Skip to main content

Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

After formulating this philosophic question in a poetic form, Leonardo the Scientist, provides us with a real experimental (optical) setup. “As I propose to treat the nature of the moon, it is necessary that I first describe the perspective of mirrors, whether plane, concave, or convex,” (B.M.94r – Arundel MS in British Museum). Next, in the pages of Codex Atlanticus (C.A.190r), Leonardo invites us to “Construct the glasses to see the moon magnified” and half a millennium later we are still following him for, as Bulgakov famously said, “Manuscripts do not burn!”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacia, K., Majoul, I.V., and Schwille, P., 2002, Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis, Biophys. J. 83:1184–1193.

    CAS  Google Scholar 

  • Bastiaens, P.I.H., and Jovin, T.M., 1998, Fluorescence resonance energy transfer (FRET) microscopy, In: Cell Biology: A Laboratory Handbook (J.E. Celis, ed.), Academic Press, New York, pp. 136–146.

    Google Scholar 

  • Bastiaens, P.I.H., and Pepperkok, R., 2000, Observing proteins in their natural habitat: The living cell, Trends Biochem. Sci. 25:631–637.

    CAS  Google Scholar 

  • Bastiaens, P.I., and Squire, A., 1999, Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell, Trends Cell Biol. 9:48–52.

    Article  CAS  PubMed  Google Scholar 

  • Bastiaens, P.I.H., Majoul, I.V., Verveer, P.J., Soling. H.D., and Jovin, T.M., 1996, Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin, EMBO J. 15:4246–4253.

    CAS  PubMed  Google Scholar 

  • Bezzi, P., Gundersen, V., Galbete, J.L., Seifert, G., Steinhauser, C., Pilati, E., and Volterra, A., 2004, Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate, Nat. Neurosci. 7:613–620.

    CAS  Google Scholar 

  • Blackman, S.M., Piston, D.W., and Beth, A.H., 1998, Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer, Biophys. J. 75:1117–1130.

    CAS  Google Scholar 

  • Blinks, J.R., Mattingly, P.H., Jewell, B.R., van Leeuwen, M., Harrer, G.C., and Allen, D.G., 1978, Practical aspects of the use of aequorin as a calcium indicator: Assay, preparation, microinjection, and interpretation of signals, Methods Enzymol. 57:292–328.

    CAS  Google Scholar 

  • Bunt, G., and Wouters, F.S., 2004, Visualization of molecular activities inside living cells with fluorescent labels, Int. Rev. Cytol. 237:205–277.

    Article  CAS  PubMed  Google Scholar 

  • Butkevich, E., Hulsmann, S., Wenzel, D., Shirao, T., Duden, R., and Majoul, I., 2004, Drebrin stabilizes connexin-43 and links gap junctions to the submembrane cytoskeleton, Curr. Biol. 14:650–658.

    CAS  Google Scholar 

  • Campbell, R.E., Tour, R., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y., 2002, A monomeric red fluorescent protein, Proc. Natl. Acad. Sci. USA 99:7877–7882.

    Article  CAS  PubMed  Google Scholar 

  • Chalfie, M., 1995, Green fluorescent protein, Photochem. Photobiol. 62:651–656.

    Article  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1994, Green fluorescent protein as a marker for gene expression, Science 263:802–805.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.R., Zhuang, Z.P., Chacko, A.M, Acton, P.D., Tjuvajer-Gelovani, J., Doubrovin, M., Chu, D.C., and Kung, H.F., 2005, SPECT imaging of herpes simplex virus Type1 thymidine kinase gene expression by [(123)I]FIAU(1). Acad. Radiol. 12:798–805.

    Article  PubMed  Google Scholar 

  • Clegg, R.M., 1992, Fluorescence resonance energy transfer and nucleic acids, Methods Enzymol. 211:353–388.

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Cory, S., 2002, The developing synapse: Construction and modulation of synaptic structures and circuits, Science 298:770–776.

