Skip to main content

Fluorescence Correlation Spectroscopy

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

In the previous chapter we described fluorescence imaging and spectroscopy on single molecules. Individual fluo-rophores can be studied if the observed volume is restricted and the fluorophores are immobilized on a surface. With present technology it is difficult to track freely diffusing single molecules. Single-molecule detection (SMD) on surfaces is a powerful technique because it avoids ensemble averaging and allows single events to be observed. If a dynamic process such as a chemical reaction is being studied, there is no need to synchronize the population because the individual kinetic events can be observed. However, SMD has its limitations. The most stable fluorophores typically emit 105 to 106 photons prior to irreversible photodestruction. Because of the modest detection efficiency of optical systems, and the need for high emissive rates for detection of the emission over background, single molecules can only be observed for a brief period of time—1 second or less—which may be too short to observe many biochemical processes. When the fluorophore is bleached the experiment must be started again with a different molecule. Additionally, SMD requires immobilization on a surface, which can affect the functioning of the molecule and slow its access to substrates and/or ligands because of unstirred boundary layers near the surface.

Fluorescence correlation spectroscopy (FCS) is also a method based on observation of a single molecule or several molecules. In contrast to SMD, FCS does not require surface immobilization and can be performed on molecules in solution. The observed molecules are continuously replenished by diffusion into a small observed volume. FCS thus allows continuous observation for longer periods of time and does not require selection of specific molecules for observation. FCS is based on the analysis of time-dependent intensity fluctuations that are the result of some dynamic process, typically translation diffusion into and out of a small volume defined by a focused laser beam and a confo-cal aperture. When the fluorophore diffuses into a focused light beam, there is a burst of emitted photons due to multiple excitation-emission cycles from the same fluorophore. If the fluorophore diffuses rapidly out of the volume the photon burst is short lived. If the fluorophore diffuses more slowly the photon burst displays a longer duration. Under typical conditions the fluorophore does not undergo photo-bleaching during the time it remains in the illuminated volume, but transitions to the triplet state frequently occur. By correlation analysis of the time-dependent emission, one can determine the diffusion coefficient of the fluorophore. In this case “time-dependent” refers to the actual time and not to a time delay or time-dependent decay following pulsed excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Magde D, Elson E, Webb WW. 1972, Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spec-troscopy. Phys Rev Lett 29(11):705–708.

    CAS  Google Scholar 

  2. Elson E, Magde D. 1974. Fluorescence correlation spectroscopy: conceptual basis and theory. Biopolymers 13:1–27.

    CAS  Google Scholar 

  3. Magde D, Elson E, Webb WW. 1974. Fluorescence correlation spec-troscopy. Biopolymers 13:29–61.

    CAS  Google Scholar 

  4. Aragon SR, Pecora R. 1975. Fluorescence correlation spectroscopy and brownian rotational diffusion. Biopolymers 14:119–138.

    CAS  Google Scholar 

  5. Rigler R. Elson ES, eds. 2001. fluorescence correlation spectros-copy: theory and applications. Springer, New York.

    Google Scholar 

  6. Webb WW. 2001. Fluorescence correlation spectroscopy: genesis, evolution, maturation and prognosis. In Fluorescence correlation spectroscopy: theory and applications, pp. 305–330. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  7. Eigen M, Rigler R. 1994. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747.

    CAS  Google Scholar 

  8. Haustein E, Schwille P. 2003. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166.

    CAS  Google Scholar 

  9. Visser AJWG, Hink MA. 1999. New perspectives of fluorescence correlation spectroscopy. J Fluoresc 9(1):81–87.

    CAS  Google Scholar 

  10. Thompson NL, Lieto AM, Allen NW. 2002. Recent advances in fluorescence correlation spectroscopy. Struct Biol 12:634–641.

    Google Scholar 

  11. Hess ST, Huang S, Heikal AA, Webb WW. 2002. Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41(3):647–708.

    Google Scholar 

  12. Brock R, Jovin TM. 2001. Fluorescence correlation microscopy (FCM): fluorescence correlation spectroscopy (FCS) in cell biology. In Fluorescence correlation spectroscopy: theory and applications, pp. 133–161. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  13. Rigler R. 1995. Fluorescence correlations, single molecule detection and large number screening: applications in biotechology. J Bio-technol 41:177–186.

    CAS  Google Scholar 

  14. Földes-Papp Z, Demel U, Domej W, Tilz GP. 2002. A new dimension for the development of fluorescence-based assays in solution: from physical principles of FCS detection to biological applications. Exp Biol Med 227(5):291–300.

    Google Scholar 

  15. Sterer S, Henco K. 1997. Fluorescence correlation spectroscopy (FCS)—a highly sensitive method to analyze drug/target interactions. J Recept Signal Transduction Res 17(1–3):511–520.

    Google Scholar 

  16. Kim SA, Schwille P. 2003. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr Opin Neurobiol 13:583–590.

    CAS  Google Scholar 

  17. Widengren J, Mets Ü. 2002. Conceptual basis of fluorescence correlation spectroscopy and related techniques as tools in bioscience. In Single molecule detection in solution, pp. 69–120. Ed CH Zander, J Enderlein, RA Keller. Wiley-VCH, Darmstadt, Germany.

    Google Scholar 

  18. Thompson NL. 1991. Fluorescence correlation spectroscopy. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 337–378. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  19. Rigler R, Mets Ü, Widengren J, Kask P. 1993. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175.

    CAS  Google Scholar 

  20. Rigler R, Widengren J, Mets Ü. 1993. Interactions and kinetics of single molecules as observed by fluorescence correlation spec-troscopy. In Fluorescence spectroscopy, pp. 14–24. Ed O Wolfbeis. Springer-Verlag, New York.

    Google Scholar 

  21. Müller JD, Chen Y, Gratton E. 2003. Fluorescence correlation spec-troscopy. Methods Enzymol 361:69–92.

    Google Scholar 

  22. Maiti S, Haupts U, Webb WW. 1997. Fluorescence correlation spec-troscopy: diagnostics for sparse molecules. Proc Natl Acad Sci USA 94:11753–11757.

    CAS  Google Scholar 

  23. Pack CG, Nishimura G, Tamura M, Aoki K, Taguchi H, Yoshida M, Kinjo M. 1999. Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy. Cytom-etry 36:247–253.

