Fluorescence quenching refers to any process that decreases the fluorescence intensity of a sample. A variety of molecular interactions can result in quenching. These include excited-state reactions, molecular rearrangements, energy transfer, ground-state complex formation, and colli-sional quenching. In this chapter we will be concerned primarily with quenching resulting from collisional encounters between the fluorophore and quencher, which is called collisional or dynamic quenching. We will also discuss static quenching, which can be a valuable source of information about binding between the fluorescent sample and the quencher. Static quenching can also be a complicating factor in the data analysis. In addition to the processes described above, apparent quenching can occur due to the optical properties of the sample. High optical densities or turbidity can result in decreased fluorescence intensities. This trivial type of quenching contains little molecular information. Throughout this chapter we will assume that such trivial effects are not the cause of the decreases in fluorescence intensity.

Fluorescence quenching has been widely studied both as a fundamental phenomenon, and as a source of information about biochemical systems. These biochemical applications of quenching are due to the molecular interactions that result in quenching. Both static and dynamic quenching require molecular contact between the fluorophore and quencher. In the case of collisional quenching, the quencher must diffuse to the fluorophore during the lifetime of the excited state. Upon contact, the fluorophore returns to the ground state, without emission of a photon. In general, quenching occurs without any permanent change in the molecules, that is, without a photochemical reaction. In static quenching a complex is formed between the fluo-rophore and the quencher, and this complex is nonfluores-cent. For either static or dynamic quenching to occur the fluorophore and quencher must be in contact. The requirement of molecular contact for quenching results in the numerous applications of quenching. For example, quenching measurements can reveal the accessibility of fluo-rophores to quenchers. Consider a fluorophore bound either to a protein or a membrane. If the protein or membrane is impermeable to the quencher, and the fluorophore is located in the interior of the macromolecule, then neither colli-sional nor static quenching can occur. For this reason quenching studies can be used to reveal the localization of fluorophores in proteins and membranes, and their permeabilities to quenchers. Additionally, the rate of collisional quenching can be used to determine the diffusion coefficient of the quencher.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kautsky H, 1939. Quenching of luminescence by oxygen. Trans Faraday Soc 35:216–219.CrossRefGoogle Scholar
  2. 2.
    Knibbe H, Rehm D, Weller A. 1968. Intermediates and kinetics of fluorescence quenching by electron transfer. Ber Bunsenges Phys Chem 72:257–263.Google Scholar
  3. 3.
    Kasha M. 1952. Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching: a visual demonstration of the perturbation. J Chem Phys 20:71–74.CrossRefGoogle Scholar
  4. 4.
    Steiner RF, Kirby EP. 1969. The interaction of the ground and excited states of indole derivatives with electron scavengers. J Phys Chem 73:4130–4135.CrossRefGoogle Scholar
  5. 5.
    Eftink MR, Ghiron C. 1981. Fluorescence quenching studies with proteins. Anal Biochem 114:199–227.CrossRefGoogle Scholar
  6. 6.
    Eftink MR. 1991. Fluorescence quenching reactions: probing biological macromolecular structures. In Biophysical and biochemical aspects of fluorescence spectroscopy, pp. 1–41. Ed TG Dewey. Plenum Press, New York.Google Scholar
  7. 7.
    Eftink MR. 1991. Fluorescence quenching: theory and applications. In Topics in fluorescence spectroscopy, Vol. 2: Principles, pp. 53–126. Ed JR Lakowicz. Plenum Press, New York.CrossRefGoogle Scholar
  8. 8.
    Davis GA. 1973. Quenching of aromatic hydrocarbons by alkylpyri-dinium halides. JCS Chem Comm, 728–729.Google Scholar
  9. 9.
    Shinitzky M, Rivnay B. 1977. Degree of exposure of membrane proteins determined by fluorescence quenching. Biochemistry 16:982–986.CrossRefGoogle Scholar
  10. 10.
    Spencer RD, Weber G. 1972. Thermodynamics and kinetics of the intramolecular complex in flavin-adenine dinucleotide. In Structure and function of oxidation reduction enzymes, pp. 393–399. Ed A Akeson, A Ehrenberg. Pergamon Press, New York.Google Scholar
  11. 11.
    Scott TG, Spencer RD, Leonard NJ, Weber G. 1970. Emission properties of NADH: studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models. J Am Chem Soc 92:687–695.CrossRefGoogle Scholar
  12. 12.
    Ware WR. 1962. Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. J Phys Chem 66:455–458.CrossRefGoogle Scholar
  13. 13.
    Othmer DF, Thakar MS. 1953. Correlating diffusion coefficients in liquids. Ind Eng Chem Res 45:589–593.CrossRefGoogle Scholar
  14. 14.
    Lakowicz JR, Weber G. 1973. Quenching of fluorescence by oxygen: a probe for structural fluctuation in macromolecule. Biochemistry 12:4161–4170.CrossRefGoogle Scholar
  15. 15.
    Eftink MR, Ghiron CA. 1977. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16:5546–5551.CrossRefGoogle Scholar
  16. 16.
    Johnson DA, Yguerabide J. 1985. Solute accessibility to N’-fluores-cein isothiocyanate-lysine-23: cobra α-toxin bound to the acetyl-choline receptor. Biophys J 48:949–955.CrossRefGoogle Scholar
  17. 17.
    Kubota Y, Nakamura H, Morishita M, Fujisaki Y. 1978. Interaction of 9-aminoacridine with 7-methylguanosine and 1,N6-ethenoadenosine monophosphate. Photochem Photobiol 27:479–481.CrossRefGoogle Scholar
  18. 18.
    Kubota Y, Motoda Y, Shigemune Y, Fujisaki Y. 1979. Fluorescence quenching of 10-methylacridinium chloride by nucleotides. Photochem Photobiol 29:1099–1106.CrossRefGoogle Scholar
  19. 19.
    Seidel CAM, Schulz A, Sauer MHM. 1996. Nucleobase-specific quenching of fluorescent dyes, 1: nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553.CrossRefGoogle Scholar
  20. 20.
    Eftink MR, Ghiron CA. 1976. Fluorescence quenching of indole and model micelle systems. J Phys Chem 80:486–493.CrossRefGoogle Scholar
  21. 21.
    Casali E, Petra PH, Ross JBA. 1990. Fluorescence investigation of the sex steroid binding protein of rabbit serum: steroid binding and subunit dissociation. Biochemistry 29:9334–9343.CrossRefGoogle Scholar
  22. 22.
    Frank IM, Vavilov SI. 1931. Über die wirkungssphäre der aus-löschuns-vargänge in den flureszierenden flussig-keiten. Z Phys 69:100–110.CrossRefGoogle Scholar
  23. 23.
    Maniara G, Vanderkooi JM, Bloomgarden DC, Koloczek H. 1988. Phosphorescence from 2-(p-toluidinyl)naphthalene-6-sulfonate and 1-anilinonaphthalene-8-sulfonate, commonly used fluorescence probes of biological structures. Photochem Photobiol 47(2): 207–208.CrossRefGoogle Scholar
  24. 24.
    Kim H, Crouch SR, Zabik MJ. 1989. Room-temperature phosphorescence of compounds in mixed organized media: synthetic enzyme model-surfactant system. Anal Chem 61:2475–2478.CrossRefGoogle Scholar
  25. 25.
    Encinas MV, Lissi EA, Rufs AM. 1993. Inclusion and fluorescence quenching of 2,3-dimethylnaphthalene in β-cyclodextrin cavities. Photochem Photobiol 57(4):603–608.CrossRefGoogle Scholar
  26. 26.
    Turro NJ, Bolt JD, Kuroda Y, Tabushi I. 1982. A study of the kinetics of inclusion of halonaphthalenes with β-cyclodextrin via time correlated phosphorescence. Photochem Photobiol 35:69–72.CrossRefGoogle Scholar
  27. 27.
    Waka Y, Hamamoto K, Mataga N. 1980. Heteroexcimer systems in aqueous micellar solutions. Photochem Photobiol 32:27–35.CrossRefGoogle Scholar
  28. 28.
    Atherton SJ, Beaumont PC. 1986. Quenching of the fluorescence of DNA-intercalated ethidium bromide by some transition metal ions. J Phys Chem 90:2252–2259.CrossRefGoogle Scholar
  29. 29.
    Pasternack RF, Caccam M, Keogh B, Stephenson TA, Williams AP, Gibbs EJ. 1991. Long-range fluorescence quenching of ethidium ion by cationic porphyrins in the presence of DNA. J Am Chem Soc 113:6835–6840.CrossRefGoogle Scholar
  30. 30.
    Poulos AT, Kuzmin V, Geacintov NE. 1982. Probing the microenvironment of benzo[a]pyrene diol epoxide-DNA adducts by triplet excited state quenching methods. J Biochem Biophys Methods 6:269–281.CrossRefGoogle Scholar
  31. 31.
    Zinger D, Geacintov NF. 1988. Acrylamide and molecular oxygen fluorescence quenching as a probe of solvent-accessibility of aromatic fluorophores complexed with DNA in relation to their conformations: coronene-DNA and other complexes. Photochem Photobiol 47:181–188.CrossRefGoogle Scholar
  32. 32.
