Skip to main content

Related Methods for Three-Dimensional Imaging

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

The ability of confocal laser-scanning microscopy to collect stacks of optical sections has made three-dimensional (volumetric) imaging a standard analytical tool in experimental cell and developmental biology. Parallel developments in deconvolution techniques, especially as computational power increased and costs decreased, offered tools to make three-dimensional (3D) imaging from widefield as well as confocal microscopes possible. Despite the high spatial resolution provided by these 3D methods, they all suffer from a common limitation: light scattering in the specimen limits them to operating in the outer few hundred micrometers of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.J., and Meade, T.J., 2004, Magnetic resonance contrast agents for medical and molecular imaging. Met. Ions. Biol. Syst. 42:1–38.

    CAS  PubMed  Google Scholar 

  • Aoki, I., Wu, Y.J., Silva, A.C., Lynch, R.M., and Koretsky, A.P., 2004, In vivo detection of neuroarchitecture in the rodent brain using manganeseenhanced MRI, Neuroimage 22:1046–1059.

    Article  PubMed  Google Scholar 

  • As, H.V., and Lens, P., 2001, Use of 1H NMR to study transport processes in porous biosystems, J. Ind. Microbiol. Biotechnol. 26:43–52.

    Article  CAS  Google Scholar 

  • Bock, N.A., Konyer, N.B., and Henkelman, R.M., 2003, Multiple-mouse MRI, Magn. Reson. Med. 49:158–167.

    Article  PubMed  Google Scholar 

  • Boppart, S.A., Bouma, B.E., Pitris, C., Southern, J.F., Brezinski, M.E., and Fujimoto, J.G., 1998, In vivo cellular optical coherence tomography imaging, Nat. Med. 4:861–865.

    CAS  Google Scholar 

  • Boppart, S.A., Brezinski, M.E., Bouma, B.E., Tearney, G.J., and Fujimoto, J.G., 1996, Investigation of developing embryonic morphology using optical coherence tomography, Dev. Biol. 177:54–63.

    CAS  Google Scholar 

  • Boppart, S.A., Tearney, G.J., Bouma, B.E., Southern, J.F., Brezinski, M.E., and Fujimoto, J.G., 1997, Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography, Proc. Natl. Acad. Sci. USA 94:4256–4261.

    Article  CAS  PubMed  Google Scholar 

  • Callaghan, P.T., 1991, Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  • Chapon, C., Franconi, F., Roux, J., Marescaux, L., Le Jeune, J.J., and Lemaire, L., 2002, In utero time-course assessment of mouse embryo development using high resolution magnetic resonance imaging, Anat. Embryol. 206(1–2):131–137.

    CAS  Google Scholar 

  • Ciobanu, L., and Pennington, C.H., 2004, 3D micron-scale MRI of single biological cells, Solid State Nucl. Magn. Reson. 25:138–141.

    CAS  Google Scholar 

  • Dhenain, M., Ruffins, S.W., and Jacobs, R.E., 2001, Three-dimensional digital mouse atlas using high-resolution MRI, Dev. Biol. 232:458–470.

    CAS  Google Scholar 

  • Dixon, A.E., Damaskinos, S., Ribes, A., and Beesley, K.M., 1995, A new confocal scanning beam laser macroscope using a telecentric, f-theta laser scan lens, J. Microsc. 178:261–266.

    Google Scholar 

  • Edzes, H.T., van Dusschoten, D., and Van As, H., 1998, Quantitative T2 imaging of plant tissues by means of multi-echo MRI microscopy, Magn. Reson. Imaging 16(2):185–96.

    Article  CAS  PubMed  Google Scholar 

  • Ewald, A.J., McBride, H., Reddington, M., Fraser, S.E., and Kerschmann, R., 2002, Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution, Dev. Dyn. 225:369–375.

    Article  Google Scholar 

  • Ewald, A.J., Peyrot, S.M., Tyszka, J.M., Fraser, S.E., and Wallingford, J.B., 2004, Regional requirements for Dishevelled signaling during Xenopus gastrulation: Separable effects on blastopore closure, mesendoderm internalization and archenteron formation, Development 131:6195–6209.

    Article  CAS  PubMed  Google Scholar 

  • Fercher, A.F., 1996, Optical coherence tomography, J. Biomed. Opt. 1:157–173.

    Article  Google Scholar 

  • Foster-Gareau, P., Heyn, C., Alejski, A., and Rutt, B.K., 2003, Imaging single mammalian cells with a 1.5T clinical MRI scanner, Magn. Reson. Med. 49:968–971.

