Advertisement

Abstract

Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive-oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase, and inducible nitric oxide synthase (iNOS); it is an effective inducer of heme oxygenase-1.

Keywords

Oral Squamous Cell Carcinoma Cell Mouse Epidermis Caffeic Acid Phenethyl Ester Heme Oxygenase Activity Cancer Chemopreventive Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. G. J. Kelloff, C. W. Boone, V. E. Steele, et al., Progress in cancer chemoprevention: Prospective on agent selection and short term clinical intervention trials. Cancer Res 54(Suppl), 2015s–2024s (1994).PubMedGoogle Scholar
  2. 2.
    2. B. Armstrongand R. Doll, Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer. 15, 617–631 (1975).CrossRefGoogle Scholar
  3. 3.
    3. R. L. Phillips, Role of life-style and dietary habits in risk of cancer among Seventh-Day Adventists. Cancer Res 35, 3513–3522 (1975).PubMedGoogle Scholar
  4. 4.
    4. M. T. Huang, R. C. Smart, C. Q. Wong, and A. H. Conney, Inhibitory effect of curcumin, chlorogenic acid, caffeic acid and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48, 5941–5946 (1988).PubMedGoogle Scholar
  5. 5.
    5. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. Conney, Inhibitory effects of curcumin in vivo lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).PubMedGoogle Scholar
  6. 6.
    6. G. J. Kelloff, J. A. Crowell, E. T. Hawk, et al., Stragegy and planning for chemopreventive drug–development: Clinical development. J Cell Biochem. 26(Suppl), 54–71 (1996).CrossRefGoogle Scholar
  7. 7.
    7. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, TJ. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen. C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh, Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high risk or pre-malignant lesion. Anti-cancer Res 21(4B), 2895–2900 (2001).Google Scholar
  8. 8.
    8. C. M. Chen and H. C. Fang, chemical analysis of the active principles of curcuma species In: C. Y. Sung, ed. Modern Treatise on Chinese Herbal Medicines. Beijing: The Institute of Pharmaceutical Sciences, Medical Academia, 1997,Vol. III, pp 95–105.Google Scholar
  9. 9.
    9. E. Kunchandyand M. N. A. Rao, Oxygen scavenging activity of curcumin. Int J Pharm 38, 239–240 (1990).Google Scholar
  10. 10.
    10. M. Subramanian, M. N. A. Sreejayan Rao, T. P. A. Devasagyam, and B. B. Singh, Diminution of singlet oxygen induced DNA-damage by curcumin and related antioxidants. Mutat Res 311, 249–255 (1994).PubMedGoogle Scholar
  11. 11.
    11. M. N. A. Sreejayan Rao, Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46, 1013–1016 (1994).Google Scholar
  12. 12.
    12. M. T. Huang, W. Ma, P. Yen, J. G. Xie, J. Han, K. D. Fenkel, K. D. Grunberger, and Conney, Inhibitory effects of topical application of low doses of curcumin on TPA-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18, 83–88 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    13. C. A. Shih and J. K. Lin, Inhibition of 8-hydroxydeoxyguanosine formation by curcumin in mouse fibroblast cells. Carcinogenesis 14, 709–712 (1994).CrossRefGoogle Scholar
  14. 14.
    14. A. H. Conney, T. Lysz, T. Ferraro, T. F. Abidi, P. S. Manchand, J. D. Laskin, and M. T. Huang, Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 31, 385–389 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    15. M. T. Huang, Z. Y. Wang, C. A. Georgiadis, J. D. Laskin, and A. H. Conney, Inhibitory effect of curcumin on tumor initiation by benzo[a]pyrene and 7,12- dimethylbenz[a]anthracene. Carcinogenesis 13, 947–954 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    16. M. T. Huang, Y. R. Lou, YW. Ma, H. L. Newmark, K. R. Reuhl, and A, H. Conney, Inhibitory effect of dietary curcumin on forestomach, duodenal and colon carcinogenesis in mice. Cancer Res 54, 5841–5847 (1994).PubMedGoogle Scholar
  17. 17.
    17. M. T. Huang, W. Ma, Y. P. Lu, YR. L. Chang, C. Fischer, P. S. Manchand, H. L. Newmark, and H. H. Conney, Effects of curcumin, demethoxy- curcumin, bisdemethoxycurcumin and tetrahydrocurcumin on TPA-induced tumor promotion. Carcinogenesis 16, 2493–2497 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    18. C. V. Rao, A. B. Riven, A. B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).PubMedGoogle Scholar
  19. 19.