    Suh D, Chaires JB. 1995. Criteria for the mode of binding of DNA binding agents. Bioorgan Med Chem 3(6):723–728.CrossRefGoogle Scholar
  33. 33.
    Ando T, Asai H. 1980. Charge effects on the dynamic quenching of fluorescence of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide. J Biochem 88:255–264.Google Scholar
  34. 34.
    Ando T, Fujisaki H, Asai H. 1980. Electric potential at regions near the two specific thiols of heavy meromyosin determined by the fluorescence quenching technique. J Biochem 88:265–276.Google Scholar
  35. 35.
    Miyata H, Asai H. 1981. Amphoteric charge distribution at the enzymatic site of 1,N6-ethenoadenosine triphosphate-binding heavy meromyosin determined by dynamic fluorescence quenching. J Biochem 90:133–139.Google Scholar
  36. 36.
    Midoux P, Wahl P, Auchet J-C, Monsigny M. 1984. Fluorescence quenching of tryptophan by trifluoroacetamide. Biochim Biophys Acta 801:16–25.Google Scholar
  37. 37.
    Lehrer SS. 1971. Solute perturbation of protein fluorescence: the quenching of the tryptophan fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263.CrossRefGoogle Scholar
  38. 38.
    Kao S, Asanov AN, Oldham PB. 1998. A comparison of fluorescence inner-filter effects for different cell configurations. Instrum Sci Technol 26(4):375–387.CrossRefGoogle Scholar
  39. 39.
    Fanget B, Devos O. 2003. Correction of inner filter effect in mirror coating cells for trace level fluorescence measurements. Anal Chem 75:2790–2795.CrossRefGoogle Scholar
  40. 40.
    Eftink MR, Selvidge LA. 1982. Fluorescence quenching of liver alcohol dehydrogenase by acrylamide. Biochemistry 21:117–125.CrossRefGoogle Scholar
  41. 41.
    Eftink M, Hagaman KA. 1986. Fluorescence lifetime and anisotropy studies with liver alcohol dehydrogenase and its complexes. Biochemistry 25:6631–6637.CrossRefGoogle Scholar
  42. 42.
    Xing D, Dorr R, Cunningham RP, Scholes CP. 1995. Endonuclease III interactions with DNA substrates, 2: the DNA repair enzyme endonuclease III binds differently to intact DNA and to apyrimi-dinic/apurinic DNA substrates as shown by tryptophan fluorescence quenching. Biochemistry 34:2537–2544.CrossRefGoogle Scholar
  43. 43.
    Sontag B, Reboud A-M, Divita G, Di Pietro A, Guillot D, Reboud JP. 1993. Intrinsic tryptophan fluorescence of rat liver elongation factor eEF-2 to monitor the interaction with guanylic and adenylic nucleotides and related conformational changes. Biochemistry 32:1976–1980.CrossRefGoogle Scholar
  44. 44.
    Wasylewski M, Malecki J, Wasylewski Z. 1995. Fluorescence study of Escherichia coli cyclic AMP receptor protein. J Protein Chem 14(5):299–308.CrossRefGoogle Scholar
  45. 45.
    Hannemann F, Bera AK, Fischer B, Lisurek M, Teuchner K, Bernhardt R. 2002. Unfolding and conformational studies on bovine adrenodoxin probed by engineered intrinsic tryptophan fluorescence. Biochemistry 41:11008–11016.CrossRefGoogle Scholar
  46. 46.
    Soulages JL, Arrese EL. 2000. Fluorescence spectroscopy of single tryptophan mutants of apolipophorin-III in discoidal lipoproteins of dimyristoylphosphatidylcholine. Biochemistry 39:10574–10580.CrossRefGoogle Scholar
  47. 47.
    Raja SM, Rawat SS, Chattopadhyay A, Lala AK. 1999. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J 76:1469–1479.CrossRefGoogle Scholar
  48. 48.
    Weber J, Senior AE. 2000. Features of F1-ATPase catalytic and non-catalytic sites revealed by fluorescence lifetimes and acrylamide quenching of specifically inserted tryptophan residues. Biochemistry 39:5287–5294.CrossRefGoogle Scholar
  49. 49.
    Wells TA, Nakazawa M, Manabe K, Song P-S. 1994. A conforma-tional change associated with the phototransformation of Pisum phy-tochrome A as probed by fluorescence quenching. Biochemistry 33:708–712.CrossRefGoogle Scholar
  50. 50.
    Eftink MR, Zajicek JL, Ghiron CA. 1977. A hydrophobic quencher of protein fluorescence: 2,2,2-trichloroethanol. Biochim Biophys Acta 491:473–481.Google Scholar
  51. 51.
    Blatt E, Husain A, Sawyer WH. 1986. The association of acrylamide with proteins: the interpretation of fluorescence quenching experiments. Biochim Biophys Acta 871:6–13.Google Scholar
  52. 52.
    Eftink MR, Ghiron CA. 1987. Does the fluorescence quencher acry-lamide bind to proteins? Biochim Biophys Acta 916:343–349.Google Scholar
  53. 53.
    Punyiczki M, Norman JA, Rosenberg A. 1993. Interaction of acry-lamide with proteins in the concentration range used for fluorescence quenching studies. Biophys Chem 47:9–19.CrossRefGoogle Scholar
  54. 54.
    Bastyns K, Engelborghs Y. 1992. Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: reversible and irreversible effects. Photochem Photobiol 55:9–16.CrossRefGoogle Scholar
  55. 55.
    Merrill AR, Palmer LR, Szabo AG. 1993. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide: structural characterization of the insertion-competent state. Biochemistry 32:6974–6981.CrossRefGoogle Scholar
  56. 56.
    Lakowicz JR. 1980. Fluorescence spectroscopic investigations of the dynamic properties of proteins, membranes, and nucleic acids. J Biochem Biophys Methods 2:90–119.CrossRefGoogle Scholar
  57. 57.
    Subczynski WK, Hyde JS, Kusumi A. 1989. Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci USA 86:4474–4478.CrossRefGoogle Scholar
  58. 58.
    Fischkoff S, Vanderkooi JM. 1975. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol 65:663–676.CrossRefGoogle Scholar
  59. 59.
    Dumas D, Muller S, Gouin F, Baros F, Viriot M-L, Stoltz J-F. 1997. Membrane fluidity and oxygen diffusion in cholesterol-enriched ery-throcyte membrane. Arch Biochem Biophys 341(1):34–39.CrossRefGoogle Scholar
  60. 60.
    Subczynski WK, Hyde JS, Kusumi A. 1991. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30:8578– 8590.CrossRefGoogle Scholar
  61. 61.
    Caputo GA, London E. 2003. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic α-helix locations within membranes. Biochemistry 42:3265–3274.CrossRefGoogle Scholar
  62. 62.
    Lala AK, Koppaka V. 1992. Fluorenyl fatty acids as fluorescent probes for depth-dependent analysis of artificial and natural membranes. Biochemistry 31:5586–5593.CrossRefGoogle Scholar
  63. 63.
    Sassaroli M, Ruonala M, Virtanen J, Vauhkonen M, Somerharju P. 1995. Transversal distribution of acyl-linked pyrene moieties in liq-uid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study. Biochemistry 34:8843–8851.CrossRefGoogle Scholar
  64. 64.
    Ladokhin A, Wang L, Steggles AW, Holloway PW. 1991. Fluorescence study of a mutant cytochrome b 5 with a single trypto-phan in the membrane-binding domain. Biochemistry 30:10200– 10206.CrossRefGoogle Scholar
  65. 65.
    Everett J, Zlotnick A, Tennyson J, Holloway PW. 1986. Fluorescence quenching of cytochrome b 5 in vesicles with an asymmetric transbi-layer distribution of brominated phosphatidylcholine. J Biol Chem 261(15):6725–6729.Google Scholar
  66. 66.
    Gonzalez-Manas JM, Lakey JH, Pattus F. 1992. Brominated phos-pholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry 31:7294–7300.CrossRefGoogle Scholar
  67. 67.
    Silvius JR. 1990. Calcium-induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles: fluorescence studies using carbazole-labeled and brominated phospho-lipids. Biochemistry 29:2930–2938.CrossRefGoogle Scholar
  68. 68.
    Silvius JR. 1992. Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures: evaluation using fluorescent lipid probes and brominated lipid quenchers. Biochemistry 31:3398–3403.CrossRefGoogle Scholar
  69. 69.
    Chattopadhyay A, London E. 1987. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45.CrossRefGoogle Scholar
  70. 70.
    Abrams FS, London E. 1992. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry 31:5312–5322.CrossRefGoogle Scholar
  71. 71.
    Abrams FS, Chattopadhyay A, London E. 1992. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry 31:5322–5327.CrossRefGoogle Scholar
  72. 72.
    Abrams FS, London E. 1993. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32:10826–10831.CrossRefGoogle Scholar
  73. 73.
    Asuncion-Punzalan E, London E. 1995. Control of the depth of molecules within membranes by polar groups: determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching. Biochemistry 34:11460–11466.CrossRefGoogle Scholar
  74. 74.