    CAS  Google Scholar 

  24. Meyer-Almes FJ. 2001. Nanoparticle immunoassays: a new method for use in molecular diagnostics and high throughput pharmaceutical screening based on fluorescence correlation spectroscopy. In Fluorescence correlation spectroscopy: theory and applications, pp. 379–395. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  25. Wohland T, Friedrich K, Hovius R, Vogel H. 1999. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydrox-ytryptamine type 3As receptor binds only one ligand. Biochemistry 38:8671–8681.

    CAS  Google Scholar 

  26. Van Craenenbroeck E, Engelborghs Y. 1999. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry 38:5082–5088.

    Google Scholar 

  27. Larson DR, Ma YM, Vogt VM, Webb WW. 2003. Direct measurement of gag–gag interaction during retrovirus assembly with FRET and fluorescence correlation spectroscopy. J Cell Biol 162(7):1233–1244.

    CAS  Google Scholar 

  28. Pitschke M, Prior R, Haupt M, Riesner D. 1999. Detection of single amyloid β-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy. Nature Med 4(7):832–834.

    Google Scholar 

  29. Schwille P, Bieschke J, Oehlenschlager F. 1997. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem 66:211–228.

    CAS  Google Scholar 

  30. Schwille P, Oehlenschlager F, Walter NG. 1996. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35:10182–10193.

    CAS  Google Scholar 

  31. Bjorling S, Kinjo M, Foldes-Papp Z, Hagman E, Thyberg P, Rigler R. 1998. Fluorescence correlation spectroscopy of enzymatic DNA polymerization. Biochemistry 37:12971–12978.

    CAS  Google Scholar 

  32. Rigler R, Foldes-Papp Z, Meyer-Almes FJ, Sammet C, Volcker M, Schnetz A. 1998. Fluorescence cross-correlation: a new concept for polymerase chain reaction. Biotechnology 63:97–109.

    CAS  Google Scholar 

  33. Kinjo M. 1998. Detection of asymmetric PCR products in homogeneous solution by fluorescence correlation spectroscopy. Biotechnology 25:706–715.

    CAS  Google Scholar 

  34. Schubert F, Zettl H, Hafner W, Krauss G, Krausch G. 2003. Comparative thermodynamic analysis of DNA–protein interactions using surface plasmon resonance and fluorescence correlation spec-troscopy. Biochemistry 42:10288–10294.

    CAS  Google Scholar 

  35. Wohland T, Friedrich-Benet K, Pick H, Preuss A, Hovius R, Vogel H. 2001. The characterization of a transmembrane receptor protein by fluorescence correlation spectroscopy. In Single molecule spectroscopy, pp. 195–210. Ed R Rigler, M Orrit, T Basche. Springer, New York.

    Google Scholar 

  36. Schuler J, Frank J, Trier U, Schäfer-Korting M, Saenger W. 1999. Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy. Biochemistry 38:8402–8408.

    CAS  Google Scholar 

  37. Pick H, Preuss AK, Mayer M, Wohland T, Hovius R, Vogel H. 2003. Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cells. Biochemistry 42:877–884.

    CAS  Google Scholar 

  38. Boukari H, Nossal R, Sackett DL. 2003. Stability of drug-induced tubulin rings by fluorescence correlation spectroscopy. Biochemistry 42:1292–1300.

    CAS  Google Scholar 

  39. Sevenich FW, Langowski J, Weiss V, Rippe K. 1998. DNA binding and oligomerization of ntrC studied by fluorescence anisotropy and fluorescence correlation spectroscopy. Nucleic Acids Res 26(6):1373–1381.

    CAS  Google Scholar 

  40. Auer M, Moore KJ, Meyer-Almes FJ, Guenther R, Pope AJ, Stoeckli KA. 1998. Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discovery Today 3(10):457–465.

    CAS  Google Scholar 

  41. Xu H, Frank J, Trier U, Hammer S, Schroder W, Behlke J, Schafer-Korting M, Holzwarth JF, Saenger W. 2001. Interaction of fluorescence labeled single-stranded DNA with hexameric DNA-helicase repA: a photon and fluorescence correlation spectroscopy study. Biochemistry 40:7211–7218.

    CAS  Google Scholar 

  42. Daniel DC, Thompson M, Woodbury NW, 2002. DNA-binding interactions and conformational fluctuations of tc3 transposase DNA binding domain examined with single molecule fluorescence spec-troscopy. Biophys J 82:1654–1666.

    CAS  Google Scholar 

  43. Kral T, Langner M, Benes M, Baczynska D, Ugorski M, Hof M. 2002. The application of fluorescence correlation spectroscopy in detecting DNA condensation. Biophys Chem 95:135–144.

    CAS  Google Scholar 

  44. Kral T, Hof M, Langner M. 2002. The effect of spermine on plasmid condensation and dye release observed by fluorescence correlation spectroscopy. Biol Chem 383:331–335.

    CAS  Google Scholar 

  45. Schwille P, Oehlenschlager F, Walter NG. 1996. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35:10182–10193.

    CAS  Google Scholar 

  46. Kinjo M, Rigler R. 1995. Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic Acids Res 23:1795–1799.

    CAS  Google Scholar 

  47. Foldes-Papp Z, Kinjo M. 2001. Fluorescence correlation spec-troscopy in nucleic acid analysis. In Fluorescence correlation spec-troscopy: theory and applications, pp. 25–64. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  48. Nishimura G, Rigler R, Kinjo M. 1997. Number analysis of fluorescence correlation spectroscopy for the cleaving process of fluorescence labeled DNA. Bioimaging 5:129–133.

    CAS  Google Scholar 

  49. Kovacic RT, van Holde KE. 1977. Sedimentation of homogeneous double-strand DNA molecules. Biochemistry 16(7):1490–1498.

    CAS  Google Scholar 

  50. Eisenberg D, Crothers D, eds. 1979. Physical chemistry with applications to the life sciences, Benjamin Cummings, Melno Park, CA.

    Google Scholar 

  51. Kinjo M, Nishimura G, Koyama T, Mets Ü, Rigler R. 1998. Singlemolecule analysis of restriction DNA fragments using fluorescence correlation spectroscopy. Anal Biochem 260:166–172.

    CAS  Google Scholar 

  52. Fradin C, Abu-Arish A, Granek R, Elbaum M. 2003. Fluorescence correlation spectroscopy close to a fluctuating membrane. Biophys J 84:2005–2020.

    CAS  Google Scholar 

  53. Benda A, Benes M, Marecek V, Lhotsky A, Hermens WTh, Hof M. 2003. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence spectroscopy. Langmuir 19:4120–4126.