    19. S. V. Singh, X. Hu, S. K. Srivastava, M. Singh, H. Xia, J. L. Orchard, and H. A. Zaren, Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 19(8), 1357–1360 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    20. H. Inano, M. Onoda, N. Inafuku, et al., Potent protective action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21(10), 1835–1841 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    21. S. E. Chuang, M. L. Kuo, C. H. Hsu, C. R. Chen, J. K. Lin, G. M. Lai, C. Y. Hsieh, and A. L. Cheng, Curcumin-containing diet inhibits diethylnitrosamine- induced murine hepatocarcinogenesis. Carcinogenesis 21(2), 331–335 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    22. K. S. Klos, S. L. Wyszomierski, M. Sun, et al., ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis andspontaneous metastasis of human breast cancer cells. Cancer Res 66, 2028–2037 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    23. M. H. Pan, T. M. Huang, Tand J. K. Lin, Biotransformation of curcumin through reduction and glucuronizationm in mice. Drug Metab Dispos 27, 486–494 (1999).PubMedGoogle Scholar
  24. 24.
    24. C. Ireson, S. Orr, D. J. Jones, R. Verschoyle, C. K. Lim, J. L. Luo, L. Howells, S. Plummer, R. Jukes, M. Williams, W. P. Steward, and A. Gescher, Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61(3), 1058–1064 (2001).PubMedGoogle Scholar
  25. 25.
    25. C. Ireson, D. J. Jones, S. Orr, M. W. Coughtrie, D. J. Hoocock, M. L. Williams, P. B. Farmer, W. P. Steward, and A. Gescher, Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidermiol Biomarkers Prev 11(1), 105–111 (2002).Google Scholar
  26. 26.
    26. J. K. Lin and S. Y. Lin-Shiau, Cancer chemoprevention by curcumin. Proc Natl Sci Counc Repub China B 25(2), 59–66 (2001).PubMedGoogle Scholar
  27. 27.
    27. J. K. Lin, T. S. Huang, C. A. Shih, and J. L. Liu, Molecular mechanism of action of curcumin. In: C. T. Ho, T. Osawa, M. T. Huang, and R. T. Rosen, eds. Food Phyto-Chemicals for Cancer Prevention II. ACS Symposium Series 547. Washington, DC: Amercian Chemical Society, Washington, 1994, pp. 196–203.Google Scholar
  28. 28.
    28. R. Motterlin, R. Foresti, R.,∖ Bassi, and C. J. Green, Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol Med 28(8), 1303–1312 (2000).CrossRefGoogle Scholar
  29. 29.
    29. G. Scapagnini, R Foresti, V. Calabrese, A. M. Giuffrida Stella, C. J. Green, and R. Motterlin, Caffeic acid phenethyl ester and curcumin: A novel class of heme oxygenase-1 inducers. Mol Pharmacol 3, 554–561 (2002).CrossRefGoogle Scholar
  30. 30.
    30. J. L. Quiles, M. Dolores Mesa, C. L. Ramirez-Tortosa, C. M. Anguilera, M. Battino, A. Gil, and M. Carmen Ramirez-Tortosa, Curcuma longa extract supplementation induces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol 22, 1225–1231 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    31. R. A. Sharma, C. R. Ireson, R. D. Verschoyle, K. A. Hill, M. L. Williams, C. Leuratti, M. M. Manson, L. J. Marett, W. P. Steward, and A. Gescher, Effect of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: Relationship with drug levels. Clin Cancer Res 7, 1452–1458 (2001).PubMedGoogle Scholar
  32. 32.
    32. A. L. Rinaldi, M. A. Monge, H. W. Fields, et al., Curcumin activates the arylhydrocarbon receptor yet significantly inhibits (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa. Cancer Res 62, 5451–5456 (2002).PubMedGoogle Scholar
  33. 33.
    33. R. A. Sharma, S. A. Euden, S. L. Platton, et al., Phase I clinical trial of oral curcumin: Biomarkers of systematic activity and compliance. Clin Cancer Res 10, 6847–6854 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    34. A. Dinkova-Kostova and P. Talalay, Relation of structure of curcumin alalogs to their potencies as inducers of phase 2 detoxification enzymes. Carcinogenesis 20(5), 911–914 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    35. A. Dinkova-Kostova, W. D. Holtzclaw, R. N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yamamoto, and P. Talalay, Direct evidence that sulfhydryl groups of Keap 1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and antioxidants. Proc Natl Acad Sci USA 99(18), 11,908–11,913 (2002).CrossRefGoogle Scholar
  36. 36.