    Kachel K, Asuncion-Punzalan E, London E. 1995. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry 34:15475–15479.CrossRefGoogle Scholar
  75. 75.
    Ren J, Lew S, Wang Z, London E. 1997. Transmembrane orientation of hydrophobic α-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry 36:10213–10220.CrossRefGoogle Scholar
  76. 76.
    Ladokhin AS. 1999. Analysis of protein and peptide penetration into membranes by depth-dependent fluorescence quenching: theoretical considerations. Biophys J 76:946–955.CrossRefGoogle Scholar
  77. 77.
    Ladokhin AS. 1999. Evaluation of lipid exposure of tryptophan residues in membrane peptides and proteins. Anal Biochem 276:65–71.CrossRefGoogle Scholar
  78. 78.
    Ladokhin AS. 1997. Distribution analysis of depth-dependent fluorescence quenching in membranes: a practical guide. Methods Enzymol 278:462–473.CrossRefGoogle Scholar
  79. 79.
    London E, Ladokhin AS. 2002. Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching. Current Top Membr 52:89–111.CrossRefGoogle Scholar
  80. 80.
    London E, Feigenson GW. 1981. Fluorescence quenching in model membranes, 1: characterization of quenching caused by a spinlabeled phospholipid. Biochemistry 20:1932–1938.CrossRefGoogle Scholar
  81. 81.
    London E, Feigenson GW. 1981. Fluorescence quenching in model membranes, 2: determination of the local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum. Biochemistry 20:1939–1948.CrossRefGoogle Scholar
  82. 82.
    East JM, Lee AG. 1982. Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. Biochemistry 21:4144–4151.CrossRefGoogle Scholar
  83. 83.
    Caffrey M, Feigenson GW. 1981. Fluorescence quenching in model membranes, 3: relationship between calcium adenosinetriphos-phatase enzyme activity and the affinity of the protein for phos-phatidylcholines with different acyl chain characteristics. Biochemistry 20:1949–1961.CrossRefGoogle Scholar
  84. 84.
    Markello T, Zlotnick A, Everett J, Tennyson J, Holloway PW. 1985. Determination of the topography of cytochrome b 5 in lipid vesicles by fluorescence quenching. Biochemistry 24:2895–2901.CrossRefGoogle Scholar
  85. 85.
    Froud RJ, East JM, Rooney EK, Lee AG. 1986. Binding of long-chain alkyl derivatives to lipid bilayers and to (Ca2+–Mg2+)-ATPase. Biochemistry 25:7535–7544.CrossRefGoogle Scholar
  86. 86.
    Yeager MD, Feigenson GW. 1990. Fluorescence quenching in model membranes: phospholipid acyl chain distributions around small flu-orophores. Biochemistry 29:4380–4392.CrossRefGoogle Scholar
  87. 87.
    Lakowicz JR, Hogen D, Omann G. 1977. Diffusion and partitioning of a pesticide, lindane, into phosphatidylcholine bilayers: a new fluorescence quenching method to study chlorinated hydrocarbon-membrane interactions. Biochim Biophys Acta 471:401–411.CrossRefGoogle Scholar
  88. 88.
    Omann GM, Glaser M. 1985. Dynamic quenchers in fluorescently labeled membranes. Biophys J 47:623–627.CrossRefGoogle Scholar
  89. 89.
    Fato R, Battino M, Esposti MD, Castelli GP, Lenaz G. 1986. Determination of partition of lateral diffusion coefficients of ubiquinones by fluorescence quenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes. Biochemistry 25:3378–3390.CrossRefGoogle Scholar
  90. 90.
    Vermeir M, Boens N. 1992. Partitioning of (α)-5,6-dihydro-6-phenyl-2-n-alkyl-imidazo-[2,1-b]thiazoles into large unilamellar liposomes: a steady-state fluorescence quenching study. Biochim Biophys Acta 1104:63–72.CrossRefGoogle Scholar
  91. 91.
    Lakos Z, Szarka A, Somogyi B. 1995. Fluorescence quenching in membrane phase. Biochem Biophys Res Commun 208(1):111–117.CrossRefGoogle Scholar
  92. 92.
    Prieto MJE, Castanho M, Coutinho A, Ortiz A, Aranda FJ, Gomez-Fernandez JC. 1994. Fluorescence study of a derivatized diacylglyc-erol incorporated in model membranes. Chem Phys Lipids 69:75–85.CrossRefGoogle Scholar
  93. 93.
    Ranganathan R, Vautier-Giongo C, Bales BL. 2003. Toward a hydro-dynamic description of biomolecular collisions in micelles: an experimental test of the effect of the nature of the quencher on the fluorescence quenching of pyrene in SDS micelles and in bulk liquids. J Phys Chem B 107:10312–10318.CrossRefGoogle Scholar
  94. 94.
    Infelta P P. 1979. Fluorescence quenching in micellar solutions and its application to the determination of aggregation numbers. Chem Phys Lett 61(1):88–91.CrossRefGoogle Scholar
  95. 95.
    Waka Y, Hamamoto K, Mataga N. 1980. Heteroexcimer systems in aqueous micellar solutions. Photochem Photobiol 32:27–35.CrossRefGoogle Scholar
  96. 96.
    Tachiya M. 1982. Kinetics of quenching of luminescent probes in micellar systems, II. J Chem Phys 76(1):343–348.CrossRefGoogle Scholar
  97. 97.
    Naqvi KR. 1974. Diffusion-controlled reactions in two-dimensional fluids: discussion of measurements of lateral diffusion of lipids in biological membranes. Chem Phys Lett 28(2):280–284.CrossRefGoogle Scholar
  98. 98.
    Owen CS. 1975. Two-dimensional diffusion theory: cylindrical diffusion model applied to fluorescence quenching. J Chem Phys 62(8):3204–3207.CrossRefGoogle Scholar
  99. 99.
    Medhage B, Almgren M. 1992. Diffusion-influenced fluorescence quenching: dynamics in one to three dimensions. J Fluoresc 2(1):7–21.CrossRefGoogle Scholar
  100. 100.
    Caruso F, Grieser F, Thistlethwaite PJ. 1993. Lateral diffusion of amphiphiles in fatty acid monolayers at the air–water interface: a steady-state and time-resolved fluorescence quenching study. Langmuir 9:3142–3148.CrossRefGoogle Scholar
  101. 101.
    Blackwell MF, Gounaris K, Zara SJ, Barber J. 1987. A method for estimating lateral diffusion coefficients in membranes from steady-state fluorescence quenching studies. Biophys J 51:735–744.CrossRefGoogle Scholar
  102. 102.
    Caruso F, Grieser F, Thistlethwaite PJ, Almgren M. 1993. Two-dimensional diffusion of amphiphiles in phospholipid monolayers at the air–water interface. Biophys J 65:2493–2503.CrossRefGoogle Scholar
  103. 103.
    Wasylewski Z, Kaszycki P, Guz A, Stryjewski W. 1988. Fluorescence quenching resolved spectra of fluorophores in mixtures and micellar solutions. Eur J Biochem 178:471–476.CrossRefGoogle Scholar
  104. 104.
    Wasylewski Z, Koloczek H, Wasniowska A. 1988. Fluorescence quenching resolved spectroscopy of proteins. Eur J Biochem 172:719–724.CrossRefGoogle Scholar
  105. 105.
    Laws WR, Shore JD. 1978. The mechanism of quenching of liver alcohol dehydrogenase fluorescence due to ternary complex formation. J Biol Chem 23:8593–8597.Google Scholar
  106. 106.
    Stryjewski W, Wasylewski Z. 1986. The resolution of heterogeneous fluorescence of multitryptophan-containing proteins studied by a fluorescence quenching method. Eur J Biochem 158:547–553.CrossRefGoogle Scholar
  107. 107.
    Blicharska Z, Wasylewski Z. 1995. Fluorescence quenching studies of Trp repressor using single-tryptophan mutants. J Protein Chem 14(8):739–746.CrossRefGoogle Scholar
  108. 108.
    Wasylewski Z, Kaszycki P, Drwiega M. 1996. A fluorescence study of Tn10-encoded tet repressor. J Protein Chem 15(1):45–52.CrossRefGoogle Scholar
  109. 109.
    Hansen D, Altschmied L, Hillen W. 1987. Engineered tet repressor mutants with single tryptophan residues as fluorescent probes. J Biol Chem 29:14030–14035.Google Scholar
  110. 110.
    Lange R, Anzenbacher P, Müller S, Maurin L, Balny C. 1994. Interaction of tryptophan residues of cytochrome P45scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide. Eur J Biochem 226:963–970.CrossRefGoogle Scholar
  111. 111.
    Johansson JS, Eckenhoff RG, Dutton L. 1995. Binding of halothane to serum albumin demonstrated using tryptophan fluorescence. Anesthesiology 83:316–324.CrossRefGoogle Scholar
  112. 112.
    Johansson JS. 1997. Binding of the volatile anesthetic chloroform to albumin demonstrated using tryptophan fluorescence quenching. J Biol Chem 272:17961–17965.CrossRefGoogle Scholar
  113. 113.