    CAS  Google Scholar 

  54. Palmer III AG, Thompson NL. 1989. Fluorescence correlation spec-troscopy for detecting submicroscopic clusters of fluorescent molecules in membranes. Chem Phys Lipids 50:253–270.

    CAS  Google Scholar 

  55. Hegener O, Jordan R, Haberlein H. 2002. Benzodiazepine binding studies on living cells: application of small ligands for fluorescence correlation spectroscopy. Biol Chem 383:1801–1807.

    CAS  Google Scholar 

  56. Briddon SJ, Middleton RJ,Yates AS, George MW, Kellam B, Hill SJ. 2004. Application of fluorescence correlation spectroscopy to the measurement of agonist binding to a G-protein coupled receptor at the single cell level. Faraday Discuss 126:197–207.

    CAS  Google Scholar 

  57. Hink MA, van Hoek A, Visser AJWG. 1999. Dynamics of phospho-lipid molecules in micelles: characterization with fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy. Langmuir 15:992–997.

    CAS  Google Scholar 

  58. Gennerich A, Schild D. 2002. Anisotropic diffusion in mitral cell dendrites revealed by fluorescence correlation spectroscopy. Biophys J 83:510–522.

    CAS  Google Scholar 

  59. Meissner O, Häberlein H. 2003. Lateral mobility and specific binding to GABAA receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42:1667–1672.

    CAS  Google Scholar 

  60. Pramanik A, Thyberg P, Rigler R. 2000. Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy. Chem Phys Lipids 104:35–47.

    CAS  Google Scholar 

  61. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P. 2003. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278(30):28109–28115.

    CAS  Google Scholar 

  62. Schwille P, Haupts U, Maiti S, Webb WW. 1999. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two- photon excitation. Biophys J, 77:2251–2265.

    CAS  Google Scholar 

  63. Schwille P, Korlach J, Webb WW. 1999. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182.

    CAS  Google Scholar 

  64. Weiss M, Hashimoto H, Nilsson T. 2003. Anomalous protein difus-sion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84:4043–4052.

    CAS  Google Scholar 

  65. Wachsmuth M, Waldeck W, Langowski J. 2000. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689.

    CAS  Google Scholar 

  66. Milon S, Hovius R, Vogel H, Wohland T. 2003. Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments. Chem Phys 288:171–186.

    CAS  Google Scholar 

  67. Korlach J, Schwille P, Webb WW, Feigenson GW. 1999. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:8461–8466.

    CAS  Google Scholar 

  68. Steiner DF, Cunningham D, Spigelman L, Aten B. 1967. Insulin biosynthesis: evidence for a precursor. Science 157:697–700.

    CAS  Google Scholar 

  69. Wahren J, Johansson B-L, Wallberg-Henriksson H. 1994. Does C-peptide have a physiological role?. Diabetologia 37(2):S99–S107.

    CAS  Google Scholar 

  70. Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson B-L, Rigler R, Jörnvall H. 2000. Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab 278:E759–E768.

    CAS  Google Scholar 

  71. Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren PD, Stahl S, Ekberg K, Johansson B-L, Uhlén S, Uhlén M, Jörnvall H, Wahren J. 1999. Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96(23):13318–13323.

    CAS  Google Scholar 

  72. Zhong Z-H, Pramanik A, Ekberg K, Jansson OT, Jörnvall H, Wahren J, Rigler R. 2001. Insulin binding monitored by fluorescence correlation spectroscopy. Diabetologia 44:1184–1188.

    CAS  Google Scholar 

  73. Pramanik A, Rigler R. 2001. FCS-analysis of ligand-receptor interactions in living cells. In Fluorescence correlation spectroscopy: theory and applications, pp. 101–131. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  74. Wolf DE. 1992. Theory of fluorescence recovery after photobleach-ing measurements on cylindrical surfaces. Biophys J 61:487–493.

    CAS  Google Scholar 

  75. Braeckmans K, Peeters L, Sanders NN, DeSmedt SC, Demeester J. 2003. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J 85:2240–2252.

    CAS  Google Scholar 

  76. Lopez A, Dupou L, Altibelli A, Trotard J, Tocanne JF. 1988. Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination: critical comparison of anaytical solutions, and a new mathematical method for calculation of diffusion coefficient D. Biophys J 53:963–970.

    CAS  Google Scholar 

  77. Widengren J, Rigler R, Mets Ü. 1994. Triplet-state monitoring by fluorescence correlation spectroscopy. J Fluoresc 4(3):255–258.

    CAS  Google Scholar 

  78. Widengren J, Mets Ü, Rigler R. 1995. Fluorescence correlation spec-troscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379.

    CAS  Google Scholar 

  79. Widengren J. 2001. Photophysical aspects of FCS measurements. In Fluorescence correlation spectroscopy: theory and applications, pp. 177–301. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  80. Hegerfeldt GC, Seidel D. 2003. Blinking molecules: determination of photophysical parameters from the intensity correlation function. J Chem Phys 118(17):7741–7746.

    CAS  Google Scholar 

  81. Widengren J, Mets Ü, Rigler R. 1999. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem Phys 250:171–186.

    CAS  Google Scholar 

  82. Widengren J, Schwille P. 2000. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem A 104:6416–6428.

    CAS  Google Scholar 

  83. Widengren J, Rigler R. 1997. An alternative way of monitoring ion concentrations and their regulation using fluorescence correlation spectroscopy. J Fluoresc 7(1):2118–2135.

    Google Scholar 

  84. Malvezzi-Campeggi F, Jahnz M, Heinze KG, Dittrich P, Schwille P. 2001. Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81:1776–1785.

    CAS  Google Scholar 

  85. Jung G, Mais S, Zumbusch A, Bräuchle C. 2000. The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. J Phys Chem 104(5):873–877.

    CAS  Google Scholar 

  86. Haupts U, Maiti S, Schwille P, Webb WW. 1998. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578.

    CAS  Google Scholar 

  87. Qian H, Elson EL. 1990. Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci USA 87:5479–5483.

    CAS  Google Scholar 

  88. Müller JD, Chen Y, Gratton E. 2001. Photon counting histogram statistics. In Fluorescence correlation spectroscopy: theory and applications, pp. 410–437. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  89. Kask P, Palo K, Ullmann D, Gall K. 1999. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci USA 96:13756–13761.

    CAS  Google Scholar 

  90. Kask P, Palo K, Fay N, Brand L, Mets Ü, Ullmann D, Jungmann J, Pschorr J, Gall K. 2000. Two-dimensional fluorescence intensity distribution analysis: theory and application. Biophys J 78:1703–1713.