    36. M. C. Jiang, H. F. Yang-Yen, J. J. Yen, and J. K. Lin, Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26, 111–120 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    37. M. L. Kuo, T. S. Huang, and J. K. Lin, Curcumin, an antioxidant and anti-tumor promoter, induced apoptosis in human leukemia cells. Biochim Biophys Acta 1317, 95–100 (1996).PubMedGoogle Scholar
  38. 38.
    38. M. H. Pan, W. L. Chang, S. Y. Lin-Shiau, C. T. Ho, and J. K. Lin, Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49(3), 1464–1474 (2001).PubMedCrossRefGoogle Scholar
  39. 39.
    39. D. Deeb, Y. X. Xu, H. Jiang, X. Gao, N. Janakiraman, R. A. Chapman, and S. C. Gautam, Curcumin enhances tumor necrosis factor-related apoptosis-inducing-ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2(1), 95–103 (2003).PubMedGoogle Scholar
  40. 40.
    40. C. S. Beevers and S. Huang, Curcumin disrupts the complexes of mammalian target of rapamycin. Proc Am Assoc Cancer Res 7, 356 (2006)Google Scholar
  41. 41.
    41. S. Yu, G. Shen, and T. A. Kong, Curcumin inhibits mTOR signaling by inhibiting protein kinase B/Akt and activating AMP-activated protein kinase (AMPK) in prostate cancer cell line PC-3. Proc Am Assoc Cancer Res 47, 538 (2006).Google Scholar
  42. 42.
    42. T. O. Khor, Y. S. Keum, W. S. Lin, et al., Combined inhibitory effects of curcumin and phenethylisothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66(2), 613–621 (2006).PubMedCrossRefGoogle Scholar
  43. 43.
    43. M. S. Squires, E. A. Hidson, L. Howells, S. Sale, C. E. Houghton, J. L. Jones, L. H. Fox, M. Dickens, S. A. Prigent, and M. M. Manson, Relevance of mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 65(3), 361–376 (2003).PubMedCrossRefGoogle Scholar
  44. 44.
    44. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin down-regulates the constitutive activation of nuclear factor κB and IκBalpha kinase in human multiple myeloma cells leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053–1062 (2003).PubMedCrossRefGoogle Scholar
  45. 45.
    45. J. H. Woo, Y. H. Kim, Y. J. Choi, D. G. Kim, K. S. Lee, J. H. Hae, D. S. Min, J. S. Chang, Y. J. Jeong, Y. S. Lee, J. W. Park, and J. K. Kwon, Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24(7), 1199–1208 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    46. M. Li, H. Wang, Z. Zhang, et al., Curcumin, a multifunctional chemopreventive agent, inhibits MDM2 oncogene which is associated with its anti-cancer, chemosensitization and radiosensitization effects. Proc Am Assoc Cancer Res 47, 538 (2006).Google Scholar
  47. 47.
    47. T. S. Huang, S. C. Lee, and J. K. Lin, Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion Proc Natl Acad Sci USA 88, 5292–5296 (1991).PubMedCrossRefGoogle Scholar
  48. 48.
    48. Y. P. Lu, R. L. Cahng, Y. R. Lou, M. T. Huang, H. L. Newmark, K. R. Reuhl, and A. H. Conney, Effect of curcumin on TPA- and ultraviolet B light induced expression of c-jun and c-fos in JB6 cells and in mouse epidermis. Carcinogenesis 15, 2363–2370 (1994).PubMedCrossRefGoogle Scholar
  49. 49.
    49. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y. J. Surh, Curcumin inhibits phorbal ester-induced expression of cyclooxygenase-2 in mouse skin through expression of extracellular signal-regulated kinase activity and NFκB activation. Carcinogenesis 24(9), 1515–1524 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    50. S. Singhand B. B. Aggarwal, Activation of transcription factor NFκB is suppressing by curcumin. J Biol Chem 270(42), 24,995–25,000 (1995).Google Scholar
  51. 51.
    51. S. K. Fogoros, M. Choi, and J. R. Liu, Curcumin mediates angiogenic factors through inhibition of NFκ κn ovarian cancer cells. Proc Am Assoc Cancer Res 47, 312 (2006).Google Scholar
  52. 52.
    52. J. Y. Liu, S. J. Lin, and J. K. Lin, Inhibitory effects of curcumin on protein kinase C activity induced by TPA in NIH 3T3 cells. Carcinogenesis 14, 857–861 (1993).PubMedCrossRefGoogle Scholar
  53. 53.
    53. R. Gopalakrishna and S. Jaken, Protein kinase C signaling and oxidative stress. Free Radical Biol Med 28, 1349–1361 (2000).CrossRefGoogle Scholar
  54. 54.
    54. R. Gopalakrishna and U. Gundimeda, Antioxidant regulating protein kinase C in cancer prevention. J Nutr 132, 3819s–3823s (2002).PubMedGoogle Scholar
  55. 55.
    55. L. Korutla and R. Kumar, Inhibitory effects of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1224, 597–600 (1994).PubMedCrossRefGoogle Scholar
  56. 56.
    56. L. Korutla, J. Y. Cheung, J. Mendelsohn, and R. Kumar, Inhibition of ligand–induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 16, 1741–1745 (1995).PubMedCrossRefGoogle Scholar
  57. 57.
    57. M. M. Y. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955–1962 (1998).PubMedCrossRefGoogle Scholar
  58. 58.
    58. R. J. Anto, M. Venkatraman, and D. Karunagaran, Inhibition of NFκB sensitizes A431 cells to epidermal growth factor-induced apoptosis, whereas its activation by ectopic expression of Rel A confers resistance. J Biol Chem 278(28), 25,490–25,498 (2003).CrossRefGoogle Scholar
  59. 59.
    59. E. T. Efuet and K. Keyomarsi, Curcumin and simvastatin mediate growth arrest in breast cancer cells by targeting proteasome. Proc Am Assoc Cancer Res 47, 1092 (2006).Google Scholar
  60. 60.
    60. M. B. Sporn and A. B. Roberts, Peptide growth factors are multifunctional. Nature 332, 217–219 (1998).CrossRefGoogle Scholar
  61. 61.
    61. L. Sun and G. Carpenter, Epidermal growth factor activation of NF-κB is mediated through IκBα degradation and intracellular free calcium. Oncogene 16, 2095–2102 (1998).PubMedCrossRefGoogle Scholar
  62. 62.
    62. N. R. Jana, P. Dikshit, A. Goswami, and W. Nukina, Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279(12), 11,680–11,685 (2004).CrossRefGoogle Scholar
  63. 63.
    63. W. J. Chen and J. K. Lin, Induction of G1 arrest and apoptosis in human Jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27, p21 and bax protein. J Biol Chem 279(14), 13,496–13,525 (2004).Google Scholar
  64. 64.
    64. C. Naujokat and S. Hoffmann, Role and function of 26S proteasome in proliferation and apoptosis. Lab Invest 82, 965–980 (2002).PubMedGoogle Scholar
  65. 65.
    65. Y. C. Chen, T. C. Kuo, S. Y. Lin-Shiau, and J. K. Lin, Induction of HSP70 gene expression by modulation of calcium ion and cellular p53 protein by curcumin in colorectal carcinoma cells. Mol Carcinog 17, 224–234 (1996).PubMedCrossRefGoogle Scholar
  66. 66.
    66. L. I. Lin, Y. F. Ke, Y. C. Ko, and J. K. LinCurcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase 9 secretion. Oncology 55, 349–353 (1998).PubMedCrossRefGoogle Scholar
  67. 67.
    67. S. Phillip, A. Bulbule, and G. C. Kundu, Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-κB mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 276, 44,926–44,935 (2001).CrossRefGoogle Scholar
  68. 68.
    68. S. Phillip and G. C. Kandu, Osteopontin induces nuclear factor κB-mediated promatrix metalloproteinase-2 activation through IκBα/IKK signaling pathways and curcumin down regulate these pathways. J Biol Chem 278(16), 14,487–14,497 (2003).CrossRefGoogle Scholar
  69. 69.
    69. M. M. Manson, A. Gescher, E. A. Hudson, S. M. Plummer, M. S. Squires, and S. A. Prigent, Blocking and suppressing mechanisms of chemoprevention by dietary constituents. Toxicol Lett 112–113, 499–505 (2000).PubMedCrossRefGoogle Scholar
  70. 70.
    70. A. H. Conney, Y. R. Lou, J. G. Xie, T. Osawa, H. L. Newmark, Y. Liu, R. L. Chang, and M. Huang, Some perspectives on dietary inhibition of carcinogenesis: Studies with curcumin and tea. Proc Soc Exp Biol Med 216(2), 234–245 (1997).PubMedGoogle Scholar
  71. 71.
    71. J. K. Lin and C.A. Shih, Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by TPA in NIH 3T3 cells. Carcinogenesis 15, 1717–1721 (1994).PubMedCrossRefGoogle Scholar
  72. 72.
    72. R. A. Haystead, A. T. Sim, and D. Carling, Effects of the tumor promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337, 78–81 (1989).PubMedCrossRefGoogle Scholar
  73. 73.
    73. A. H. Conney, Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The Seventh Dewitt Goodman Lecture. Cancer Res 63, 7005–7031 (2003).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jen-Kun Lin

There are no affiliations available

Personalised recommendations