    Gonzalez-Jimenez J, Frutos G, Cayre I. 1992. Fluorescence quenching of human serum albumin by xanthines. Biochem Pharmacol 44(4):824–826.CrossRefGoogle Scholar
  114. 114.
    Johansson JS, Scharf D, Davies LA, Reddy KS, Eckenhoff RG. 2000. A designed four-α-helix bundle that binds the volatile general anesthetic halothane with high affinity. Biophys J 78:982–993.CrossRefGoogle Scholar
  115. 115.
    Johansson JS, Solt K, Reddy KS. 2003. Binding of the general anesthetics chloroform and 2,2,2-trichloroethanol to the hydrophobic core of a four-α-helix bundle protein. Photochem Photobiol 77(1):89–95.CrossRefGoogle Scholar
  116. 116.
    Geddes CG. 2001. Optical halide sensing using fluorescence quenching: theory, simulations and applications—a review. Meas Sci Technol 12:R53–R88.CrossRefGoogle Scholar
  117. 117.
    Geddes CG. 2000. Optical thin film polymeric sensors for the determination of aqueous chloride, bromide and iodide ions at high pH, based on the quenching of fluorescence of two acridinium dyes. Dyes Pigm 45:243–251.CrossRefGoogle Scholar
  118. 118.
    Geddes CG, Apperson K, Birch DJS. 2000. New fluorescent quino-linium dyes—applications in nanometre particle sizing. Dyes Pigm 44:69–74.CrossRefGoogle Scholar
  119. 119.
    Huber C, Werner T, Krause C, Wolfbeis OS. 1999. Novel chloride-selective optode based on polymer-stabilised emulsions doped with a lipophilic fluorescent polarity-sensitive dye. Analyst 124:1617–1622.CrossRefGoogle Scholar
  120. 120.
    Huber C, Fähnrich K, Krause C, Werner T. 1999. Synthesis and characterization of new chloride-sensitive indicator dyes based on dynamic fluorescence quenching. J Photochem Photobiol A: Chem 128:111–120.CrossRefGoogle Scholar
  121. 121.
    Geddes CG, Apperson K, Karolin J, Birch JDS. 2001. Chloride-sensitive fluorescent indicators. Anal Biochem 293:60–66.CrossRefGoogle Scholar
  122. 122.
    Geddes CG. 2001. Halide sensing using the SPQ molecule. Sens Actuators B 72:188–195.CrossRefGoogle Scholar
  123. 123.
    Jayaraman S, Verkman AS. 2000. Quenching mechanism of quino-linium-type chloride-sensitive fluorescent indicators. Biophys Chem 85:45–57.CrossRefGoogle Scholar
  124. 124.
    Rehm D, Weller A. 1970. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259–271.Google Scholar
  125. 125.
    Jayaraman S, Song Y, Vetrivel L, Shankar L, Verkman AS. 2001. Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J Clin Invest 107(3):317–324.CrossRefGoogle Scholar
  126. 126.
    Inglefield JR, Schwartz-Bloom RD. 1999. Fluorescence imaging of changes in intracellular chloride in living brain slices. Methods: A Companion to Methods in Enzymology 18:197–203.CrossRefGoogle Scholar
  127. 127.
    Sonawane ND, Thiagarajah JR, Verkman AS. 2002. Chloride concentration in endosomes measured using a ratioable fluorescent Clindicator. J Biol Chem 277(7):5506–5513.CrossRefGoogle Scholar
  128. 128.
    Jayaraman S, Teitler L, Skalski B, Verkman AS. 1999. Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells. Am J Physiol 277:C1008– C1018.Google Scholar
  129. 129.
    Jayaraman S, Biwersi J, Verkman AS. 1999. Synthesis and characterization of dual-wavelength Cl sensitive fluorescent indicators for ratio imaging. Am J Physiol 276:C747–C757.Google Scholar
  130. 130.
    Zhang J, Campbell RE, Ting AY, Tsien R. 2002. Creating new fluorescent probes for cell biology. Nature Rev Mol Cell Biol 3(12): 906–918.CrossRefGoogle Scholar
  131. 131.
    Zimmer M. 2002. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781.CrossRefGoogle Scholar
  132. 132.
    Wachter RM, Yarbrough D, Kallio K, Remington SJ. 2000. Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. J Mol Biol 301:157–171.CrossRefGoogle Scholar
  133. 133.
    Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS. 2000. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275(9):6047–6050.CrossRefGoogle Scholar
  134. 134.
    Rakicioglu Y, Young MM, Schulman SG. 1998. Limitations of quenching as a method of fluorometric analysis of non-fluorescent analytes. Anal Chim Acta 359:269–273.CrossRefGoogle Scholar
  135. 135.
    Chen L, McBranch DW, Wang H-L, Helgeson R, Wudi F, Whitten DG. 1999. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci USA 96(22):12287–12292.CrossRefGoogle Scholar
  136. 136.
    Yamane A. 2002. MagiProbe: a novel fluorescence quenching-based oligonucleotide probe carrying a fluorophore and an intercalator. Nucleic Acids Res 30(19):e97.CrossRefGoogle Scholar
  137. 137.
    Sauer M, Drexhage KH, Lieberwirth U, Müller R, Nord S, Zander C. 1998. Dynamics of the electron transfer reaction between an oxazine dye and DNA oligonucleotides monitored on the single-molecule level. Chem Phys Lett 284:153–163CrossRefGoogle Scholar
  138. 138.
    Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R. 2001. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci 17:155–160.CrossRefGoogle Scholar
  139. 139.
    Heinlein T, Knemeyer J-P, Piestert O, Sauer M. 2003. Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J Phys Chem 107:7957–7964.Google Scholar
  140. 140.
    Knemeyer J-P, Marmé N, Sauer M. 2000. Probes for detection of specific DNA sequences at the single-molecule level. Anal Chem 72:3717–3724.CrossRefGoogle Scholar
  141. 141.
    Walter NG, Burke JM. 1997. Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA 3:392–404.Google Scholar
  142. 142.
    Jezewska MJ, Bujalowski W. 1997. Quantitative analysis of ligand-macromolecule interactions using differential dynamic quenching of the ligand fluorescence to monitor the binding. Biophys Chem 64:253–269.CrossRefGoogle Scholar
  143. 143.
    Thomas KG, Kamat P V. 2003. Chromophore-functionalized gold nanoparticles. Acc Chem Res 36(12):888–898.CrossRefGoogle Scholar
  144. 144.
    Kerker M. 1985. The optics of colloidal silver: something old and something new. J Colloid Interface Sci 105(2):297–314.CrossRefGoogle Scholar
  145. 145.
    Link S, El-Sayed M. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nan-odots and nanorods. J Phys Chem B 103:8410–8426.CrossRefGoogle Scholar
  146. 146.
    Lakowicz JR. 2001. Radiative decay engineering: Biophysical and biomedical applications. Anal Biochem 298:1–24.CrossRefGoogle Scholar
  147. 147.
    Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR. 2004. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticles probes. Nature Biotechnol 22:883–887.CrossRefGoogle Scholar
  148. 148.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. 1998. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964.CrossRefGoogle Scholar
  149. 149.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. 2000. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077.CrossRefGoogle Scholar
  150. 150.
    Taton TA, Mirkin CA, Letsinger RL. 2000. Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760.CrossRefGoogle Scholar
  151. 151.
    Dubertret B, Calame M, Libchaber AJ. 2001. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol 19:365–370.CrossRefGoogle Scholar
  152. 152.
    Maxwell DJ, Taylor JR, Nie S. 2002. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612.CrossRefGoogle Scholar
  153. 153.
    Du H, Disney MD, Miller BL, Krauss TD. 2003. Hybridization-based unquenching of DNA hairpins on Au surfaces: prototypical “molecular beacon” biosensors. J Am Chem Soc 125:4012–4013.CrossRefGoogle Scholar
  154. 154.
    Eftink MR, Jia Y-W, Graves DE, Wiczk W, Gryczynski I, Lakowicz JR. 1989. Intramolecular fluorescence quenching in covalent acry-lamide-indole adducts. Photochem Photobiol 49(6):725–729.CrossRefGoogle Scholar
  155. 155.
    Green SA, Simpson DJ, Zhou G, Ho PS, Blough NV. 1990. Intramolecular quenching of excited singlet states by stable nitroxyl radicals. J Am Chem Soc 112:7337–7346.CrossRefGoogle Scholar
  156. 156.
    Wang X, Nau WM. 2004. Kinetics of end-to-end collision in short single-stranded nucleic acids. J Am Chem Soc 126:808–813.CrossRefGoogle Scholar
  157. 157.
    van den Berg PAW, van Hoek A, Walentas CD, Perham RN, Visser AJWG. 1998. Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. Biophys J 74:2046–2058.CrossRefGoogle Scholar
  158. 158.
    Yang H, Luo G, Karnchanaphanurach P, Louie T-M, Rech I, Cova S, Xun L, Xie XS. 2003. Protein conformational dynamics probed by single-molecule electron transfer. Science 302:262–266.CrossRefGoogle Scholar
  159. 159.
    159. Kavarnos GJ. 1993. Fundamentals of photoinduced electron transfer. VCH Publishers, New York.Google Scholar
  160. 160.