    Article  CAS  PubMed  Google Scholar 

  • Cole, N.B., Smith, C.L., Sciaky, N., Terasaki, M., Edidin, M., and Lippincott-Schwartz, J., 1996, Diffusional mobility of Golgi proteins in membranes of living cells, Science 273:797–801.

    Article  CAS  PubMed  Google Scholar 

  • Conn, P.M., ed., 1991, Electrophysiology and Microinjection, Academic Press, London.

    Google Scholar 

  • Del Pozo, M.A., Kiosses, W.B., Alderson, N.B., Meller, N., Hahn, K.M., and Schwartz, M.A., 2002, Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI, Nat. Cell Biol. 4:232– 239.

    Google Scholar 

  • Elsliger, M.A., Wachter, R.M., Hanson, G.T., Kallio, K., and Remington, S.J., 1999, Structural and spectral response of green fluorescent protein variants to changes in pH, Biochemistry 38:5296–5301.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, M.G., Moon, D.L., and Yue, D.T., 2003, DsRed as a potential FRET partner with CFP and GFP, Biophys. J. 85:599–611.

    CAS  Google Scholar 

  • Förster, V.T., 1948a, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. 6:54–75.

    Google Scholar 

  • Förster, T.H., 1948b, Versuche zum zwischenmolekularen Ubergang von Elektronenanregungsenergie, Naturwissenschaften 33:93–100.

    Google Scholar 

  • Galperin, E., Verkhusha, V.V., and Sorkin, A., 2004, Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells, Nat. Methods 1:209–217.

    CAS  Google Scholar 

  • Gerritsen, H.C., and de Grauw, K., 2001, One- and two-photon confocal fluorescence lifetime imaging and its applications, In: Methods in Cellular Imaging (A. Periasamy, ed.), Oxford University Press, New York, pp. 309–323.

    Google Scholar 

  • Gordon, G.W., Berry, G., Liang, X.H., Levine, B., and Herman, B., 1998, Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy, Biophys. J. 74:2702–2713.

    CAS  Google Scholar 

  • Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., and Tsien, R.Y., 2001, Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications, J. Biol. Chem. 276:29188–29194.

    Article  CAS  PubMed  Google Scholar 

  • Grutzendler, J., Tsai, J., and Gan, W.B., 2003, Rapid labeling of neuronal populations by ballistic delivery of fluorescent dyes, Methods 30:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Ha, T., Ting, A.Y., Liang, J., Caldwell, B., Deniz, A.A., Chemla, D.S., Schultz, P.G., and Weiss, S., 1999, Single molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism, Proc. Natl. Acad. Sci. USA 96:893–898.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, K., 2003, Monitoring signaling processes in living cells using biosensors, Sci. STKE 205:tr5. [DOI: 10.1126/stke.2003.205.tr5]

    Google Scholar 

  • Heim, R., Cubitt, A.B., and Tsien, R.Y., 1995, Improved green fluorescence, Nature, 373(6516):663–664.

    Article  CAS  PubMed  Google Scholar 

  • Heim, R., and Tsien, R.Y., 1996, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Curr. Biol. 6:178–182.

    CAS  Google Scholar 

  • Heim, R., Prasher, D.C., and Tsien, R.Y., 1994, Wavelength mutations and posttranslational autooxidation of green fluorescent protein, Proc. Natl. Acad. Sci. USA 91:12501–12504.

    Article  CAS  PubMed  Google Scholar 

  • Hell, S.W., 2003, Toward fluorescence nanoscopy, Nat. Biotechnol. 21:1347–1355.

    Article  CAS  Google Scholar 

  • Herman, B., Gordon, G., Mahajan, N., and Centonze, V.E., 2001, Measurement of fluorescence resonance energy transfer in the optical microscope, In: Methods in Cellular Imaging, (A. Periasamy, ed.), Oxford University Press, New York, pp. 257–272.

