Advertisement

RADIOPROTECTION AND RADIOSENSITIZATION BY CURCUMIN

  • Ganesh C. Jagetia
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 595)

Abstract

This chapter gives an overview of the radioprotective and radiosensitizing effect of curcumin.

Keywords

HaCaT Cell Curcuma Longa Curcumin Treatment Nonmelanoma Skin Cancer Excision Wound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. C. Von Sonntag, The Chemical Basis of Radiation Biology. London: Taylor and Francis, 1987.Google Scholar
  2. 2.
    2. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radical in aqueous solution. J Phys Chem Ref Data 17, 513–886 (1988).Google Scholar
  3. 3.
    3. M. C. R. Symons and Gutteridge, Free Radicals and Ion, Chemistry Biology and Medicine. Oxford: Oxford University Press, 1998, pp. 40–60.Google Scholar
  4. 4.
    4. W. A. Pryor, Cancer and free radicals. Basic Life Sci 39, 45–59 (1986).PubMedGoogle Scholar
  5. 5.
    5. S. S. Wallace, S. S., 1988, Detection and repair of DNA base damages produced by ionizing radiation. Environ Mol Mutagen 12, 431–477 (1988).PubMedGoogle Scholar
  6. 6.
    6. H. Esterbauer, Estimation of peroxidative damage, a critical review. Pathol Biol Paris 44, 25–28 (1996).PubMedGoogle Scholar
  7. 7.
    7. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine. Oxford: Oxford University Press, 1997.Google Scholar
  8. 8.
    8. R. I. Walker and R. J. Cerveny, (eds.), Medical Consequences of Nuclear Warfare. Falls Church, VA: Office of the Surgeon General, 1989.Google Scholar
  9. 9.
    9. A. V. Barabanova, Acute radiation syndrome with cutaneous syndrome. In: R. C. Ricks, M. E. Berger, and F. M. O'Hara, eds. The Medical Basis for Radiation Accident Preparedness, The Clinical Care of Victims. New York: Parthenon, 2002, pp. 217–224.Google Scholar
  10. 10.
    10. H. D. Kogelnik, [100 years radiotherapy. On the birth of a new specialty]. Wien Klin Wochenschr. 110(9), 313–320 (1998).PubMedGoogle Scholar
  11. 11.
    11. H. D. Kogelnik, The history and evolution of radiotherapy and radiation oncology in Austria. Int J Radiat Oncol Biol Phys 35(2), 219–226 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    12. H. M. Patt, E. B. Tyree, R. L. Straube, and D. E. Smith, D. E., 1949, Cysteine protection against X-irradiation, Science 110, 213–214 (1949).CrossRefGoogle Scholar
  13. 13.
    13. T. R. Sweeney, Survey of Compounds from the Antiradiation Drug Development Program of the U.S. Army Medical Research and Development Command. Washington, DC: U.S.Government Printing Office, 1979. pp. 308–318.Google Scholar
  14. 14.
    14. J. R. Maisin, J. R., 1998, Bacq and Alexander Award lecture: Chemical radioprotection, past, present, and future prospects. Int J Radiat Biol 73, 443–450 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    15. G. C. Jagetia and V. A. Venkatesha, Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes. Environ Mol Mutagen 46, 12–21 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    16. H. P. Ammon and M. A. Wahl, Pharmacology of Curcuma longa, Planta Med 57(1), 1–7 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    17. D. Eigner and D. Scholz, Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal J. Ethnopharmacol 67, 1–6 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    18. S. K. Abraham, L. Sarma, and P. C. Kesavan, Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat Res 303(3), 109–112 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    19. K. C. Thresiamma, J. George, and R. Kuttan, Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity, J Exp Clin Cancer Res 17, 431–434 (1998).PubMedGoogle Scholar
  20. 20.
    20. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi, Chemoprevention by Curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with X-rays. Carcinogenesis 20(6), 1011–1018 (1999).PubMedCrossRefGoogle Scholar
  21. 21.