    Pina F, Bernando MA, García-España E. 2000. Fluorescent chemosensors containing polyamine receptors. Eur J Inorg Chem 2143–2157.Google Scholar
  161. 161.
    de Silva AP, Fox DB, Moody TS, Weir SM. 2001. The development of molecular fluorescent switches. Trends Biotechnol 19(1):29–34.CrossRefGoogle Scholar
  162. 162.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE. 1997. Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566.CrossRefGoogle Scholar
  163. 163.
    Czarnik AW. 1994. Fluorescent chemosensors of ion and molecule recognition. Interfacial Des Chem Sens 561:314–323.CrossRefGoogle Scholar
  164. 164.
    Strambini GB, Gonnelli M. 1995. Tryptophan phosphorescence in fluid solution. J Am Chem Soc 117:7646–7651.CrossRefGoogle Scholar
  165. 165.
    Englander SW, Calhoun DB, Englander JJ. 1987. Biochemistry without oxygen. Anal Biochem 161:300–306.CrossRefGoogle Scholar
  166. 166.
    Zhang HR, Zhang J, Wei YS, Jin EJ, Liu CS. 1997. Study of new facile deoxygenation methods in cyclodextrin induced room temperature phosphorescence. Anal Chim Acta 357:119–125.CrossRefGoogle Scholar
  167. 167.
    Cioni P, Puntoni A, Strambini GB. 1993. Tryptophan phosphorescence as a monitor of the solution structure of phosphoglycerate kinase from yeast. Biophys Chem 46:47–55.CrossRefGoogle Scholar
  168. 168.
    Gonnelli M, Strambini GB. 1993. Glycerol effects on protein flexibility: a tryptophan phosphorescence study. Biophys J 65:131–137.CrossRefGoogle Scholar
  169. 169.
    Strambini GB, Gabellieri E. 1996. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J 70:971–976.CrossRefGoogle Scholar
  170. 170.
    Vanderkooi JM, Calhoun DB, Englander SW. 1987. On the prevalence of room-temperature protein phosphorescence. Science 236:568–569.CrossRefGoogle Scholar
  171. 171.
    Turro NJ, Cox GS, Li X. 1983. Remarkable inhibition of oxygen quenching of phosphorescence by complexation with cyclodextrins. Photochem Photobiol 37(2):149–153.CrossRefGoogle Scholar
  172. 172.
    Gonnelli M, Strambini GB. 1995. Phosphorescence lifetime of tryp-tophan in proteins. Biochemistry 34:13847–13857.CrossRefGoogle Scholar
  173. 173.
    Wright WW, Owen CS, Vanderkooi JM. 1992. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan. Biochemistry 31:6538–6544.CrossRefGoogle Scholar
  174. 174.
    Strambini GB. 1987. Quenching of alkaline phosphatase phosphorescence by O2 and NO. Biophys J 52:23–28.CrossRefGoogle Scholar
  175. 175.
    Courtesy of Dr. Ari Gafni, University of Michigan.Google Scholar
  176. 176.
    Boaz H, Rollefson GK. 1950. The quenching of fluorescence: deviations from the Stern-Volmer law. J Am Chem Soc 72:3425–3443.CrossRefGoogle Scholar
  177. 177.
    Harrison M, Powell B, Finbow ME, Findlay JBC. 2000. Identification of lipid-accessible sites on the Nephrops 16-kDa pro-teolipid incorporated into a hybrid vacuolar H+-ATPase: site-directed labeling with N-(1-pyrenyl)cyclohexylcarbodiimide and fluorescence quenching analysis. Biochemistry 39:7531–7537.CrossRefGoogle Scholar
  178. 178.
    Moro A, Gatti C, Delorenzi N. 2001. Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. J Agric Food Chem 49:4784–4789.CrossRefGoogle Scholar
  179. 179.
    Galletto R, Bujalowski W. 2002. Kinetics of the E. coli replication factor DnaC protein–nucleotide interactions, II: fluorescence anisotropy and transient, dynamic quenching stopped-flow studies of the reaction intermediates. Biochemistry 41:8921–8934.CrossRefGoogle Scholar
  180. 180.
    Eftink MR, Ghiron CA. 1976. Exposure of tryptophanyl residues in proteins: quantitative determination by fluorescence quenching studies. Biochemistry 15(3):672–680.CrossRefGoogle Scholar
  181. 181.
    Saik VO, Goun AA, Fayer MD. 2004. Photoinduced electron transfer and geminate recombination for photoexcited acceptors in a pure donor solvent. J Chem Phys 120(20):9601–9611.CrossRefGoogle Scholar
  182. 182.
    Schneider S, Stammler W, Bierl R, Jager W. 1994. Ultrafast photoin-duced charge separation and recombination in weakly bound complexes between oxazine dyes and N,N-dimethylaniline. Chem Phys Lett 219:433–439.CrossRefGoogle Scholar
  183. 183.
    Yoshihara K, Yartsev A, Nagasawa Y, Kandori H, Douhal A, Kemnitz K. 1993. Femtosecond intermolecular electron transfer between dyes and electron-donating solvents. Pure Appl Chem 65(8):1671–1675.CrossRefGoogle Scholar
  184. 184.
    Pischel U Abad S, Miranda MA. 2003. Stereoselectove fluorescence quenching by photoinduced electron transfer in naphthalene-amine dyads. Chem Commun 9:1088–1089.CrossRefGoogle Scholar
  185. 185.
    Morandeira A, Fürstenberg A, Gumy JC, Vauthey E. 2003. Fluorescence quenching in electron-donating solvents, 1: influence of the solute-solvent interactions on the dynamics. J Phys Chem 107:5375–5383.Google Scholar
  186. 186.
    Goodpaster JV, McGuffin VL. 2000. Selective fluorescence quenching of polycyclic aromatic hydrocarbons by aliphatic amines. Anal Chem 72:1072–1077.CrossRefGoogle Scholar
  187. 187.
    Bisht PB, Tripathi HB. 1993. Fluorescence quenching of carbazole by triethylamine: exciplex formation in polar and nonpolar solvents. J Luminesc 55:153–158.CrossRefGoogle Scholar
  188. 188.
    Sikaris KA, Sawyer WH. 1982. The interaction of local anaesthetics with synthetic phospholipid bilayers. Biochem Pharmacol 31(16): 2625–2631.CrossRefGoogle Scholar
  189. 189.
    Fernandez MS, Calderon E. 1990. The local anaesthetic tetracaine as a quencher of perylene fluorescence in micelles. J Photochem Photobiol B: Biol 7:75–86.CrossRefGoogle Scholar
  190. 190.
    Hutterer R, Krämer K, Schneider FW, Hof M. 1997. The localization of the local anesthetic tetracaine in phospholipid vesicles: a fluorescence quenching and resonance energy transfer study. Chem Phys Lipids 90:11–23.CrossRefGoogle Scholar
  191. 191.
    Winkler MH. 1969. A fluorescence quenching technique for the investigation of the configurations of binding sites for small molecules. Biochemistry 8:2586–2590.CrossRefGoogle Scholar
  192. 192.
    Berlman IB. 1973. Empirical study of heavy-atom collisional quenching of the fluorescence state of aromatic compounds in solution. J Phys Chem 77(4):562–567.CrossRefGoogle Scholar
  193. 193.
    Groenzin H, Mullins OC, Mullins WW. 1999. Resonant fluorescence quenching of aromatic hydrocarbons by carbon disulfide. J Phys Chem A 103:1504–1508.CrossRefGoogle Scholar
  194. 194.
    James DR, Ware WR. 1985. Multiexponential fluorescence decay of indole-3-alkanoic acids. J Phys Chem 89:5450–5458.CrossRefGoogle Scholar
  195. 195.
    Fonseca MM, Scofano HM, Carvalho-Alves PC, Barrabin H, Mignaco JA. 2002. Conformational changes of the nucleotide site of the plasma membrane Ca2+-ATPase probed by fluorescence quenching. Biochemistry 41:7483–7489.CrossRefGoogle Scholar
  196. 196.
    Daems D, Boens N, Schryver FC. 1989. Fluorescence quenching with lindane in small unilamellar L,α-dimyristoylphosphatidyl-choline vesicles. Eur Biophys J 17:25–36.CrossRefGoogle Scholar
  197. 197.
    Namiki A, Nakashima N, Yoshihara K. 1979. Fluorescence quenching due to the electron transfer: indole-chloromethanes in rigid ethanol glass. J Chem Phys 71(2):925–930.CrossRefGoogle Scholar
  198. 198.
    Johnson GE, 1980. Fluorescence quenching of carbazoles. J Phys Chem 84:2940–2946.CrossRefGoogle Scholar
  199. 199.
    Jones OT, Lee AG. 1985. Interactions of hexachlorocyclohexanes with lipid bilayers. Biochim Biophys Acta 812:731–739.CrossRefGoogle Scholar
  200. 200.
    Chao AC, Dix JA, Sellers MC, Verkman AS. 1989. Fluorescence measurement of chloride transport in monolayer cultured cells. Biophys J 56:1071–1081.CrossRefGoogle Scholar
  201. 201.