    Google Scholar 

  • Hirose, S.K., Kadowaki, M., Tanabe, H., Takeshima, and Iino, M., 1999, Spatiotemporal dynamics of inositol 1,4,5-triphosphate that underlines complex Ca2+ mobilization patterns, Science 248:1527–1530.

    Article  Google Scholar 

  • Hoppe, A., Christensen, K., and Swanson, J.A., 2002, Fluorescence resonance energy transfer-based stoichiometry in living cells, Biophys. J. 83:3652–3664.

    CAS  Google Scholar 

  • Hurtley, S.M., and Helmuth, L., 2003, The future looks bright, Science 300:75. Janetopoulos, C., Jin, T., and Devreotes, P., 2001, Receptor-mediated activation of heterotrimeric G-proteins in living cells, Science 291:2408– 2411.

    Google Scholar 

  • Jones, J.T., Myers, J.W., Ferrell, J.E., and Meyer, T., 2004, Probing the precision of the mitotic clock with a live-cell fluorescent biosensor, Nat. Biotech. 22:306–312.

    Article  CAS  Google Scholar 

  • Johnson, D.A., Voet, J.G., and Taylor, P., 1984, Fluorescence energy transfer between cobra a-toxin molecules bound to the acetylcholine receptor, J. Biol. Chem. 259:5717–5725.

    CAS  PubMed  Google Scholar 

  • Kohen, E., Legallais, V., and Kohen, C., 1966, An introduction to microelectrophoresis and microinjection techniques in microfluorimetry, Exp. Cell Res. 41:223–226.

    Article  CAS  Google Scholar 

  • Kenworthy, A.K., and Edidin, M., 1998, Distribution of a glycosyl phosphatidyl inositol-anchored protein at the apical surface of MDCK cells examined at a resolution of >100Å using imaging fluorescence resonance energy transfer, J. Cell Biol. 142:69–84.

    Article  CAS  Google Scholar 

  • Kim, S.A., and Schwille, P., 2003, Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience, Curr. Opin. Neurobiol. 13:583–590.

    Article  CAS  PubMed  Google Scholar 

  • Kraynov, V.S., Chamberlain, C., Bokoch, G.M., Schwartz, M.A., Slabaugh, S., and Hahn, K.M., 2000, Localized Rac activation dynamics visualized in living cells, Science 290:333–337.

    Article  CAS  PubMed  Google Scholar 

  • Kusumi, A., Ike, H., Nakada, C., Murase, K., and Fujiwara, T., 2005, Singlemolecule tracking of membrane molecules: Plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules, Semin. Immunol. 17:3–21.

    CAS  Google Scholar 

  • Labas, Y.A., Gurskaya, N.G., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Lukyanov, S.A., and Matz, M.V., 2002, Diversity and evolution of the green fluorescent protein family, Proc. Natl. Acad. Sci. USA 99:4256–4261.

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz, J.R., 1999, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York, pp. 367–394.

    Google Scholar 

  • Larson, D.R., Ma, Y.M., Vogt, V.M., and Webb, W.W., 2004, Direct measurement of Gag–Gag interaction retrovirus assembly with FRET and fluorescence correlation spectroscopy, J. Cell Biol. 162:1233–1244.

    Article  Google Scholar 

  • Lippincott-Schwartz, J., and Patterson, G.H., 2003, Development and use of fluorescent protein markers in living cells, Science 300:87–91.

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H., 2003, Photobleaching and photoactivation: following protein dynamics in living cells, Nat. Cell Biol. (Suppl.):S7–S14.

    Google Scholar 

  • Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A., 2001, Studying protein dynamics in living cells, Nat. Rev. Mol. Cell Biol. 2:444–456.

    Article  CAS  PubMed  Google Scholar 

  • Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H., Jares-Erijman, E.A., and Jovin, T.M., 2004, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction, Nat. Biotechnol. 22:198–203.

    Article  CAS  Google Scholar 

  • Magde, D., Elson, E., and Webb, W.W., 1972, Thermodynamic fluctuations in a reacting system. Measurement by fluorescence correlation spectroscopy, Phys. Rev Lett. 29:705–708.

    Article  CAS  Google Scholar 

  • Majoul, I., Schmidt, T., Pomasanova, M., Boutkevich, E., Kozlov, Y., and Söling, H.D., 2002a, Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle, J. Cell Sci. 115:817–826.

    CAS  Google Scholar 

  • Majoul, I., Sohn, K., Wieland, F.T., Pepperkok, R., Pizza, M., Hillemann, J., and Söling, H.D., 1998, KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p, J. Cell Biol. 143:601–612.

    Article  CAS  Google Scholar 

  • Majoul, I., Straub, M., Hell, S.W., Duden, R., and Söling, H.D., 2001, KDELcargo regulates interactions between proteins involved in COPI vesicle traffic: Measurements in living cells using FRET, Dev. Cell 1:139–153.

    CAS  Google Scholar 

  • Majoul, I., Straub, M., Duden, R., Hell, S.W., and Söling, H.D., 2002b, Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy, J. Biotechnol. 82:267–277.

    CAS  Google Scholar 

  • Majoul, I.V., Bastiaens, P.I., and Söling, H.D., 1996, Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: Studies with cholera toxin in Vero cells, J. Cell Biol. 133:777–789.

    Article  CAS  Google Scholar 

  • Mattheyses, A.L., Hoppe, A.D., and Axelrod, D., 2004, Polarized fluorescence resonance energy transfer microscopy, Biophy. J. 87:2787–2797.

    CAS  Google Scholar 

  • Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Markelov, M.L., and Lukyanov, S.A., 1999, Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol. 17:969–973.

    Article  CAS  Google Scholar 

  • Meyer, T., and Teruel, M.N., 2003, Fluorescence imaging of signaling networks, Trends Cell Biol. 13:101–106.

    Article  CAS  PubMed  Google Scholar 

  • Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., 2005, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307:538–544.

    Article  CAS  PubMed  Google Scholar 

  • Miesenbock, G., De Angelis, D.A., and Rothman, J.E., 1998, Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins, Nature 394:192–195.

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R.Y., 1999, Dynamic and quantitative Ca2+ measurements using improved chameleons, Proc. Natl. Acad. Sci. USA 96:2135–2140.

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388:882–887.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T., Miyawaki, A., and Matsuda, M., 2001, Spatio-temporal images of growth-factorinduced activation of Ras and Rap1, Nature 411:1065–1068.

    Article  CAS  PubMed  Google Scholar 

  • Nicholl, C., 2004, Leonardo da Vinci — The flights of the mind, Allen Lane, Penguin Books Ltd., London.

    Google Scholar 

  • Patterson, G., Day, R., and Piston, D., 2001, Fluorescent protein spectra, J. Cell Sci. 114:837–838.

    CAS  Google Scholar 

  • Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R., and Piston, D.W., 1997, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophys. J. 73:2782–2790.

    CAS  Google Scholar 

  • Patterson, G.H., Piston, D.W., and Barisas, B.G., 2000, Forster distances between green fluorescent protein pairs, Anal. Biochem. 284:438–440.

    CAS  Google Scholar 

  • Periasamy, A., Elangovan, M., Wallrabe, H., Demas, J.N., Barroso, M., Brautigan, D.L., and Day, R.N., 2001, Widefield, confocal, two-photon and lifetime resonance energy transfer imaging microscopy, In: Methods in Cellular Imaging, (A. Periasamy, ed.), Oxford University Press, New York, pp. 295–308.

    Google Scholar 

  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., 1992, Primary structure of the Aequorea victoria green-fluorescent protein, Gene 111:229–233.