    CAS  Google Scholar 

  91. Chen Y, Müller J, So PTC, Gratton E. 1999. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567.

    CAS  Google Scholar 

  92. Müller JD, Chen Y, Gratton E. 2000. Resolving heterogeneity on the single molecule level with the photon-counting histogram. Biophys J 78:474–486.

    Google Scholar 

  93. Haupts U, Rüdiger M, Ashman S, Turconi S, Bingham R, Wharton C, Hutchinson J, Carey C, Moore KJ, Pope AJ. 2003. Single-molecule detection technologies in miniaturized high-throughput screening: fluorescence intensity distribution analysis. J Biomol Screening 8(1):19–33.

    CAS  Google Scholar 

  94. Chen Y, Müller JD, Ruan Q-Q, Gratton E. 2002. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J 82:133–144.

    CAS  Google Scholar 

  95. Laurence TA, Kapanidis AN, Kong X, Chemia DS, Weiss S. 2004. Photon arrival-time interval distribution (PAID): a novel tool for analyzing molecular interactions. J Phys Chem B 108:3051–3067.

    CAS  Google Scholar 

  96. Chen Y, Wei L-N, Müller JD. 2003. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci USA 100(26):15492–15497.

    CAS  Google Scholar 

  97. Kask P, Egeling C, Palo K, Mets Ü, Cole M, Gall K. 2002. Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice. In Fluorescence spectroscopy, imaging and probes. New tools in chemical, physical and life sciences, pp. 152–181. Ed R Kraayenhof, AJWG Visser, HC Gerritsen. Springer, New York.

    Google Scholar 

  98. Lamb DC, Schenk A, Rocker C, Scalfi-Happ C, Nienhaus GU. 2000. Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys J 79:1129–1138.

    CAS  Google Scholar 

  99. Palo K, Brand L, Eggeling C, Jager S, Kask P, Gall K. 2002. Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Biophys J 83:605–618.

    CAS  Google Scholar 

  100. Bohmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J. 2002. Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353:439–445.

    CAS  Google Scholar 

  101. Enderlein J, Erdmann R. 1997. Fast fitting of multi-exponential decay curves. Opt Commun 134:371–378.

    CAS  Google Scholar 

  102. Chattopadhyay K, Saffarian S, Elson EL, Frieden C. 2002. Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 99(22):14171–14176.

    CAS  Google Scholar 

  103. Lumma D, Keller S, Vilgis T, Rädler JO. 2003. Dynamics of large semiflexible chains probed by fluorescence correlation spectroscopy. Phys Rev Lett 90(21):218301-1–218301-4.

    Google Scholar 

  104. Borejdo J, Putnam S, Morales MF. 1979. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Proc Natl Acad Sci USA 76(12):6346–6350.

    CAS  Google Scholar 

  105. Altan-Bonnet G, Libchaber A, Krichevsky O. 2003. Bubble dynamics in double-stranded DNA. Phys Rev Lett 90(13):138101-1–138101-4

    Google Scholar 

  106. Edman L, Rigler R. 2000. Memory landscapes of single-enzyme molecules. Proc Natl Acad Sci USA 97(15):8266–8271.

    CAS  Google Scholar 

  107. Wallace MI, Ying L, Balasubramanian S, Klenerman D. 2000. FRET fluctuation spectroscopy: exploring the conformational dynamics of a DNA hairpin loop. J Phys Chem B 104:11551–11555.

    CAS  Google Scholar 

  108. Bonnet G, Krichevsky O, Libchaber A. 1998. Kinetics of conforma-tional fluctuations in DNA hairpin-loops. Proc Natl Acad Sci USA 95:8602–8606.

    CAS  Google Scholar 

  109. Thompson NL, Burghardt TP, Axelrod D. 1981. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J 33:435–455.

    CAS  Google Scholar 

  110. Starr TE, Thompson NL. 2001. Total internal reflection with fluorescence correlation spectroscopy combined surface reaction and solution diffusion. Biophys J 80:1575–1584.

    CAS  Google Scholar 

  111. Lieto AM, Cush RC, Thompson NL. 2003. Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85:3294–3302.

    CAS  Google Scholar 

  112. Starr TE, Thompson NL. 2002. Local diffusion and concentration of IgG near planar membranes: Measurement by total internal reflection with fluorescence correlation spectroscopy. J Phys Chem B 106:2365–2371.

    CAS  Google Scholar 

  113. Hansen RL, Harris JM. 1998. Total internal reflection fluorescence correlation spectroscopy for counting molecules at solid/liquid interfaces. Anal Chem 70:2565–2575.

    CAS  Google Scholar 

  114. Hansen RL, Harris JM. 1998. Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy. Anal Chem 70:4247–4256.

    CAS  Google Scholar 

  115. McCain KS, Harris JM. 2003. Total internal reflection fluorescence-correlation spectroscopy study of molecular transport in thin sol-gel films. Anal Chem 75:3616–3624.

    CAS  Google Scholar 

  116. Guiot E, Enescu M, Arrio B, Johannin G, Roger G, Tosti S, Tfibel F, Mérola F, Brun A, Georges P, Fontaine-Aupart MP. 2000. Molecular dynamics of biological probes by fluorescence correlation microscopy with two-photon excitation. J Fluoresc 10(4):413–419.

    CAS  Google Scholar 

  117. Chen Y, Müller JD, Eid JS, Gratton E. 2001. Two-photon fluorescence fluctuation spectroscopy. In New trends in fluorescence spec-troscopy: applications to chemical and life sciences, pp. 277–296. Ed B Valeur, JC Brochon. Springer, New York.

    Google Scholar 

  118. Chirico G, Fumagalli C, Baldini G. 2002. Trapped brownian motion in single- and two-photon excitation fluorescence correlation experiments. J Phys Chem B 106:2508–2519.

    CAS  Google Scholar 

  119. Heinze KG, Koltermann A, Schwille P. 2000. Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscor-relation analysis. Proc Natl Acad Sci USA 97(19):10377–10382.

    CAS  Google Scholar 

  120. Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher Y, Jain RK. 2004. Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nature Med 10(2):203–207.

    CAS  Google Scholar 

  121. Clamme JP, Azoulay J, Mely Y. 2003. Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J 84:1960–1968.

    CAS  Google Scholar 

  122. Ruan Q, Chen Y, Gratton E, Glaser M, Mantulin WM. 2002. Cellular characterization of adenylate kinase and its isoform: Two-photon excitation fluorescence imaging and fluorescence correlation spec-troscopy. Biophys J 83:3177–3187.

    CAS  Google Scholar 

  123. Rigler R, Foldes-Papp Z, Franz-Josef MA, Sammet C, Volcker M, Schnetz A. 1998. Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63:97–109.

    CAS  Google Scholar 

  124. Schwille P, Franz-Josef MA, Rigler R. 1997. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886.

    CAS  Google Scholar 

  125. Rarbach M, Kettling U, Koltermann A, Eigen M. 2001. Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods 24:104–116.

    CAS  Google Scholar 

  126. Kettling U, Koltermann A, Schwille P, Eigen M. 1998. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95:1416–1420.

    CAS  Google Scholar 

  127. Koltermann A, Kettling U, Stephan J, Winkler T, Eigen M. 2001. Dual-color confocal fluorescence spectroscopy and its application in biotechnology. In Fluorescence correlation spectroscopy: theory and applications, pp. 187–203. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  128. Bacia K, Schwille P. 2003. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29:74–85.

    CAS  Google Scholar 

  129. Jankowski T, Janka R. 2001. ConfoCor 2—the second generation of fluorescence correlation microscopes. In Fluorescence correlation spectroscopy: theory and applications, pp. 331–345. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  130. Qian H, Elson EL. 2004. Fluorescence correlation spectroscopy with high-order and dual color correlation to probe nonequilibrium steady states. Proc Natl Acad Sci USA 101(9):2828–2833.

    CAS  Google Scholar 

  131. Schwille P. 2001. Cross-correlation analysis in FCS. In Fluorescence correlation spectroscopy: theory and applications, pp. 360–378. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  132. Heinze KG, Koltermann A, Schwille P. 2000. Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscor-relation analysis. Proc Natl Acad Sci USA 97(19):10377–10382.

    CAS  Google Scholar 

  133. Koltermann A, Kettling U, Bieschke J, Winkler T, Eigen M. 1998. Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscpy: high-throughput screening for enzyme activity. Proc Natl Acad Sci USA 95:1421–1426.

    CAS  Google Scholar 

  134. Lucas B, Van Rompaey E, De Smedt SC, Demeester J. 2002. Dual-color fluorescence fluctuation spectroscopy to study the complexa-tion between poly-L-lysine and oligonucleotides. Macromolecules 35:8152–8160.

    CAS  Google Scholar 

  135. Bieschke J, Schwille P. 1998. Aggregation of prion protein investigated by dual-color fluorescence cross-correlation spectroscopy. In Fluorescence microscopy and fluorescent probes, Vol. 2, pp. 81–86. Ed J Slavik. Plenum Press, New York.

    Google Scholar 

  136. Rippe K. 2000. Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39(9):2131–2139.

    CAS  Google Scholar 

  137. Korn K, Gardellin P, Liao B, Amacker M, Bergstrom A, Bjorkman H, Camacho A, Dorhofer S, Dorre K, Enstrom J, Ericson T, Favez T, Gosch M, Honegger A, Jaccoud S, Lapczyna M, Litborn E, Thyberg P, Winter H, Rigler R. 2003. Gene expression analysis using single molecule detection. Nucleic Acids Res 31(16):e89.

    Google Scholar 

  138. Riesner D. 2001. Protein aggregation associated with Alzheimer and prion diseases. In Fluorescence correlation spectroscopy: theory and applications, pp. 225–247. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  139. Bieschke J, Schwille P. 1998. Aggregation of prion protein investigated by dual-color fluorescence cross-correlation spectroscopy. In Fluorescence microscopy and fluorescent probes, Vol. 2. Ed J Slavik. Plenum Press, New York, 27.

    Google Scholar 

  140. Berland KM. 2004. Detection of specific DNA sequences using dual-color two-photon fluorescence correlation spectroscopy. J Biotechnol 108(2):127–136.

    CAS  Google Scholar 

  141. Winter H, Korn K, Rigler R. 2004. Direct gene expression analysis. Curr Pharm Biotechnol 5(2):191–197.

    CAS  Google Scholar 

  142. Foldes-Papp Z, Kinjo M, Saito K, Kii H, Takagi T, Tamura M, Costa JM, Birch-Hirschfeld E, Demel U, Thyberg P, Tilz GP. 2003. C677T single nucleotide polymorphisms of the human methylene tetrahy-drofolate reductase and specific identification: a novel strategy using two-color cross-correlation fluorescence spectroscopy. Mol Diagn 7(2):99–111.

    Google Scholar 

  143. Castro A, Williams JGK. 1997. Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Anal Chem 69:3915–3920.

    CAS  Google Scholar 

  144. Winkler T, Kettling U, Koltermann A, Eigen M. 1999. Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc Natl Acad Sci USA 96:1375–1378.

    CAS  Google Scholar 

  145. Heinze KG, Rarbach M, Jahnz M, Schwille P. 2002. Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics. Biophys J 83:1671–1681.

    CAS  Google Scholar 

  146. Li H, Ying L, Green JJ, Balasubramanian S, Klenerman D. 2003. Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal Chem 75:1664–1670.

    CAS  Google Scholar 

  147. Weston KD, Dyck M, Tinnefeld P, Müller C, Herten DP, Sauer M. 2002. Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons. Anal Chem 74:5342–5349.

    CAS  Google Scholar 

  148. Ehrenberg M, Rigler R. 1974. Rotational brownian motion and fluorescence intensity fluctuations. Chem Phys 4:390–401.

    CAS  Google Scholar 

  149. Kask P, Piksarv P, Pooga M, Mets Ü, Lippmaa E. 1989. Separation of the rotational contribution in fluorescence correlation experiments. Biophys J 55:213–220.

    Google Scholar 

  150. Ehrenberg M, Rigler R. 1976. Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q Rev Biophys 9(1):69–81.

    CAS  Google Scholar 

  151. Mets Ü. 2001. Antibunching and rotational diffusion in FCS. In Fluorescence correlation spectroscopy: theory and applications, pp. 346–359. Ed R Rigler, ES Elson. Springer, New York.

    Google Scholar 

  152. Kask P, Piksarv P, Mets Ü, Pooga M, Lippmaa E. 1987. Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B. Eur Biophys J 14:257–261.

    CAS  Google Scholar 

  153. Davidovich L. 1996. Sub-poissonian processes in quantum optics. Rev Mod Phys 68(1):127–173.

    CAS  Google Scholar 

  154. Kask P, Piksarv P, Mets Ü. 1985. Fluorescence correlation spec-troscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur Biophys J 12:163–166.

