Technolog Med Sci 25, 137 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    22. G. M. Cole, T. Morihara, G. P. Lim, F. Yang, A. Begum, and S. A. Frautschy, NSAID and antioxidant prevention of Alzheimer's disease: Lessons from in vitro and animal models. Ann NY Acad Sci 1035, 68 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    23. W. Lukita-Atmadja, Y. Ito, G. L. Baker, and R. S. McCuskey, Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock 17, 399 (2002).PubMedCrossRefGoogle Scholar
  24. 23a.
    23a. H. Steller, Mechanisms and genes of cellular suicide. Science 267, 1445 (1995).PubMedCrossRefGoogle Scholar
  25. 24.
    24. M. W. Mayo and A. S. Baldwin, The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 1470, M55–M62 (2000).PubMedGoogle Scholar
  26. 25.
    25. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kB and IkBa kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053 (2003).PubMedCrossRefGoogle Scholar
  27. 26.
    26. S. Uddin, A. R. Hussain, P. S. Manogaran, K. Al-Hussein, L. C. Platanias, M. I. Gutierrez, and K. G. Bhatia, Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene 24, 7022 (2005).PubMedCrossRefGoogle Scholar
  28. 27.
    27. T. Choudhuri, S. Pal, M. L. Agwarwal, T. Das, and G. Sa, Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512, 334 (2002).PubMedCrossRefGoogle Scholar
  29. 28.
    28. L. Li, B. B. Aggarwal, S. Shishodia, J. Abbruzzese, and R. Kurzrock, Nuclear factor-κB and IκB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101, 2351 (2004).PubMedCrossRefGoogle Scholar
  30. 29.
    29. P. G. Radhakrishna, A. S. Srivastava, T. I. Hassanein, D. P. Chauhan, and E. Carrier, Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208, 163 (2004).CrossRefGoogle Scholar
  31. 30.
    30. T. Dorai, Y.-C. Cao, B. Dorai, R. Buttyan, and A. E. Katz, Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of PC3 prostate cancer cells in vivo. Prostate 47, 293 (2001).PubMedCrossRefGoogle Scholar
  32. 31.
    31. M. Zheng, S. Ekmekcioglu, E. T. Walch, C. H. Tang, and E. A. Grimm, Inhibition of nuclear factor-κB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res 14, 165 (2004).PubMedCrossRefGoogle Scholar
  33. 32.
    32. L. Moragoda, R. Jaszewski, and A. P. Majumdar, Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cell lines. Oncogene 20, 7597 (2001).CrossRefGoogle Scholar
  34. 33.
    33. A. S. Jaiswal, B. P. Marlow, N. Gupta, and S. Narayan, Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21, 8414 (2002).PubMedCrossRefGoogle Scholar
  35. 34.
    34. A. Mukhopadhyaya, C. Bueso-Ramos, D. Chatterjee, P. Pantazis, and B. Aggarwal, Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20, 759 (2001).CrossRefGoogle Scholar
  36. 35.
    35. R. J. Anto, A. Mukhopadadhyay, K. Denning, and B. B. Aggarwal, Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xL. Carcinogenesis 23, 143 (2002).PubMedCrossRefGoogle Scholar
  37. 36.
    36. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBalpha kinase and Akt activation. Mol Pharmacol 69, 195 (2006).PubMedGoogle Scholar
  38. 37.
    37. J. Rajasingh, H. P. Raikwar, G. Muthian, C. Johnson, and J. J. Bright, Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia. Biochem Biophys Res Commun 340, 359 (2006).PubMedCrossRefGoogle Scholar
  39. 38.
    38. M. S. Squires, E. A. Hudson, L. Howells, S. Sale, C. E. Houghton, J. L. Jones, L. H. Fox, M. Dickens, S. A. Prigent, and M. M. Manson, Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 65, 361 (2003).PubMedCrossRefGoogle Scholar
  40. 39.
    39. J. A. Bush, K. J. Cheung, Jr., and G. Li, Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271, 305 (2001).PubMedCrossRefGoogle Scholar
  41. 40.