    Article  CAS  PubMed  Google Scholar 

  • Presley, J.F., Ward, T.H., Pfeifer, A.C., Siggia, E.D, Phair, R.D., and Lippincott-Schwartz, J., 2002, Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport, Nature 417:187–193.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Sato, M., Ozawa, T., Inukai, K., Asano, T., and Umezawa, Y., 2002, Fluorescent indicators for imaging protein phosphorylation in single living cells, Nat. Biotechnol. 20:287–294.

    Article  CAS  Google Scholar 

  • Sato, M., Ueda, Y., Takagi, T., and Umezawa, Y., 2003, Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis, Nat. Cell Biol. 5:1016–1022.

    CAS  Google Scholar 

  • Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y., 2004, Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nat. Biotechnol. 22:1567–1572.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, D.J., and Allan, V.J., 2003, Light microscopy techniques for live cell imaging, Science 300:82–86.

    Article  CAS  PubMed  Google Scholar 

  • Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47:819–846.

    Article  CAS  PubMed  Google Scholar 

  • Stryer, L., and Haugland, R.P., 1967, Energy transfer: A spectroscopic ruler, Proc. Natl. Acad. Sci. USA 58:719–726.

    Article  CAS  PubMed  Google Scholar 

  • Ting, A.Y., Kain, K.H., Klemke, R.L., and Tsien, R.Y., 2001, Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells, Proc. Natl. Acad. Sci. USA 98:15003–15008.

    Article  CAS  PubMed  Google Scholar 

  • Tron, L., Szollosi, J., Damjanovich, S., Helliwell, S.H., Arndt-Jovin, D.J., and Jovin, T.M., 1984, Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis, Biophys. J. 45:939–946.

    Article  CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 1998, The green fluorescent protein, Annu. Rev. Biochem 67:509–544.

    Article  CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 2004, Building and breeding molecules to spy on cells and tumors, FEBS Lett. 579:927–932.

    Article  Google Scholar 

  • Umezawa, Y., 2005, Genetically encoded optical probes for imaging cellular signalling pathways, Biosens. Bioelectron. 20:2504–2511.

    Article  CAS  Google Scholar 

  • Velez, M., and Axelrod, D., 1988, Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes, Biophys J. 53:575–591.

    Article  CAS  PubMed  Google Scholar 

  • Violin, J.D., Zhang, J., Tsien, R.Y., and Newton, A.C., 2003, A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C, J. Cell Biol. 161:899–909.

    Article  CAS  Google Scholar 

  • Wakayama, S., Cibelli, J.B., and Wakayama, T., 2003, Effect of timing of the removal of oocyte chromosomes before or after injection of somatic nucleus on development of NT embryos, Cloning Stem Cells 5:181–189.

    Article  CAS  PubMed  Google Scholar 

  • Ward, W.W., Prentice, H.J., Roth, A.F., Cody, C.W., and Reeves, S.C., 1982, Spectral perturbations of the Aequorea green fluorescent protein, Photochem. Photobiol. 35:803–808.

    Article  CAS  Google Scholar 

  • Weijer, C.J., 2003, Visualizing signals moving in cells, Science 300:96–100.

    Article  CAS  PubMed  Google Scholar 

  • Wouters, F.S., Verveer, P.J., and Bastiaens, P.I., 2001, Imaging biochemistry inside cells, Trends Cell Biol. 11:203–211.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., 2003, Multicolor labeling of cells using QdotTM streptavidin conjugates, Quantum Dot Vision 1:10–11.

    Google Scholar 

  • Zal, T., and Gascoigne, N.R.J., 2004, Photobleaching-corrected FRET efficiency imaging of live cells, Biophys. J. 86:3923–3939.

    CAS  Google Scholar 

  • Zhang, J., Ma, Y., Taylor, S.S., and Tsien, R.Y., 2001, Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering, Proc. Natl. Acad. Sci. USA 98:14997–15002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Majoul, I., Jia, Y., Duden, R. (2006). Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_45

Download citation

Publish with us

Policies and ethics