    CAS  Google Scholar 

  155. Basché Th, Moerner WE. 1992. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys Rev Lett 69(10):1516–1519.

    Google Scholar 

  156. Magde D, Webb WW, Elson EL. 1978. Fluorescence correlation spectroscopy: uniform translation and laminar flow. Biopolymers 17:361–376.

    CAS  Google Scholar 

  157. Van Orden A, Keller RA. 1998. Fluorescence correlation spec-troscopy for rapid multicomponent analysis in a capillary elec-trophoresis system. Anal Chem 70(21):4463–4471.

    Google Scholar 

  158. Brinkmeier M, Dorre K, Stephan J, Eigen M. 1999. Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal Chem 71:609–616.

    CAS  Google Scholar 

  159. Gosch M, Blom H, Holm J, Heino T, Rigler R. 2000. Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal Chem 72:3260–3265.

    Google Scholar 

  160. Lenne PF, Colombo D, Giovannini H, Rigneault H. 2002. Flow profiles and directionality in microcapillaries measured by fluorescence correlation spectroscopy. Single Mol 3:194–200.

    CAS  Google Scholar 

  161. Kunst BH, Schots. A, Visser AJWG. 2002. Detection of flowing fluorescent particles in a microcapillary using fluorescence correlation spectroscopy. Anal Chem 74:5350–5357.

    CAS  Google Scholar 

  162. Dittrich PS, Schwille P. 2002. Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Anal Chem 74:4472–4479.

    CAS  Google Scholar 

  163. Additional References To Fcs And Its Applications

    Google Scholar 

Binding Reactions

  • Daniel DC, Thompson M, Woodbury NW. 2002. DNA-binding interactions and conformational fluctuations with single molecule fluorescence spectroscopy. Biophys J 82:1654–1666.

    CAS  Google Scholar 

  • Foldes-Papp Z, Demel U, Tilz GP. 2002. Detection of single molecules: solution-phase single-molecule fluorescence correlation spec-troscopy as an ultrasensitive, rapid and reliable system for immuno-logical investigation. J Immunol Methods 260:117–124.

    CAS  Google Scholar 

  • Kral T, Langner M, Benes M, Baczynska D, Ugorski M, Hof M. 2002. The application of fluorescence correlation spectroscopy in detecting DNA condensation. Biophys Chem 95:135–144.

    CAS  Google Scholar 

  • Krouglova T, Amayed P, Engelborghs Y, Carlier M-F. 2003. Fluorescence correlation spectroscopy analysis of the dynamics of tubulin interaction with RB3. a stathmin family protein. FEBS Lett 546:365–368.

    CAS  Google Scholar 

  • Nishimura G, Kinjo M. 2004. Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal Chem 76:1963–1970.

    CAS  Google Scholar 

  • Sanchez SA, Brunet JE, Jameson DM, Lagos R, Monasterio O. 2004. Tubulin equilibrium unfolding followed by time-resolved fluorescence correlation spectroscopy. Protein Sci 13:81–88.

    CAS  Google Scholar 

  • Schubert F, Zettl H, Hafner W, Krauss G, Krausch G. 2003. Comparative thermodynamic analysis of DNA-protein interactions using surface plasmon resonance and fluorescence correlation spectroscopy. Biochemistry 42:10288–10294.

    CAS  Google Scholar 

  • Vercammen J, Maertens G, Gerard M, Clercq ED, Debyser Z, Endelborghs Y. 2002. DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation spectroscopy. J Biol Chem 277(41):38045–38052.

    CAS  Google Scholar 

  • Wolcke J, Reimann M, Klumpp M, Gohler T, Kim E, Deppert W. 2003. Analysis of p53 “latency” and “activation” by fluorescence correlation spectroscopy. J Biol Chem 278(35):32587–32595.

    Google Scholar 

  • Zettl H, Hafner W, Boker A, Schmalz H, Lanzendorfer M, Muller AHE, Krausch G. 2004. Fluorescence correlation spectroscopy of single dye-labeled polymers in organic solvents. Macromolecules 37:1917–1920.

    CAS  Google Scholar 

Classics

  • Aragón SR, Pecora R. 1976. Fluorescence correlation spectroscopy as a probe of molecular dynamics. J Chem Phys 64:1791–1803.

    Google Scholar 

  • Koppel DE, Axelrod D, Schléssinger J, Elson EL, Webb WW. 1976. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16:1315–1329.

    CAS  Google Scholar 

Data Analysis

  • Brock R, Hink MA, Jovin TM. 1998. Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J 75:2547–2557.

    CAS  Google Scholar 

  • Koppel DE. 1974. Statistical accuracy in fluorescence correlation spec-troscopy. Phys Rev A 10(6):1938–1945.

    Google Scholar 

  • Meseth U, Wohland T, Rigler R, Vogel H. 1999. Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631.

    CAS  Google Scholar 

  • Nishimura G, Kinjo M. 2004. Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal Chem 76:1963–1970.

    CAS  Google Scholar 

  • Perroud TD, Huang B, Wallace MI, Zare RN. 2003. Photon counting histogram for one-photon excitation. ChemPhysChem 4:1121–1123.

    CAS  Google Scholar 

  • Saffarian S, Elson EL. 2003. Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys J 84:2030–2042.

    CAS  Google Scholar 

  • Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S. 2003. Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys J 84:1977–1984.

    CAS  Google Scholar 

  • Van Craenenbroeck E, Matthys G, Beirlant J, Engelborghs Y. 1999. A statistical analysis of fluorescence correlation data. J Fluoresc 9(4):325–331.

    Google Scholar 

  • Wahl M, Gregor I, Patting M, Enderlein J. 2003. Fast calculation of fluorescence correlation data with asynchronous time-correlated singlephoton counting. Opt Express 11(26):3583–3591

    Google Scholar 

DNA Applications

  • Scalettar BA, Hearst JE, Klein MP. 1989. FRAP and FCS studies of self-diffusion and mutual diffusion in entangled DNA solutions. Macro-molecules 22:4550–4559.

    CAS  Google Scholar 

  • Lucas B, Remaut K, Braeckmans K, Haustraete J, Smedt SC, Demeester J. 2004. Studying pegylated DNA complexes by dual color fluorescence fluctuation spectroscopy. Macromolecules 37:3832–3840.