    40. B. B. Aggarwal, S. Shishodia, Y. Takada, S. Banerjee, R. A. Newman, C. E. Bueso-Ramos, and J. E. Price, Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11, 7490 (2005).PubMedCrossRefGoogle Scholar
  42. 41.
    41. T.-C. Hour, J. Chen, J., Huang, J.-Y. Guan, S.-H. Lu, and Y.-S. Pu, Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21WAFI/CIPI and C/EBPβ expressions and suppressing NF-kB activation. Prostate 51, 211 (2002).PubMedCrossRefGoogle Scholar
  43. 42.
    42. D. Deeb, H. Jiang, X. Gao, M. S. Hafner, H. Wong, G. Divine, R. A. Chapman, S. A. Dulchavsky, and S. C. Gautam, Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-κB through suppression of IκBalpha phosphorylation. Mol Cancer Ther 3, 803 (2004).PubMedGoogle Scholar
  44. 43.
    43. D. Deeb, Y. X. Xu, H. Jiang, X. Gao, N. Janakiraman, R. A. Chapman, and S. C. Gautam, Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2, 95 (2003).PubMedGoogle Scholar
  45. 44.
    44. D. D. Deeb, H. Jiang, X. Gao, G. Divine, S. A. Dulchavsky, and S. C. Gautam, Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL-induced apoptosis. J Exp Ther Oncol 5, 81 (2005).PubMedGoogle Scholar
  46. 45.
    45. X. Gao, D. Deeb, H. Jiang, Y. B. Liu, S.A. Dulchavsky, and S. C. Gautam, Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria. J Exp Ther Oncol 5, 39 (2005).PubMedGoogle Scholar
  47. 46.
    46. E. M. Jung, J. H. Lim, JT. J. Lee, J. W. Park, K. S. Choi, and T. K. Kwon, Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis 26, 1905 (2005).PubMedCrossRefGoogle Scholar
  48. 47.
    47. Y. Kuramoto, K. Yamada, O. Tsuruta, and M. Sugano, Effect of natural food colorings on immunoglobulin production in vitro by rat spleen lymphocytes. Biosci Biotechnol Biochem 60, 1712 (1996).PubMedCrossRefGoogle Scholar
  49. 48.
    48. E. H. South, J. H. Exon, and K. Hendrix, Dietary curcumin enhances antibody response in rats. Immunopharmacol Immunotoxicol 19, 105 (1997).PubMedGoogle Scholar
  50. 49.
    49. J. Odot, P. Albert, A. Carlier, M. Tarpin, J. Devy, and C. Madoulet, In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer 111, 381 (2004).PubMedCrossRefGoogle Scholar
  51. 50.
    50. X. Gao, J. Kuo, H. Jiang, D. Deeb, Y. Liu, G. Divine, R. A. Chapman, S. A. Dulchavsky, and S. C. Gautam, Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem Pharmacol 68, 51 (2004).PubMedCrossRefGoogle Scholar
  52. 51.
    51. B. Cipriani, G. Borsellino, H. Knowles, D. Tramonti, F. Cavaliere, G. Bernardi, L. Battistini, andC. F. Brosnan, Curcumin inhibits activation of Vgamma9Vdelta2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factor and large scale DNA fragmentation. J Immunol 167, 3454 (2001).PubMedGoogle Scholar
  53. 52.
    52. D. Ranjan, C. Chen, T. D. Johnston, H. Jeon, and M. Nagabhushan, Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFκB activation, and IL-2 signaling. J Surg Res 121, 171 (2004).PubMedCrossRefGoogle Scholar
  54. 53.
    53. D. A. Shoskes, Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: A new class of renoprotective agents. Transplantation 66, 147 (1998).PubMedCrossRefGoogle Scholar
  55. 54.
    54. D. A. Shoskes, E. A. Jones, and A. Shahed, Synergy of mycophenolate mofetil and bioflavonoids in prevention of immune and ischemic injury. Transplant Proc 32, 798 (2000).PubMedCrossRefGoogle Scholar
  56. 55.
    55. D. Shoskes, C. Lapierre, M. Cruz-Corerra, N. Muruve, R. Rosario, B. Fromkin, M. Braun, and J. Copley, Beneficial effects of bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: A randomized placebo controlled trial. Transplantation 80, 1556 (2005).PubMedCrossRefGoogle Scholar
  57. 56.