    Verkman AS. 1990. Development and biological applications of chloride-sensitive fluorescent indicators. Am J Phys 253:C375– C388.Google Scholar
  202. 202.
    Martin A, Narayanaswamy R. 1997. Studies on quenching of fluorescence of reagents in aqueous solution leading to an optical chlorideion sensor. Sens Actuators B 38–39:330–333.CrossRefGoogle Scholar
  203. 203.
    Bigger SW, Watkins PI, Verity B. 2000. Quinine fluorescence quenching at low ionic strength. Int J Chem Kinet 32(8):473–477.CrossRefGoogle Scholar
  204. 204.
    Hariharan C, Vijaysree V, Mishra AK. 1997. Quenching of 2,5-diphenyloxazole (PPO) fluorescence by metal ions. J Luminesc 75:205–211.CrossRefGoogle Scholar
  205. 205.
    Morris SJ, Bradley D, Blumenthal R. 1985. The use of cobalt ions as a collisional quencher to probe surface charge and stability of fluo-rescently labeled bilayer vesicles. Biochem Biophys Acta 818:365–372.CrossRefGoogle Scholar
  206. 206.
    Homan R, Eisenberg M. 1985. A fluorescence quenching technique for the measurement of paramagnetic ion concentrations at the mem-brane/water interface: intrinsic and X537A-mediated cobalt fluxes across lipid bilayer membranes. Biochim Biophys Acta 812:485–492.CrossRefGoogle Scholar
  207. 207.
    Salthammer T, Dreeskamp H, Birch DJS, Imhof RE. 1990. Fluorescence quenching of perylene by Co2+ ions via energy transfer in viscous and non-viscous media. J Photochem Photobiol A: Chem. 55:53–62.CrossRefGoogle Scholar
  208. 208.
    Holmes AS, Birch DJS, Suhling K, Imhof RE, Salthammer T, Dreeskamp H. 1991. Evidence for donor–donor energy transfer in lipid bilayers: perylene fluorescence quenching by Co2+ ions. Chem Phys Lett 186(2,3):189–194.CrossRefGoogle Scholar
  209. 209.
    Birch DJS, Suhling K, Holmes AS, Salthammer T, Imhof RE. 1992. Fluorescence energy transfer to metal ions in lipid bilayers. SPIE 1640:707–718.CrossRefGoogle Scholar
  210. 210.
    Perochon E, Tocanne J-F. 1991. Synthesis and phase properties of phosphatidylcholine labeled with 8-(2-anthroyl)octanoic acid, a sol-vatochromic fluorescent probe. Chem Phys Lipids 58:7–17.CrossRefGoogle Scholar
  211. 211.
    Fucaloro AF, Forster LS, Campbell MK. 1984. Fluorescence quenching of indole by dimethylformamide. Photochem Photobiol 39:503–506.Google Scholar
  212. 212.
    Swadesh JK, Mui PW, Scheraga HA. 1987. Thermodynamics of the quenching of tyrosyl fluorescence by dithiothreitol. Biochemistry 26:5761–5769.CrossRefGoogle Scholar
  213. 213.
    Valentino MR, Boyd MK. 1995. Ether quenching of singlet excited 9-arylxanthyl cations. J Photochem Photobiol 89:7–12.CrossRefGoogle Scholar
  214. 214.
    Medinger T, Wilkinson F. 1965. Mechanism of fluorescence quenching in solution, I: quenching of bromobenzene. Trans Faraday Soc 61:620–630.CrossRefGoogle Scholar
  215. 215.
    Ahmad A, Durocher G. 1981. How hydrogen bonding of carbazole to ethanol affects its fluorescence quenching rate by electron acceptor quencher molecules. Photochem Photobiol 34:573–578.Google Scholar
  216. 216.
    Bowen EJ, Metcalf WS. 1951. The quenching of anthracene fluorescence. Proc Roy Soc London 206A:437–447.Google Scholar
  217. 217.
    Schmidt R, Janssen W, Brauer H-D. 1989. Pressure effect on quenching of perylene fluorescence by halonaphthalenes. J Phys Chem 93:466–468.CrossRefGoogle Scholar
  218. 218.
    Encinas MV, Rubio MA, Lissi E. 1983. Quenching and photobleach-ing of excited polycyclic aromatic hydrocarbons by carbon tetrachloride and chloroform in micellar systems. Photochem Photobiol 37(2):125–130.CrossRefGoogle Scholar
  219. 219.
    Behera PK, Mukherjee T, Mishra AK. 1995. Quenching of substituted naphthalenes fluorescence by chloromethanes. J Luminesc 65:137–142.CrossRefGoogle Scholar
  220. 220.
    Behera PK, Mishra AK. 1993. Static and dynamic model for 1-naph-thol fluorescence quenching by carbon tetrachloride in dioxane-ace-tonitrile mixtures. J Photochem Photobiol A: Chem 71:115–118.CrossRefGoogle Scholar
  221. 221.
    Behera PK, Mukherjee T, Mishra AK. 1995. Simultaneous presence of static and dynamic component in the fluorescence quenching for substituted naphthalene-CCl4 system. J Luminesc 65:131–136.CrossRefGoogle Scholar
  222. 222.
    Zhang J, Roek DP, Chateauneuf JE, Brennecke JF. 1997. A steady-state and time-resolved fluorescence study of quenching reactions of anthracene and 1,2-benzanthracene by carbon tetrabromide and bro-moethane in supercritical carbon dioxide. J Amer Chem Soc 119:9980–9991.CrossRefGoogle Scholar
  223. 223.
    Tucker SA, Cretella LE, Waris R, Street KW, Acree WE, Fetzer JC. 1990. Polycyclic aromatic hydrocarbon solute probes, VI: effect of dissolved oxygen and halogenated solvents on the emission spectra of select probe molecules. Appl Spectrosc 44(2):269–273.CrossRefGoogle Scholar
  224. 224.
    Wiczk WM, Latowski T. 1992. The effect of temperature on the fluorescence quenching of perylene by tetrachloromethane in mixtures with cyclohexane and benzene. Z Naturforsch A 47:533–535.Google Scholar
  225. 225.
    Wiczk WM, Latowski T. 1986. Photophysical and photochemical studies of polycyclic aromatic hydrocarbons in solutions containing tetrachloromethane, I: fluorescence quenching of anthracene by tetrachloromethane and its complexes with benzene, p-xylene and mesitylene. Z Naturforsch A 41:761–766.Google Scholar
  226. 226.
    Goswami D, Sarpal RS, Dogra SK. 1991. Fluorescence quenching of few aromatic amines by chlorinated methanes. Bull Chem Soc Jpn 64:3137–3141.CrossRefGoogle Scholar
  227. 227.
    Takahashi T, Kikuchi K, Kokubun H. 1980. Quenching of excited 2,5-diphenyloxazole by CCl4. J Photochem 14:67–76.CrossRefGoogle Scholar
  228. 228.
    Bonesi SM, Erra-Balsells R. 2000. Outer-sphere electron transfer from carbazoles to halomethanes: reduction potentials of halomethanes measured by fluorescence quenching experiments. J Chem Soc Perkin Trans 2:1583–1595.Google Scholar
  229. 229.
    Canuel C, Badre S, Groenzin H, Berheide M, Mullins OC. 2003. Diffusional fluorescence quenching of aromatic hydrocarbons. Appl Spectrosc 57(5):538–544.CrossRefGoogle Scholar
  230. 230.
    Alford PC, Cureton CG, Lampert RA, Phillips D. 1983. Fluorescence quenching of tertiary amines by halocarbons. Chem Phys 76:103–109.CrossRefGoogle Scholar
  231. 231.
    Lopez MM, Kosk-Kosicka D. 1998. Spectroscopic analysis of halo-thane binding to the plasma membrane Ca2+-ATPase. Biophys J 74:974–980.CrossRefGoogle Scholar
  232. 232.
    Eckenhoff RG, Tanner JW. 1998. Differential halothane binding and effects on serum albumin and myoglobin. Biophys J 75:477–483.CrossRefGoogle Scholar
  233. 233.
    Cavatorta P, Favilla R, Mazzini A. 1979. Fluorescence quenching of tryptophan and related compounds by hydrogen peroxide. Biochim Biophys Acta 578:541–546.Google Scholar
  234. 234.
    Khwaja HA, Semeluk GP, Unger I. 1984. Quenching of the singlet and triplet state of benzene in condensed phase. Can J Chem 62:1487–1491.CrossRefGoogle Scholar
  235. 235.
    Washington K, Sarasua MM, Koehler LS, Koehler KA, Schultz JA, Pedersen LG, Hiskey RG. 1984. Utilization of heavy-atom effect quenching of pyrene fluorescence to determine the intramembrane distribution of halothane. Photochem Photobiol 40(6):693–701.CrossRefGoogle Scholar
  236. 236.
    Mae M, Wach A, Najbar J. 1991. Solvent effects on the fluorescence quenching of anthracene by iodide ions. Chem Phys Lett 176(2): 167–172.CrossRefGoogle Scholar
  237. 237.