    CAS  Google Scholar 

Dual Color

  • Berland KM. 2004. Detection of specific DNA sequences using dual-color two-photon fluorescence correlation spectroscopy. J Biotechnol 108:127–136.

    CAS  Google Scholar 

  • Koltermann A, Kettling U, Stephan J, Rarbach M, Winkler T, Eigen M. 2001. Applications of dual-color confocal fluorescence spectroscopy in biotechnology. In Single molecule spectroscopy. Ed R Rigler, M Orrit, T Basché. Springer, New York.

    Google Scholar 

Image Correlation Spectroscopy

  • Huang Z, Thompson NL. 1996. Imaging fluorescence correlation spec-troscopy: nonuniform IgE distributions on planar membranes. Bio-phys J 70:2001–2007.

    CAS  Google Scholar 

  • Palmer AG, Thompson NL. 1989. Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy. Appl Opt 28(6):1214–1220.

    CAS  Google Scholar 

  • Petersen NO, Brown C, Kaminski A, Rocheleau J, Srivastava M, Wiseman PW. 1998. Analysis of membrane protein cluster densities and sizes in situ by image correlation spectroscopy. Faraday Discuss 111:289–305.

    CAS  Google Scholar 

  • Petersen NO, Hoddelius PL, Wiseman PW, Seger O, Magnusson KE. 1993. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146.

    CAS  Google Scholar 

  • Vanden Broek W, Huang Z, Thompson NL. 1999. High-order autocorrelation with imaging fluorescence correlation spectroscopy: application to IgE on supported planar membranes. J Fluoresc 9(4):313–324.

    CAS  Google Scholar 

  • Wiseman PW, Petersen NO. 1999. Image correlation spectroscopy: optimization for ultrasensitive detection of preexisting platelet-derived growth factor-β receptor oligomers on intact cells. Biophys J 76:963–977.

    CAS  Google Scholar 

Instrumentation

  • Lamb DC, Schenk A, Rocker C, Scalfi-Happ C, Nienhaus GU. 2000. Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys J 79:1129–1138.

    CAS  Google Scholar 

  • Mukhopadhyay A, Zhao J, Bae SC, Granick S. 2003. An integrated platform for surface forces measurements and fluorescence correlation spectroscopy. Rev Sci Instrum 74(6):3067–3072.

    CAS  Google Scholar 

  • Ruckstuhl T, Seeger S. 2004. Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy. Opt Lett 29(6):569–571.

    Google Scholar 

  • Sorscher SM, Klein MP. 1980. Profile of a focused collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy. Rev Sci Instrum 51(1):98–102.

    CAS  Google Scholar 

Intracellular

  • Braun K, Peschke P, Pipkorn R, Lampel S, Wachsmuth M, Waldeck W, Friedrich E, Debus J. 2002. A biological transporter for the delivery of peptide nucleic acids (PNAs) to the nuclear compartment of living cells. J Mol Biol 318:237–343.

    CAS  Google Scholar 

  • Brock R, Jovin TM. 1998. Fluorescence correlation microscopy (FCM)–fluorescence correlation spectroscopy (FCS) taken into the cell. Cell Mol Biol 44(5):847–856.

    CAS  Google Scholar 

  • Brock R, Vamosi G, Vereb G, Jovin TM. 1999. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:10123–10128.

    CAS  Google Scholar 

  • Politz JC, Browne ES, Wolf DE, Pederson T. 1998. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:6043–6048.

    CAS  Google Scholar 

  • Wachsmith M, Weidemann T, Muller G, Hoffmann-Rohrer UW, Knoch TA, Waldeck W, Langowski J. 2003. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84:3353–3363.

    Google Scholar 

  • Wang Z, Shah JV, Chen Z, Sun C, Berns MW. 2004. Fluorescence correlation spectroscopy investigation of a GFP mutant-enhanced cyan fluorescent protein and its tubulin fusion in living cells with two-photon excitation. J Biomed Opt 9(2):395–403.

    CAS  Google Scholar 

Kinetics

  • Bismuto E, Gratton E, Lamb DC. 2001. Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Biophys J 81:3510–3521.

    CAS  Google Scholar 

  • Rigler R, Edman L, Földes-Papp Z, Wennmalm S. 2001. Fluorescence correlation spectroscopy in single-molecule analysis: enzymatic catalysis at the single molecule level in Single molecule spectroscopy. Ed R Rigler, M Orrit, T Basché. Springer, New York.

    Google Scholar 

  • Widengren J, Dapprich J, Rigler R. 1997. Fast interactions between Rh6G and dGtTP in water studied by fluorescence correlation spec-troscopy. Chem Phys 216:417–426.

    CAS  Google Scholar 

Membranes

  • Briddon SJ, Middleton RJ, Yates AS, George MW, Kellam B, Hill SJ. 2004. Application of fluorescence correlation spectroscopy to the measurement of agonist binding to a G-protein coupled receptor at the single cell level. Faraday Discuss 126:197–207.

    CAS  Google Scholar 

  • Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW. 1977. Lateral diffusion in planar lipid bilayers. Science 195:305–306.

    CAS  Google Scholar 

  • Fahey PF, Webb WW. 1978. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry 17:3046–3053.

    CAS  Google Scholar 

  • Palmer III AG, Thompson NL. 1989. Fluorescence correlation spec-troscopy for detecting submicroscopic clusters of fluorescent molecules in membranes. Chem Phys Lipids 50:253–270.

    CAS  Google Scholar 

Moments and Higher Orders

  • Palmer III AG, Thompson NL. 1987. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spec-troscopy. Biophys J 52:257–270.

    CAS  Google Scholar 

  • Palmer III AG, Thompson NL. 1989. Optical spatial intensity profiles for high-order autocorrelation in fluorescence spectroscopy. Appl Opt 28(6):1214–1220.

    CAS  Google Scholar 

  • Palmer III AG, Thompson NL. 1989. High-order fluorescence fluctuation analysis of model protein clusters. Proc Natl Acad Sci USA 86:6148–6152.

    CAS  Google Scholar 

  • Palmer III AG, Thompson NL. 1989. Intensity dependence of high-order autocorrelation functions in fluorescence correlation spectroscopy. Rev Sci Instrum 60(4):624–633.

    CAS  Google Scholar 

  • Qian H, Elson EL. 2004. Fluorescence correlation spectroscopy with highorder and dual-color correlation to probe nonequilibrium steady states. Proc Natl Acad Sci USA 101(9):2828–2833.

    CAS  Google Scholar 

  • Qian H, Elson EL. 1990. On the analysis of high order moments of fluorescence fluctuations. Biophys J 57:375–380.

    CAS  Google Scholar 

Novel Methods

  • Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CAM. 2001. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86:163–180.

    CAS  Google Scholar 

  • Hansen RL, Zhu XR, Harris JM. 1998. Fluorescence correlation spec-troscopy with patterned photoexcitation for measuring solution diffusion coefficients of robust fluorophores. Anal Chem 70:1281–1287.

    CAS  Google Scholar 

  • Lenne P-F, Etienne E, Rigneault H. 2003. Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures. Appl Phys Lett 80(22):4106–4108.

    Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. 2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686.

    CAS  Google Scholar 

  • Muller JD, Gratton E. 2003. High-pressure fluorescence spectroscopy. Biophys J 85:2711–2719.

    Google Scholar 

  • Rigneault H, Lenne P-F. 2003. Fluorescence correlation spectroscopy on a mirror. J Opt Soc Am B 20(10):2203–2214.

    CAS  Google Scholar 

  • Sonehara T, Kojima K, Irie T. 2002. Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary elec-trophoresis. Anal Chem 74:5121–5131.

    CAS  Google Scholar 

Photon Counting Histograms

  • Chirico G, Olivini F, Beretta S. 2000. Fluorescence excitation volume in two-photon microscopy by autocorrelation spectroscopy and photon counting histogram. Appl Spectrosc 54(7):1084–1090.

    CAS  Google Scholar 

  • Hillesheim LN, Müller JD. 2003. The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors. Biophys J 85:1948–1958.

    CAS  Google Scholar 

Proteins and FCS

  • Chattopadhyay K, Saffarian S, Elson EL, Frieden C. 2002. Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 99(22):14171–14176.

    CAS  Google Scholar 

  • Lippitz M, Erker W, Decker H, Van Holde KE, Basché T. 2002. Two-photon excitation microscopy of tryptophan-containing proteins. Proc Natl Acad Sci USA 99:2772–2777.

    CAS  Google Scholar 

Polymers and FCS

  • Sukhishvili SA, Chen Y, Müller JD, Gratton E, Schweizer KS, Granick S. 2000. Diffusion of a polymer “pancake.” Nature 406:146.

    CAS  Google Scholar 

Resonance Energy Transfer

  • Hom EFY, Verkman AS. 2002. Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spec-troscopy: enhanced resolution of kinetics by resonance energy transfer. Biophys J 83:533–545.

    CAS  Google Scholar 

  • Katiliene Z, Katilius E, Woodbury NW. 2003. Single molecule detection of DNA looping by NgoMIV restriction endonuclease. Biophys J 84:4053–4061.

    CAS  Google Scholar 

  • Margittai M, Widengren J, Schweinberger E, Schroder GF, Felekyan S, Haustein E, Konig M, Fasshauer D, Grubmuller H, Jahn R, Seidel CAM. 2003. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin. Proc Natl Acad Sci USA 100(26):15516–15521.

    CAS  Google Scholar 

  • Talaga DS, Leung Lau W, Roder H, Tang J, Jia Y, DeGrado WF, Hoch-strasser RM. 2000. Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc Natl Acad Sci USA 97(24):13021–13026.

    CAS  Google Scholar 

  • Widengren J, Schweinberger E, Berger S, Seidel CAM. 2001. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J Phys Chem A 105:6851–6866.

    CAS  Google Scholar 

Scanning FCS

  • Koppel DE, Morgan F, Cowan AE, Carson JH. 1994. Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys J 66:502–507.

    CAS  Google Scholar 

  • Palmer III AG, Thompson NL. 1987. Theory of sample translation in fluorescence correlation spectroscopy. Biophys J 51:339–343.

    Google Scholar 

  • Petersen NO. 1986. Scanning fluorescence correlation spectroscopy: theory and simulation of aggregation measurements. Biophys J 49:809–815.

    CAS  Google Scholar 

  • Petersen NO, Johnson DC, Schlesinger MJ. 1986. Scanning fluorescence correlation spectroscopy: application to virus glycoprotein aggregation. Biophys J 49:817–820.

    CAS  Google Scholar 

Reviews

  • Valeur B, Brochon J-C., ed. 2001. New trends in fluorescence spec-troscopy: applications to chemical and life sciences. Springer, New York.

    Google Scholar 

  • Webb WW. 2001. Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus. Appl Opt 40(24):3969–3983.

    CAS  Google Scholar 

Theory of FCS

  • Edman L. 2000. Theory of fluorescence correlation spectroscopy on single molecules. J Phys Chem A 104:6165–6170.

    CAS  Google Scholar 

  • Enderlein J. 1996. Path integral approach to fluorescence correlation experiments. Phys Lett A 221:427–433.

    CAS  Google Scholar 

  • Enderlein J, Gregor I, Patra D, Fitter J. 2004. Art and artifacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5:155–161.

    CAS  Google Scholar 

  • Generich A, Schild D. 2000. Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79:3294–3306.

    Google Scholar 

  • Hess ST, Webb WW. 2002. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317.

    CAS  Google Scholar 

  • Hoshikawa H, Asai H. 1985. On the rotational Brownian motion of a bacterial idle motor, II: theory of fluorescence correlation spectroscopy. Biophys Chem 22:167–172.

    CAS  Google Scholar 

  • Qian H, Elson EL. 1991. Analysis of confocal laser-microscopy optics for 3-D fluorescence correlation spectroscopy. Appl Opt 30(10):1185–1195.

    CAS  Google Scholar 

  • Scalettar BA, Klein MP, Hearst JE. 1987. A theoretical study of the effects of driven motion on rotational correlations of biological systems. Biopolymers 26:1287–1299.

    CAS  Google Scholar 

  • Starchev K, Zhang J, Buffle J. 1998. Applications of fluorescence correlation spectroscopy-particle size effect. J Colloid Interface Sci 203:189–196.

    CAS  Google Scholar 

Total Internal Reflection

  • Thompson NL, Axelrod D. 1983. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J 43:103–114.

    CAS  Google Scholar 

  • Thompson NL, Pearce KH, Hsieh HV. 1993. Total internal reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur Biophys J 22:367–378.

    CAS  Google Scholar 

  • Thompson NL, Lagerholm BC. 1997. Total internal reflection fluorescence: applications in cellular biophysics. Curr Opin Biotechnol 8:58–64.

    CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Fluorescence Correlation Spectroscopy. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_24

Download citation

Publish with us

Policies and ethics