    21. H. Inano, M. Onoda, K. Suzuki, H. Kobayashi, and K. Wakabayashi, Radiation-induced mammary tumors in virgin and parous rats administered contraceptive steroids, 17 alpha-ethibnylestradiol and norethisterone. Carcinogenesis 21(5), 1043–1050 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    22. M. Rezvani and G. A. Ross, Modification of radiation-induced acute oral mucositis in the rat, Int J Radiat Biol 80(2), 177–182 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    23. P. Nemavarkar, B. K. Chourasia, and K. Pasupathy, Evaluation of radioprotective action of compounds using Saccharomyces cerevisiae. J Environ Pathol Toxicol Oncol 23(2), 145–151 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    24. H. Narang and M. Krishna, Inhibition of radiation induced nitration by Curcumin and nicotinamide in mouse macrophages. Mol Cell Biochem 276, 7–13 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    25. P. Varadkar, P. Dubey, M. Krishna, and N. C. Verma, Modulation of radiation-induced protein kinase C activity by phenolics, J Radiol Prot 21, 361–370 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    26. S. M. Khopde, K. I. Priyadarsini, S. N. Guha, J. G. Satav, P. Venkatesan, and M. N. Rao, Inhibition of radiation-induced lipid peroxidation by Tetrahydrocurcumin. Possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem 64(3), 503–509 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    27. A. C. McLellan and P. J. Thornalley, Glyoxalase activity in human red blood cells fractionated by age. Mech Ageing Dev 48, 63–71 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    28. A. Szent-Györgyi, Bioelectronics of cancer. Bioenergetics 4, 533–562 (1973).CrossRefGoogle Scholar
  29. 29.
    29. A. Szent-Györgyi, Protein radicals, regulation and cancer. Int J Quantum Chem QBS4, 179–184 (1997).Google Scholar
  30. 30.
    30. N. I. Hooper, M. J. Tisdale, and P. J. Thornalley, Glyoxalase activity during differentiation of human leukaemic cells in vitro. Leuk Res 11, 1141–1148 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    31. R. Sharma and R. K. Kale, Effect of radiation on glyoxalase I and glyoxalase II activities in spleen and liver of mice. Int J Radiat Biol 63(2), 233–238 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    32. R. Sharma-Luthra and R. K. Kale, Inhibition of radiationinduced changes of glyoxalase I activity in mouse spleen and liver by phenothiazines. Int J Radiat Biol 67(4), 403–410 (1995).CrossRefGoogle Scholar
  33. 33.
    33. R. K. Kale, Exploitation of hypoxia for radiation therapy: A lesson from phenothiazines. Med Hypothes 47, 107–110 (1996).CrossRefGoogle Scholar
  34. 34.
    34. D. Choudhary, D. Chandra, and R. K. Kale, Modulation of radioresponse of glyoxalase system by curcumin. J Ethnopharmacol 64, 1–7 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    35. G. C. Jagetia and G. K. Rajanikant, Effect of various doses of curcumin on the radiation-impaired healing of excision wound in mice: A preliminary study. J Wound Care 13(3), 107–109 (2004).PubMedGoogle Scholar
  36. 36.
    36. G. C. Jagetia and G. K. Rajanikant, Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wounds in mice whole-body exposed to various doses of γ-radiation. J Surg Res 120, 127–138 (2004).PubMedCrossRefGoogle Scholar
  37. 37.
    37. G. C. Jagetia and G. K. Rajanikant, Curcumin treatment enhances the repair and regeneration of wounds in mice hemi-body exposed to γ-radiation, Plast Reconstr Surg 115(2), 515–528 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    38. G. C. Jagetia, P. Venkatesh, and M. S. Baliga, Fruit extract of Aegle marmelos protects mice against radiation-induced lethality. Integr Cancer Ther 3(4), 323–332 (2004).PubMedCrossRefGoogle Scholar
  39. 39.
    39. R. D. Granstein and M. S. Matsui, UV radiation-induced immunosuppression and skin cancer. Cutis 74(5), 4–9 (2004).PubMedGoogle Scholar
  40. 40.
    40. Y. Matsumura and H. N. Ananthaswamy, Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195, 298–308 (2004).PubMedCrossRefGoogle Scholar
  41. 41.
    41. D. Grossman and D. J. Leffell, The molecular basis of nonmelanoma skin cancer: A new understanding. Arch Dermatol 133, 1263–1270 (1997).PubMedCrossRefGoogle Scholar
  42. 42.
    42. E. C. De Fabo, F. P. Noonan, T. Fears, and G. Merino, Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res 64, 6372–6376 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    43. J. Ramos, J. Villa, A. Ruiz, R. Armstrong, and J. Matta, UV dose determines key characteristics of nonmelanoma skin cancer. Cancer Epidemiol Biomarkers Prev 13, 2006–2011 (2004).PubMedGoogle Scholar
  44. 44.
    44. A. Ziegler, A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks, and D. E. Brash, Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    45. F. R. de Gruijl, Photocarcinogenesis, UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol 15, 316–320 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    46. D. Kulms, E. Zeise, B. Poppelmann, and T. Schwarz, DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene 21, 5844–5851 (2002).PubMedCrossRefGoogle Scholar
  47. 47.
    47. D. E. Heck, A. M. Vetrano, T. M. Mariano, and J. D. Laskin, UVB light stimulates production of reactive oxygen species, unexpected role for catalase. J Biol Chem 278, 22,432–22,436 (2003).Google Scholar
  48. 48.
    48. S. J. Rhee, Redox signaling, hydrogen peroxide as intracellular messenger. Exp Mol Med 31, 53–59 (1999).PubMedGoogle Scholar
  49. 49.
    49. M. Torres and H. J. Forman, Redox signaling and the MAP kinase pathways. Biofactor 17, 287–296 (2003).Google Scholar
  50. 50.
    50. W.-H. Chan, C.-C. Wu, J.-S. and Yu, Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 90, 327–338 (2003).PubMedCrossRefGoogle Scholar
  51. 51.
    51. Y. Oda, Inhibitory effect of curcumin on SOS functions induced by UV irradiation. Mutat Res 348(2), 67–73 (1995).PubMedCrossRefGoogle Scholar
  52. 52.
    52. J.-W. Cho, K. Park, G. R. Kweon, B.-C. Jang, W.-K. Baek, M.-H. Suh, C.-W. Kim, K.-S. Lee, and S.-I.Suh, Curcumin inhibits the expression of COX-2 in UVB–irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1, p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37(3), 186–192 (2005).PubMedGoogle Scholar
  53. 53.
    53. G. G. Steel and M. J. Peckham, Exploitable mechanism in combined radiotherapy-chemotherapy: The concept of additivity. Int J Radiat Oncol Biol Phys 5, 85–91 (1979).PubMedGoogle Scholar
  54. 54.
    54. R. K. Schmidt-Ullrich, J. N. Contessa, P. Dent, R. B. Mikkelsen, K. Valerie, D. B. Reardon, G. Bowers, and P. S. Lin, Molecular mechanisms of radiation-induced accelerated repopulation. Radiat Oncol Invest 7, 321–330 (1999).CrossRefGoogle Scholar
  55. 55.
    55. J. Deacon, M. J. Peckham, and G. G. Steel, The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 2, 317–323 (1984).PubMedCrossRefGoogle Scholar
  56. 56.
    56. C. M. West, S. E. Davidson, S. A. Roberts, and R. D. Hunter, The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer 76, 1184–1190 (1997).PubMedGoogle Scholar
  57. 57.
    57. D. Chendil, R. S. Ranga, D. Meigooni, S. Sathishkumar, and M. M. Ahmed, Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3 Oncogene 23, 1599–1607 (2004).PubMedCrossRefGoogle Scholar
  58. 58.
    58. R. Khafif, K. Hurst, D. M. Kyker, Z. Fliss, Z. Gil, and J. E. Medina, J. E., 2005, Curcumin: A new radiosensitizer of squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132, 317–321 (2005).PubMedCrossRefGoogle Scholar
  59. 59.
    59. M. C. P. Araujo, F. L. Dias, and C. S. Takahashi, Potentiation by turmeric and curcumin of γ–radiation-induced chromosome aberrations in Chinese Hamster ovary cells. Teratogen Carcinogen Mutagen 19, 9–18 (1999).CrossRefGoogle Scholar
  60. 60.
    60. M. Subramanian, M. N. A. Sreejayan Rao, T. P. A. Devasagyam, and B. B. Singh, Diminution of singlet oxygen-induced DNA-damage by J.K. Lin and S.Y. Lin-Shiau curcumin and related antioxidants. Mutat Res 311, 249–255 (1994).PubMedGoogle Scholar
  61. 61.
    61. B. Joe and B. R. Lokesh, Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224, 255–263 (1994).PubMedCrossRefGoogle Scholar
  62. 62.
    62. N. Sreejayan and M. N. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46(2), 169–171 (1996).PubMedGoogle Scholar
  63. 63.
    63. A. C. Reddy and B. R. Lokesh, Effect of curcumin and eugenol on ironinduced hepatic toxicity in rats. Toxicology 107, 39–45 (1996).PubMedCrossRefGoogle Scholar
  64. 64.
    64. R. G. Bristow and R. P. Hill, Molecular and cellular basis of radiotherapy. In: H. R. Tia, ed. The Basic Science of Oncology. New York: McGraw-Hill, New York, 1998, pp 295–322.Google Scholar
  65. 65.
    65. S. K. Biswas, D. McClure, L. A. Jimenez, I. L. Megson, and I. Rahman, Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells, mechanism of free radical scavenging activity. Antioxid Redox Signa. 7(1–2), 32–41 (2005).CrossRefGoogle Scholar
  66. 66.
    66. B. Joe, M. Vijaykumar, and B. R. Lokesh, Biological properties of Curcumin: Cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44, 97–111 (2004).PubMedCrossRefGoogle Scholar
  67. 67.
    67. F. Bonte, M. S. Noel-Hudson, J. Wepierre, and A. Meybeck, Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress. Planta Med 63, 265–266 (1997).PubMedCrossRefGoogle Scholar
  68. 68.
    68. D. E. Hallahan, D. R. Spriggs, M. A. Beckett, D. W. Kufe, and R. R. Weichselbaum, Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86(24),10,104–10,107 (1989).CrossRefGoogle Scholar
  69. 69.
    69. C. N. Coleman, Radiation oncology: Linking technology and biology in the treatment of cancer. Acta Oncol 41, 6–13 (2002).PubMedCrossRefGoogle Scholar
  70. 70.
    70. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-κ B is suppressed by Curcumin (diferuloylmethane). J Biol Chem 270, 24,995–25,000 (1995).CrossRefGoogle Scholar
  71. 71.
    71. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of Curcumin: Preclinical and clinical studies. Anticancer Res 23, 363–398 (2003).PubMedGoogle Scholar
  72. 72.
    72. A. K. Garg, T. A. Buchholz, and B. B. Aggarwal, Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7(11–12), 1630–1647 (2005).PubMedCrossRefGoogle Scholar
  73. 73.
    73. C. V. Rao, A. Riven, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary Curcumin: A naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).PubMedGoogle Scholar
  74. 74.
    74. M. T. Huang, H. L. Newmark, and K. Frenkel, Inhibitory effects of Curcumin on tumorigenesis in mice. J Cell Biochem 27, 26–34 (1997).CrossRefGoogle Scholar
  75. 75.
    75. B. Joe and B. R. Lokesh, Effect of Curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32, 1173–1180 (1997).PubMedCrossRefGoogle Scholar
  76. 76.
    76. J. C. Reed, JCytochrome c, can't live with it—can't live without it. Cell 91(5), 559–562 (1997).PubMedCrossRefGoogle Scholar
  77. 77.
    77. S. Sen, H. Sharma, and N. Singh, Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 331, 1245–1252 (2005).PubMedCrossRefGoogle Scholar
  78. 78.
    78. R. Hanif, L. Qiao, S. J. Shiff, and B. Rigas, Curcumin, a natural plant phenolic food additive, inhibits cell proliferation, and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin–independent pathway. J Lab Clin Med 130, 576–584 (1997).PubMedCrossRefGoogle Scholar
  79. 79.
    79. H. W. Chen and H. C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124, 1029–1040 (1998).PubMedCrossRefGoogle Scholar
  80. 80.
    80. H. Chen, Z. S. Zhang, Y. L. Zhang, and D. Y. Zhou, Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res 19, 3675–3680 (1999).PubMedGoogle Scholar
  81. 81.
    81. A. Chen and J. Xu, J., 2005, Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 288, G447–G456 (2005).PubMedCrossRefGoogle Scholar
  82. 82.
    82. L. Korutla, J. Y. Cheung, J. Mendelsohn, and R. Kumar, Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by Curcumin. Carcinogenesis 16, 1741–1745 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ganesh C. Jagetia

There are no affiliations available

Personalised recommendations