    56. S. C. Chueh, M. K. Lai, I. S. Liu, F. C. Teng, and J. Chen, Curcumin enhances the immunosuppressive activity of cyclosporine in rat cardiac allografts and in mixed lymphocyte reactions. Transplant Proc 35, 1603 (2003).PubMedCrossRefGoogle Scholar
  58. 57.
    57. V. S. Yadav, K. P. Mishra, D. P. Singh, S. Mehrotra, and V. K. Singh, Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27, 485 (2005).PubMedCrossRefGoogle Scholar
  59. 58.
    58. M. M.-Y. Chan, Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 49, 1551 (1995).PubMedCrossRefGoogle Scholar
  60. 59.
    59. B. Y. Kang, S. W. Chung, W. Chung, S. Im, S. Y. Hwang, and T. S. Kim, Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol 384, 191 (1999).PubMedCrossRefGoogle Scholar
  61. 60.
    60. A. Literat, F. Su, M. Norwicki, M. Durand, R. Ramanathan, C. A. Jones, P. Minoo, and K. Y. Kwong, Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD). Life Sci 70, 253 (2001).PubMedCrossRefGoogle Scholar
  62. 61.
    61. T. Kobayashi, S. Hashomoto, and T. Horie, Curcumin inhibition of Dermatophagoides farinea-induced interleukin-5 (IL-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics. Biochem Pharmacol 54, 819 (1997).PubMedCrossRefGoogle Scholar
  63. 62.
    62. J. P. Gaddipati, S. V. Sundar, J. Calemine, P. Seth, G. S. Sidhu, and R. K. Maheshwari, Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19, 150 (2003).PubMedCrossRefGoogle Scholar
  64. 63.
    63. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168, 6506 (2002).PubMedGoogle Scholar
  65. 64.
    64. Y. X. Xu, K. R. Pindolia, N. Janakiraman, C. J. Noth, R. A. Chapman, and S. C. Gautam, Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp Hematol 25(5), 413 (1997).PubMedGoogle Scholar
  66. 65.
    65. Y. Abe, S. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39, 41 (1999).PubMedCrossRefGoogle Scholar
  67. 66.
    66. H. Hidaka, T. Ishiko, T. Furuhashi, H. Kamohara, S. Suzuki, M. Miyazaki, O. Ikeda, S. Mita, T. Setoguchi, and M. Ogawa, Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface: Impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 95, 1206 (2002).PubMedCrossRefGoogle Scholar
  68. 67.
    67. S. Ghosh, Regulation of inducible gene expression by the transcription factor NF-κB. Immunol Res 19, 183 (1999).PubMedGoogle Scholar
  69. 68.
    68. M. Karin, How NF-kB is activated: The role of the IkB kinase (IKK) complex? Oncogene 18, 6867 (1999).PubMedCrossRefGoogle Scholar
  70. 69.
    69. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-κ B is suppressed by curcumin (diferuloylmethane). J Biol Chem 270, 24,995 (1995).CrossRefGoogle Scholar
  71. 70.
    70. Y. X. Xu, K. R. Pindolia, N. Janakiraman, R. A. Chapman, and S. C. Gautam, Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematopathol Mol Hematol 11, 49 (1997).PubMedGoogle Scholar
  72. 71.
    71. C. Jobin, C. A. Bradham, M. P. Russo, B. Juma, A. S. Narula, D A. Brenner, and R. B. Sartor, Curcumin blocks cytokine-mediated NF-κ B activation and proinflammatory gene expression by inhibiting inhibitory factor I-κ B kinase activity. J Immunol 163, 3474 (1999).PubMedGoogle Scholar
  73. 72.
    72. B. Y. Kang, Y. J. Song, K. M. Kim, Y. K. Choe, S. Y. Hwang, and T. S. Kim, Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol 128, 380 (1999).PubMedCrossRefGoogle Scholar
  74. 73.
    73. S. M. Plummer, K. A. Holloway, M. M. Manson, R. J. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18, 6013 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

There are no affiliations available

Personalised recommendations