    Article  PubMed  Google Scholar 

  • Grant, S.C., Buckley, D.L., Gibbs, S., Webb, A.G., and Blackband, S.J., 2001, MR microscopy of multicomponent diffusion in single neurons, Magn. Reson. Med. 46:1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Haskell, R.C., Williams, M.E., Petersen, D.C., et al., 2004, Visualizing early frog development with motion-sensitive 3-D optical coherence microscopy, In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, IEEE, San Francisco, CA, USA.

    Google Scholar 

  • Herman, G.T., 1980, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, San Francisco.

    Google Scholar 

  • Hinds, K.A., Hill, J.M., Shapiro, E.M., et al., 2003, Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles

    Google Scholar 

  • allows magnetic resonance imaging of single cells, Blood 102:867–872.

    Google Scholar 

  • Hoeling, B.M., Fernandez, A.D., Haskell, R.C., and Petersen, D.C., 2001, Phase modulation at 125 kHz in a Michelson interferometer using an inexpensive piezoelectric stack driven at resonance, Rev. Sci. Instrum. 72:1630–1633.

    Article  CAS  Google Scholar 

  • Hoeling, B.M., Fernandez, A.D., Haskell, R.C., Huang, E., Meyers, W.R., Petersen, D.C., Ungersma, S.E., Wang, R., and Williams, M.E., 2000, An optical coherence microscope for 3-dimensional imaging in developmental biology, Opt. Express 6:136–146.

    Article  CAS  Google Scholar 

  • Holdsworth, D.W., and Thornton, M.M., 2002, MicroCT in small animal and specimen imaging, Trends Biotechnol. 20(Suppl.):S34–S39.

    Google Scholar 

  • Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W.,

    Google Scholar 

  • Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., Fujimoto, J.G., 1991, Opt. Coherence Tomogr. Sci. 254:1178–1181.

    Google Scholar 

  • Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E.H.K., 2004, Optical sectioning deep inside live embryos by selective plane illumination microscopy, Science 305:1007–1009.

    Article  CAS  PubMed  Google Scholar 

  • Izatt, J.A., Kulkarni, M.D., Wang, H.-W., Kobayashi, K., and Sivak, M.V. Jr., 1996, Optical coherence tomography and microscopy in gastrointestinal tissues, IEEE J. Sel. Topics Quant. Electron. 2:1017–1028.

    Article  CAS  Google Scholar 

  • Jacobs, R.E., Ahrens, E.T., Dickinson, M.E., and Laidlaw, D., 1999, Towards a microMRI atlas of mouse development, Comput. Med. Imaging Graph.23(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, R.E., Papan, C., Ruffins, S., Tyszka, J.M., and Fraser, S.E., 2003, MRI: Volumetric imaging for vital imaging and atlas construction, Nat. Cell Biol. Ss10–Ss16.

    Google Scholar 

  • Jiang, Y., Pandya, K., Smithies, O., and Hsu, E.W., 2004, Three-dimensional diffusion tensor microscopy of fixed mouse hearts, Magn. Reson. Med.52:453–460.

    Article  PubMed  Google Scholar 

  • Johnson, G.A., Benveniste, H., Black, R.D., Hedlund, L.W., Maronpot, R.R., and Smith, B.R., 1993, Histology by magnetic resonance microscopy, Magn. Reson. Q 9:1–30.

    CAS  PubMed  Google Scholar 

  • Johnson, G.A., Cofer, G.P., Fubara, B., Gewalt, S.L., Hedlund, L.W., and Maronpot, R.R., 2002a, Magnetic resonance histology for morphologic phenotyping, J. Magn. Reson. Imaging 16:423–429.

    Article  PubMed  Google Scholar 

  • Johnson, G.A., Cofer, G.P., Gewalt, S.L., and Hedlund, L.W., 2002b, Morphologic phenotyping with MR microscopy: The visible mouse, Radiology 222:789–793.

    Article  PubMed  Google Scholar 

  • Keng, W.T., Sharpe, J., et al., 2002, Optical projection tomographic examination of miscarried human embryos, J. Med. Genet. 39:S23–S23.

    Google Scholar 

  • Kerwin, J., Scott, M., Sharpe, J., et al., 2004, 3 dimensional modelling of early human brain development using optical projection tomography, BMC Neurosci. 5:27–27.

    Article  PubMed  Google Scholar 

  • Kockenberger, W., 2001, Nuclear magnetic resonance micro-imaging in the investigation of plant cell metabolism, J. Exp. Bot. 52(356):641–652.