    Fraiji LK, Hayes DM, Werner TC. 1992. Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory. J Chem Educ 69:424–428.CrossRefGoogle Scholar
  238. 238.
    Vos R, Engelborghs Y. 1994. A fluorescence study of tryptophan–his-tidine interactions in the peptide alantin and in solution. Photochem Photobiol 60(1):24–32.CrossRefGoogle Scholar
  239. 239.
    Nakashima K, Tanida S, Miyamoto T, Hashimoto S. 1998. Photoinduced electron transfer from indolic compounds to 1-pyren-emethanol in polystyrene latex dispersions. J Photochem Photobiol A: Chem 117:111–117.CrossRefGoogle Scholar
  240. 240.
    Novaira AI, Avila V, Montich GG, Previtali CM. 2001. Fluorescence quenching of anthracene by indole derivatives in phospholipid bilay-ers. J Photochem Photobiol B: Biol 60:25–31.CrossRefGoogle Scholar
  241. 241.
    Marmé N, Knemeyer J-P, Sauer M, Wolfrum J. 2003. Inter- and Intramolecular fluorescence quenching of organic dyes by trypto-phan. Bioconjugate Chem 14:1122–1139.CrossRefGoogle Scholar
  242. 242.
    Lakowicz JR, Anderson CJ. 1980. Permeability of lipid bilayers to methylmercuric chloride: quantification by fluorescence quenching of a carbazole-labeled phospholipid. Chem–Biol Interact 30:309–323.CrossRefGoogle Scholar
  243. 243.
    Holmes AS, Suhling K, Birch DJS. 1993. Fluorescence quenching by metal ions in lipid bilayers. Biophys Chem 48:193–204.CrossRefGoogle Scholar
  244. 244.
    Birch DJS, Suhling K, Holmes AS, Salthammer T, Imhof RE. 1993. Metal ion quenching of perylene fluorescence in lipid bilayers. Pure Appl Chem 65(8):1687–1692.CrossRefGoogle Scholar
  245. 245.
    Sawicki E, Stanley TW, Elbert WC. 1964. Quenchofluorometric analysis for fluoranthenic hydrocarbons in the presence of other types of aromatic hydrocarbon. Talanta 11:1433–1441.CrossRefGoogle Scholar
  246. 246.
    Dreeskamp H, Koch E, Zander M. 1975. On the fluorescence quenching of polycyclic aromatic hydrocarbons by nitromethane. Z Naturforsch A 30:1311–1314.Google Scholar
  247. 247.
    Pandey S, Fletcher KA, Powell JR, McHale MER, Kauppila A-SM, Acree WE, Fetzer JC, Dai W, Harvey RG. 1997. Spectrochemical investigations of fluorescence quenching agents, 5: effect of surfactants on the ability of nitromethane to selectively quench fluorescence emission of alternant PAHs. Spectrosc Acta Part A 53:165–172.Google Scholar
  248. 248.
    Pandey S, Acree WE, Cho BP, Fetzer JC. 1997. Spectroscopic properties of polycyclic aromatic compounds, 6: the nitromethane selective quenching rule visited in aqueous micellar zwitterionic surfactant solvent media. Talanta 44:413–421.CrossRefGoogle Scholar
  249. 249.
    Acree WE, Pandey S, Tucker SA. 1997. Solvent-modulated fluorescence behavior and photophysical properties of polycyclic aromatic hydrocarbons dissolved in fluid solution. Curr Top Solution Chem 2:1–27.Google Scholar
  250. 250.
    Tucker SA, Acree WE, Tanga MJ, Tokita S, Hiruta K, Langhals H. 1992. Spectroscopic properties of polycyclic aromatic compounds: examination of nitromethane as a selective fluorescence quenching agent for alternant polycyclic aromatic nitrogen hetero-atom derivatives. Appl Spectrosc 46(2):229–235.CrossRefGoogle Scholar
  251. 251.
    Yang RH, Wang KM, Xiao D, Luo K, Yang XH. 2000. A renewable liquid drop sensor for di- or trinitrophenol based on fluorescence quenching of 3,3’,5,5’-tetramethylbenzidine dihydrocholride. Analyst 125:877–882.CrossRefGoogle Scholar
  252. 252.
    Wentzell PD, Nair SS, Guy RD. 2001. Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. Anal Chem 73:1408–1415.CrossRefGoogle Scholar
  253. 253.
    Patra D, Mishra AK. 2001. Fluorescence quenching of benzo[k]flu-oranthene in poly(vinyl alcohol) film: a possible optical sensor for nitro aromatic compounds. Sens Actuators B 80:278–282.CrossRefGoogle Scholar
  254. 254.
    Goodpaster JV, McGuffin VL. 2001. Fluorescence quenching as an indirect detection method for nitrated explosives. Anal Chem 73:2004–2011.CrossRefGoogle Scholar
  255. 255.
    Ellison EH, Thomas JK. 2001. Enhanced quenching of anthracene fluorescence by nitroalkanes in zeolite X and Y. Langmuir 17:2446– 2454.CrossRefGoogle Scholar
  256. 256.
    Goodpaster JV, Harrison JF, McGuffin VL. 2002. Ab initio study of selective fluorescence quenching of polycyclic aromatic hydrocarbons. J Phys Chem A 106:10645–10654.CrossRefGoogle Scholar
  257. 257.
    Koivusalo M, Alvesalo J, Virtanen JA, Somerharju P. 2004. Partitioning of pyrene-labeled phosphor- and sphingolipids between ordered and disordered bilayer domains. Biophys J 86:923–935.CrossRefGoogle Scholar
  258. 258.
    Bieri VG, Wallach DFH. 1975. Fluorescence quenching in lecithin: cholesterol liposomes by paramagnetic lipid analogues: introduction of new probe approach. Biochim Biophys Acta 389:413–427.CrossRefGoogle Scholar
  259. 259.
    Encinas MV, Lissi EA, Alvarez J. 1994. Fluorescence quenching of pyrene derivatives by nitroxides microheterogeneous systems. Photochem Photobiol 59(1):30–34.CrossRefGoogle Scholar
  260. 260.
    Matko J, Ohki K, Edidin M. 1992. Luminescence quenching by nitroxide spin labels in aqueous solution: studies on the mechanism of quenching. Biochemistry 31:703–711.CrossRefGoogle Scholar
  261. 261.
    Fayed TA, Grampp G, Landgraf M. 1999. Fluorescence quenching of aromatic hydrocarbons by nitroxide radicals: a mechanismatic study. Int J Photoenergy 1:1–4.CrossRefGoogle Scholar
  262. 262.
    Green JA, Singer LA, Parks JH. 1973. Fluorescence quenching by the stable free radical di-t-butylnitroxide. J Chem Phys 58(7):2690–2659.CrossRefGoogle Scholar
  263. 263.
    Lozinsky E, Martin VV, Berezina TA, Shames AI, Weis AL, Likhtenshtein GI. 1999. Dual fluorophore-nitroxide probes for analysis of vitamin C in biological liquids. J Biochem Biophys Methods 38:29–42.CrossRefGoogle Scholar
  264. 264.
    Kalai T, Hideg E, Jeko J, Hideg K. 2003. Synthesis of paramagnetic BODIPY dyes as new double (spin and fluorescence) sensors. Tetrahedron Lett 44:8497–8499.CrossRefGoogle Scholar
  265. 265.
    Grenier S, Dutta AK, Salesse C. 1998. Evaluation of membrane penetration depth utilizing fluorescence quenching by doxylated fatty acids. Langmuir 14:4643–4649.CrossRefGoogle Scholar
  266. 266.
    Szajdzinska-Pietek E, Wolszczak M. 1998. Quenching of excited states or pyrene derivatives by amphiphilic nitroxide radicals in cationic micellar solutions: dynamics and location of the guest molecules in the aggregates. J Photochem Photobiol A: Chem 112:245–249.CrossRefGoogle Scholar
  267. 267.
    Jones PF, Siegel S. 1971. Quenching of naphthalene luminescence by oxygen and nitric oxide. J Chem Phys 54(8):3360–3366.CrossRefGoogle Scholar
  268. 268.
    Denicola A, Batthy¡ny C, Lissi E, Freeman BA, Rubbo H, Radi R. 2002. Diffusion of nitric oxide into low-density lipoprotein. J Biol Chem 277(2):932–936.CrossRefGoogle Scholar
  269. 269.
    Harper J, Sailor MJ. 1996. Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. Anal Chem 68:3713–3717.CrossRefGoogle Scholar
  270. 270.
    Denicola A, Souza JM, Radi R, Lissi E. 1996. Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch Biochem Biophys 328(1):208–212.CrossRefGoogle Scholar
  271. 271.
    Ware WR, Holmes JD, Arnold DR. 1974. Exciplex photophysics, II: fluorescence quenching of substituted anthracenes by substituted 1,1-diphenylethylenes. J Am Chem Soc 96:7861–7864.CrossRefGoogle Scholar
  272. 272.
    Labianca DA, Taylor GN, Hammond GS. 1972. Structure-reactivity factors in the quenching of fluorescence from naphthalenes by conjugated dienes. J Am Chem Soc 94(11):3679–3683.CrossRefGoogle Scholar
  273. 273.