    Article  CAS  PubMed  Google Scholar 

  • Kockenberger, W., De Panfilis, C., Santoro, D., Dahiya, P., and Rawsthorne, S., 2004, High resolution NMR microscopy of plants and fungi, J. Micros. 214(Pt2):182–189.

    Google Scholar 

  • Kovacevic, N., Henderson, J.T., Chan, E., et al., 2005, Athree-dimensional MRI atlas of the mouse brain with estimates of the average and variability, Cereb. Cortex. 15(5):639–645.

    CAS  Google Scholar 

  • Kuchenbrod, E., Kahler, E., Thurmer, F., Deichmann, R., Zimmermann, U., and Haase, A., 1998, Functional magnetic resonance imaging in intactplants–quantitative observation of flow in plant vessels, Magn. Reson. Imaging 16:331–338.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.C., Kim, K., and Kim, J., 2001, One micrometer resolution NMR microscopy, J. Magn. Reson. 150:207–213.

    Article  CAS  PubMed  Google Scholar 

  • Lo, C., Nabel, E., and Balahan, R., 2003, Meeting report: NHLBI symposium on phenotyping: Mouse cardiovascular function and development, Physiol. Genomics 13(3):185–186.

    Google Scholar 

  • Louie, A.Y., Huber, M.M., Ahrens, E.T., et al., 2000, In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol.18(3):321–325.

    Article  CAS  PubMed  Google Scholar 

  • Mansfield, P., 1977, Multi-planar image formation using NMR spin echoes, J. Phys. C 10:L55–L58.

    Article  CAS  Google Scholar 

  • Manz, B., Volke, F., Goll, D., and Horn, H., 2003, Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI), Biotechnol. Bioeng. 84:424–432.

    Article  CAS  Google Scholar 

  • Masters, B.R., 1999, Early development of optical low-coherence reflectometry and some recent biomedical applications, J. Biomed. Opt. 4:236–247.

    Article  Google Scholar 

  • Matsuda, Y., Utsuzawa, S., Kurimoto, T., 2003, Super-parallel MR microscope, Magn. Reson. Med. 50:183–189.

    Article  PubMed  Google Scholar 

  • Papan, C., Velan, S.S., Fraser, S.E., and Jacobs, R.E., 2001, 3D time-lapse analysis of Xenopus gastrulation movements using mu MRI, Dev. Biol. 235:189.

    Google Scholar 

  • Paterson-Beedle, M., Nott, K.P., Macaskie, L.E., and Hall, L.D., 2001, Study of biofilm within a packed-bed reactor by three-dimensional magnetic resonance imaging, Methods Enzymol. 337:285–305.

    Article  CAS  PubMed  Google Scholar 

  • Paulus M.J., Gleason, S.S., Easterly, M.E., and Foltz, C.J., 2001, A review of high resolution X-ray computed tomography and other imaging modalities for small animal research, Lab. Animal 30(3):36–45.

    CAS  Google Scholar 

  • Paulus, M.J., Gleason, S.S., Kennel, S.J., Hunsicker, P.R., and Johnson, D.K., 2000, High-resolution x-ray computed tomography: An emerging tool for small animal cancer research, Neoplasia 2:62–70.

    Article  CAS  PubMed  Google Scholar 

  • Pautler, R.G., and Koretsky, A.P., 2002, Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging, Neuroimage 16:441–448.

    Article  PubMed  Google Scholar 

  • Pautler, R.G., Mongeau, R., and Jacobs, R.E., 2003, In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI), Magn. Reson. Med. 50:33–39.

    Article  PubMed  Google Scholar 

  • Pickhardt, P.J., Halberg, R.B., Taylor, A.J., Durkee, B.Y., Fine, J., Lee, Jr., F.T., and Weichert, J.P., 2005, Microcomputed tomography colonography for polyp detection in an in vivo mouse tumor model. PNAS 102:3419–3422.

    Article  CAS  PubMed  Google Scholar 

  • Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., and DiChiro, G., 1996, Diffusion tensor MR imaging of the human brain, Radiology 201:637–648.

    CAS  PubMed  Google Scholar 

  • Robson, S.C., Woods, H.M., et al., 2004, 3-dimensional modelling of human development using optical projection tomography, J. Soc. Gynecol. Invest. 11:296A.

    Google Scholar 

  • Rollins, A.M., and Izatt, J.A., 1999, Optimal interferometer designs for optical coherence tomography, Opt. Lett. 24:1484–1486.

    CAS  Google Scholar 

  • Rollins, A.M., Kulkarni, M.D., Yazdanfar, S., Ung-arunyawee, R., and Izatt, J.A., 1998, In vivo video rate optical coherence tomography, Opt. Express 3:219–229.

    Article  CAS  Google Scholar 

  • Segars, W.P., Tsui, B.M., Frey, E.C., Johnson, G.A., and Berr, S.S., 2004, Development of a 4-D digital mouse phantom for molecular imaging research, Mol. Imaging Biol. 6:149–159.

    Article  Google Scholar 

  • Seymour, J.D., Codd, S.L., Gjersing, E.L., and Stewart, P.S., 2004, Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor, J. Magn. Reson. 167:322–327.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, E.M., Skrtic, S., Sharer, K., Hill, J.M., Dunbar, C.E., and Koretsky, A.P., 2004, MRI detection of single particles for cellular imaging, Proc.Natl. Acad. Sci. USA 101:10901–10906.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe, J., 2003, Optical projection tomography as a new tool for studying embryo anatomy, J. Anat. 202:175–181.

    Article  Google Scholar 

  • Sharpe, J., 2004, Optical projection tomography, Annu. Rev. Biomed. Eng. 6:209–228.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe, J., Ahlgren, U., Perry, P., et al., 2002, Optical projection tomography as a tool for 3D microscopy and gene expression studies, Science 296:541–545.

    Article  CAS  PubMed  Google Scholar 

  • Song, S.K., Sun, S.W., Ramsbottom, M.J., Chang, C. Russell, J., and Cross, A.H., 2002, Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water, Neuroimage 17:1429–1436.

    Article  PubMed  Google Scholar 

  • Tearney, G.J., Bouma, B.E., Boppart, S.A., Golubovic, B., Swanson, E.A., and Fujimoto, J.G., 1996, Rapid acquisition of in vivo biological images by use of optical coherence tomography, Opt. Lett. 21:1408–1410.

    CAS  Google Scholar 

  • Tearney, G.J., Brezinski, M.E., Bouma, B.E., Boppart, S.A., Pitris, C., Southern, J.F., and Fujimoto, J.G., 1997, In vivo endoscopic optical biopsy with optical coherence tomography, Science 276:2037–2039.

    Article  CAS  PubMed  Google Scholar 

  • Tuch, D.S., Reese, T.G., Wiegell, M.R., and Wedeen, V.J., 2003, Diffusion MRI of complex neural architecture, Neuron 40:885–895.

    Article  CAS  PubMed  Google Scholar 

  • Weichert, J.P., 2004, Micro-computed tomography of mouse cancer models, In: Mouse Models of Human Cancer (E.C. Holland, ed.), John Wiley and Sons, New York, pp. 339–348.

    Google Scholar 

  • Weinmann, H.J., Brasch, R.C., Press, W.R., and Wesbey, G.E., 1984, Characteristics of gadolinium-DTPA complex: A potential NMR contrast agent, AJR Am J Roentgenol 142:619–624.

    CAS  PubMed  Google Scholar 

  • Weinmann, H.J., Ebert, W., Misselwitz, B., and Schmitt-Willich H., 2003, Tissue-specific MR contrast agents, Eur. J. Radiol. 46:33–44.

    Article  PubMed  Google Scholar 

  • Weninger, W., and Mohun, T., 2002, Cardiac phenotyping of transgenic embryos: A rapid 3D-screening method based on episcopic fluorescence imaging capturing (EFIC), Clin. Exp. Pharmacol. Physiol. 29:A70–A71.

    Google Scholar 

  • Wojtkowski, M., Srinivasan, V.J., Ko, T.H., Fujimoto, J.G., Kowalczyk, A., and Duker, J.S., 2004, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation, Optics. Express 12(11):2404–2422.

    Article  Google Scholar 

  • Yazdanfar, S., Kulkarni, M.D., and Izatt, J.A., High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography, Opt. Express 1:424–431.

    Google Scholar 

  • Zhang, J., Richards, L.J., Yarowsky, P., Huang, H., van Zijl, P.C., and Mori, S., 2003, Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging, Neuroimage 20: 1639–1648.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tyszka, J.M., Ruffins, S.W., Weichert, J.P., Paulus, M.J., Fraser, S.E. (2006). Related Methods for Three-Dimensional Imaging. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_34

Download citation

Publish with us

Policies and ethics