    Encinas MV, Guzman E, Lissi EA. 1983. Intramicellar aromatic hydrocarbon fluorescence quenching by olefins. J Phys Chem 87:4770–4772.CrossRefGoogle Scholar
  274. 274.
    Abuin EB, Lissi EA. 1993. Quenching rate constants in aqueous solution: influence of the hydrophobic effect. J Photochem Photobiol 71:263–267.CrossRefGoogle Scholar
  275. 275.
    Chang SLP, Schuster DI. 1987. Fluorescence quenching of 9,10-dicyanoanthracene by dienes and alkenes. J Phys Chem 91:3644– 3649.CrossRefGoogle Scholar
  276. 276.
    Eriksen J, Foote CS. 1978. Electron-transfer fluorescence quenching and exciplexes of cyano-substituted anthracenes. J Phys Chem 82:2659–2662.CrossRefGoogle Scholar
  277. 277.
    Cioni P. 2000. Oxygen and acrylamide quenching of protein phosphorescence: correlation with protein dynamics. Biophys Chem 87:15–24.CrossRefGoogle Scholar
  278. 278.
    Jameson DM, Gratton E, Weber G, Alpert B. 1984. Oxygen distribution and migration within MBDES FE and HBDES FE. Biophys J 45:795–803.CrossRefGoogle Scholar
  279. 279.
    Canuel C, Badre S, Groenzin H, Berheide M, Mullins OC. 2003. Diffusional fluorescence quenching of aromatic hydrocarbons. Appl Spectrosc 57(5):538–544.CrossRefGoogle Scholar
  280. 280.
    Gouterman M. 1997. Oxygen quenching of luminescence of pressure sensitive paint for wind tunnel research. J Chem Educ 74(6):697–702.CrossRefGoogle Scholar
  281. 281.
    Camyshan SV, Gritsan NP, Korolev VV, Bazhin NM. 1990. Quenching of the luminescence of organic compounds by oxygen in glassy matrices. Chem Phys 142:59–68.CrossRefGoogle Scholar
  282. 282.
    Kikuchi K, Sato C, Watabe M, Ikeda H, Takahashi Y, Miyashi T. 1993. New aspects on fluorescence quenching by molecular oxygen. J Am Chem Soc 115:5180–5184.CrossRefGoogle Scholar
  283. 283.
    Vaughan WM, Weber G. 1970. Oxygen quenching of pyrenebutyric acid fluorescence in water: a dynamic probe of the microenvironment. Biochemistry 9:464–473.CrossRefGoogle Scholar
  284. 284.
    Abuin EB, Lissi EA. 1991. Diffusion and concentration of oxygen in microheterogeneous systems: evaluation from luminescence quenching data. Prog React Kinet 16:1–33.Google Scholar
  285. 285.
    Parasassi T, Gratton E. 1992. Packing of phospholipid vesicles studies by oxygen quenching of laurdan fluorescence. J Fluoresc 2(3): 167–174.CrossRefGoogle Scholar
  286. 286.
    Lu X, Winnik MA. 2001. Luminescence quenching in polymer/filler nanocomposite films using in oxygen sensors. Chem Mater 13:3449–3463.CrossRefGoogle Scholar
  287. 287.
    Okamoto M. 2001. Temperature dependence of the nearly diffusion-controlled fluorescence quenching by oxygen of 9,10-dimethylan-thracene in liquid solution. Phys Chem Chem Phys 3:3696–3700.CrossRefGoogle Scholar
  288. 288.
    Okamoto M, Wada O, Tanaka F, Hirayama S. 2001. Fluorescence quenching by oxygen of 9,10-dimethylanthracene in liquid and supercritical carbon dioxide. J Phys Chem 105:566–572.Google Scholar
  289. 289.
    Poulsen L, Zebger I, Klinger M, Eldrup M, Sommer-Larsen P, Ogilby PR. 2003. Oxygen diffusion in copolymers of ethylene and norbornene. Macromolecules 36:7189–7198.CrossRefGoogle Scholar
  290. 290.
    Brunori M, Cutruzzolà F, Savino C, Travaglini-Allocatelli C, Vallone B, Gibson QH. 1999. Structural dynamics of ligand diffusion in the protein matrix: a study on a new myoglobin mutant Y(B10) Q(E7) R(E10). Biophys J 76:1259–1269.CrossRefGoogle Scholar
  291. 291.
    Encinas MV, Lissi EA. 1983. Intramicellar quenching of 2,3-dimethylnaphthalene fluorescence by peroxides and hydroperoxides. Photochem Photobiol 37(3):251–255.CrossRefGoogle Scholar
  292. 292.
    Holmes LG, Robbins FM. 1974. Quenching of tryptophyl fluorescence in proteins by N’-methylnicotinamide chloride. Photochem Photobiol 19:361–366.CrossRefGoogle Scholar
  293. 293.
    Mao C, Tucker SA. 2002. High-performance liquid chromatograph-ic separation of polycyclic aromatic hydrocarbons using pyridinium chloride as a selective fluorescence quencher to aid detection. J Chromtogr A 966:53–61.CrossRefGoogle Scholar
  294. 294.
    Diaz X, Abuin E, Lissi E. 2003. Quenching of BSA intrinsic fluorescence by alkylpyridinium cations its relationship to surfactant-protein association. J Photochem Photobiol A: Chem 155:157–162.CrossRefGoogle Scholar
  295. 295.
    Strom C, Hansson P, Jonsson B, Soderman O. 2000. Size of cationic surfactant micelles at the silica–water interface: a fluorescent probe study. Langmuir 16:2469–2474.CrossRefGoogle Scholar
  296. 296.
    Saha SK, Krishnamoorthy G, Dogra SK. 1999. Fluorescence quenching of 2-aminofluorene by cetylpyridinium chloride, iodide ion and acrylamide in non-ionic micelles: tweens. J Photochem Photobiol A: Chem 121:191–198.CrossRefGoogle Scholar
  297. 297.
    Martin MM, Ware WR. 1978. Fluorescence quenching of carbazole by pyridine and substituted pyridines: radiationless processes in the carbazole-amine hydrogen bonded complex. J Phys Chem 82(26): 2770–2776.CrossRefGoogle Scholar
  298. 298.
    Dreeskamp H, Laufer A, Zander M. 1983. Löschung der perylen-flu-oreszenz durch Ag+-ionen. Z Naturforsch A 38:698–700.Google Scholar
  299. 299.
    Badley RA. 1975. The location of protein in serum lipoproteins: a fluorescence quenching study. Biochim Biophys Acta 379:517–528.Google Scholar
  300. 300.
    Eftink MR, Ghiron CA. 1984. Indole fluorescence quenching studies on proteins and model systems: use of the inefficient quencher suc-cinimide. Biochemistry 23:3891–3899.CrossRefGoogle Scholar
  301. 301.
    Razek TMA, Miller MJ, Hassan SSM, Arnold MA. 1999. Optical sensor for sulfur dioxide based on fluorescence quenching. Talanta 50:491–498.CrossRefGoogle Scholar
  302. 302.
    Moore H-PH, Raftery MA. 1980. Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance. Proc Natl Acad Sci USA 77(8): 4509–4513.CrossRefGoogle Scholar
  303. 303.
    Mac M, Najbar J, Phillips D, Smith TA. 1992. Solvent dielectric relaxation properties and the external heavy atom effect in the time-resolved fluorescence quenching of anthracene by potassium iodide and potassium thiocyanate in methanol and ethanol. J Chem Soc Faraday Trans 88(20):3001–3005.CrossRefGoogle Scholar
  304. 304.
    Carrigan S, Doucette S, Jones C, Marzzacco CJ, Halpern AM. 1996. The fluorescence quenching of 5,6-benzoquinoline and its conjugate acid by Cl, Br, SCN and I ions. J Photochem Photobiol A: Chem 99:29–35.CrossRefGoogle Scholar
  305. 305.
    Horrochs AR, Kearvell A, Tickle K, Wilkinson F. 1966. Mechanism of fluorescence quenching in solution, II: quenching by xenon and intersystem crossing efficiencies. Trans Faraday Soc 62:3393–3399.CrossRefGoogle Scholar
  306. 306.
    Thulborn KR, Sawyer WH. 1978. Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer. Biochim Biophys Acta 511:125–140.CrossRefGoogle Scholar
  307. 307.
    Ware WR, Andre JC. 1980. The influence of diffusion fluorescence quenching. In Time-resolved fluorescence spectroscopy in biochemistry and biology, pp. 363–392. Ed RB Cundall, R Dale. Plenum Press, New York.Google Scholar
  308. 308.
    Nelson G, Warner IM. 1990. Fluorescence quenching studies of cyclodextrin complexes of pyrene and naphthalene in the presence of alcohols. J Phys Chem 94:576–581.CrossRefGoogle Scholar
  309. 309.
    Peviani C, Hillen W, Ettner N, Lami H, Doglia SM, Piemont E, Ellouze C, Chabbert M. 1995. Spectroscopic investigation of tet repressor tryptophan-43 upon specific and nonspecific DNA binding. Biochemistry 34:13007–13015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations