Skip to main content

Multi-Photon Molecular Excitation in Laser-Scanning Microscopy

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Multi-photon microscopy (MPM), which is based on molecular excitation by multi-photon absorption (MPA) and is usually combined with laser-scanning microscopy (LSM), has fulfilled its early promise (Denk et al., 1990), as evidenced by continued growth of its application to vital imaging of biological systems (for a recent collection of reprints, see Masters, 2003). Conventional fluorescence microscopy can provide submicron spatial resolution of chemical dynamics within living cells, but is frequently limited in sensitivity and spatial resolution by background due to out-offocus and scattered fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Adronov, A., Frechet, J.M.J., He, G.S., Kim, K.S., Chung, S.J., Swiatkiewicz, J., and Prasad, P.N., 2000, Novel two-photon absorbing dendritic structures, Chem. Mater. 12:2838–2841.

    CAS  Google Scholar 

  • Agarwal, A., Coleno, M.L., Wallace, V.P., Wu, W.Y., Sun, C.H., Tromberg, B.J., and George, S.C., 2001, Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue, Tissue Eng. 7:191–202.

    CAS  PubMed  Google Scholar 

  • Akaaboune, M., Grady, R.M., Turney, S., Sanes, J.R., and Lichtman, J.W., 2002, Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands, Neuron 34:865–876.

    CAS  PubMed  Google Scholar 

  • Albota, M., Beljonne, D., Bredas, J.L., Ehrlich, J.E., Fu, J.Y., Heikal, A.A., Hess, S.E., Kogej, T., Levin, M.D., Marder, S.R., McCord-Maughon, D., Perry, J.W., Rockel, H., Rumi, M., Subramaniam, C., Webb, W.W., Wu, X.L., and Xu, C., 1998a, Design of organic molecules with large twophoton absorption cross sections, Science 281:1653–1656.

    CAS  PubMed  Google Scholar 

  • Albota, M.A., Xu, C., and Webb, W.W., 1998b, Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Opt. 37:7352–7356. http://www.drbio.cornell.edu/Infrastructure/FluorescentProbes_WWW/CommerciallyAvailable.htm; http://www.drbio.cornell.edu/Infrastructure/NonlinearMicroscopies_WWW/vit.htm; http://www.drbio.cornell.edu/Infrastructure/NonlinearMicroscopies_WWW/3P/3PE.htm).

    Google Scholar 

  • Andresen, V., Egner, A., and Hell, S.W., 2001, Time-multiplexed multifocal multiphoton microscope, Opt. Lett. 26:75–77.

    CAS  Google Scholar 

  • Arcangeli, C., Yu, W., Cannistraro, S., and Gratton, E., 2000, Two-photon autofluorescence microscopy and spectroscopy of antarctic fungus: New approach for studying effects of UV-B irradiation, Biopolymers 57:218–225.

    CAS  PubMed  Google Scholar 

  • Art, J.J., and Goodman, M.B., 1993, Rapid-scanning confocal microscopy, Methods Cell Biol. 38:47–77.

    CAS  PubMed  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., and Yamane, T., 1987, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330:769–

    Google Scholar 

  • 771.

    Google Scholar 

  • Backskai, B.J., Kajdasz, S.T., Christie, R.H., Carter, C., Games, D., Seubert, P., Schenk, D., and Hyman, B.T., 2001, Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy, Nat. Med. 7:369–372.

    Google Scholar 

  • Beaurepaire, E., and Mertz, J., 2002, Epifluorescence collection in two-photon microscopy, Appl. Opt. 41:5376–5382.

    Google Scholar 

  • Beaurepaire, E., Oheim, M., and Mertz, J., 2001, Ultra-deep two-photon fluorescence excitation in turbid media, Opt. Commun. 188:25–29.

    CAS  Google Scholar 

  • Bindhu, C.V., Harilal, S.S., Kurian, A., Nampoori, V.P.N., and Vallabhan, C.P.G., 1998, Two and three photon absorption in rhodamine 6G methanol solutions using pulsed thermal lens technique, J. Nonlinear Opt. Phys. Mater. 7:531–538.

    CAS  Google Scholar 

  • Birge, R.R., 1979, A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores, J. Chem. Phys. 70:165–177.

    CAS  Google Scholar 

  • Birge, R.R., 1986, Two-photon spectroscopy of protein-bound chromophores, Acc. Chem. Res. 19:138–146.

    CAS  Google Scholar 

  • Birge, R.R., and Zhang, C.-F., 1990, Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1A* g +-like and 1B*u +like p,p* states, J. Chem. Phys. 92:7178–7195.

    CAS  Google Scholar 

  • Booth, M.J., and Hell, S.W., 1998, Continuous wave excitation two-photon fluorescence microscopy exemplified with the 647-nm ArKr laser line, J. Microsc. 190:298–304.

    CAS  Google Scholar 

  • Brakenhoff, G.J., Squier, J., Norris, T., Bliton, A.C., Wade, M.H., and Athey, B., 1996, Real-time two-photon confocal microscopy using a femtosecond, amplified Ti : sapphire system, J. Microsc. 181:253–259.

    CAS  Google Scholar 

  • Brown, E.B., Campbell, R.B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D., and Jain, R.K., 2001, In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy, Nat. Med. 7:866–870.

    Google Scholar 

  • Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., 1998, Semiconductor nanocrystals as fluorescent biological labels, Science 281:2013–2016.

    CAS  PubMed  Google Scholar 

  • Chaigneau, E., Oheim, M., Audinat, E., and Charpak, S., 2003, Two-photon imaging of capillary blood flow in olfactory bulb glomeruli, Proc. Natl. Acad. Sci. USA 100:13081–13086.

    CAS  PubMed  Google Scholar 

  • Cheung, E.C., and Liu, J.M., 1991, Efficient generation of ultrashort, wavelenght- tunable infrared pulses, J. Opt. Soc. Am. B 8:1491–1506.

    CAS  Google Scholar 

  • Christie, R.H., Bacskai, B.J., Zipfel, W.R., Williams, R.M., Kajdasz, S.T., Webb, W.W., and Hyman, B.T., 2001, Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy, J. Neurosci. 21:858–864.

    CAS  Google Scholar 

  • Christie, R.H., Zipfel, W.R., Williams, R.M., Webb, W.W., and Hyman, B.T., 1998, Multiphoton imaging of Alzheimer’s disease neuropathology, J. Neuropathol. Exp. Neurol. 57:145.

    Google Scholar 

  • Christie, R.H., Zipfel, W.R., Williams, R.M., Webb, W.W., and Hyman, B.T., 1999, In vivo multiphoton imaging of amyloid deposition in transgenic mice, J. Neuropathol. Exp. Neurol. 58:204.

    Google Scholar 

  • Corrie, J.E.T., and Trentham, D.R., 1993, Caged nucleotides and neurotransmitters, Bioorgan. Photochem. 2:243–305.

    CAS  Google Scholar 

  • Curley, P.F., Ferguson, A.I., White, J.G., and Amos, W.B., 1992, Applicationof a femtosecond self-sustaining mode-locked Ti-sapphire laser to the field of laser scanning confocal microscopy, Opt. Quantum Electron. 24:851–859.

    Google Scholar 

  • Davidovits, P., and Egger, M.D., 1969, Scanning laser microscope, Nature 233:831.

    Google Scholar 

  • Debarbieux, F., Audinat, E., and Charpak, S., 2003, Action potential propagation in dendrites of rat mitral cells in vivo, J. Neurosci. 23:5553–5560.

    CAS  Google Scholar 

  • Denk, W., 1994, Two-photon scanning photochemical microscopy — Mapping ligand-gated ion-channel distributions, Proc. Natl. Acad. Sci. USA 91:6629–6633.

    CAS  PubMed  Google Scholar 

  • Denk, W., 1996, Two-photon excitation in functional biological imaging, J. Biomed. Opt. 1:296–304.

    Google Scholar 

  • Denk, W., 2001, Optical beam power controller using a tiltable birefringent plate, US Patent no. 6249379.

    Google Scholar 

  • Denk, W., and Detwiler, P.B., 1999, Optical recording of light-evoked calcium signals in the functionally intact retina, Proc. Natl. Acad. Sci. USA 96:7035–7040.

    CAS  PubMed  Google Scholar 

  • Denk, W., and Svoboda, K., 1997, Photon upmanship: Why multiphoton imaging is more than a gimmick, Neuron 18:351–357.

    CAS  PubMed  Google Scholar 

  • Denk, W., Aksay, E., Baker, R., and Tank, D.W., 1997, Long term imaging of [Ca++] in zebrafish embryos using two-photon microscopy, Soc. Neurosci. Abstr. 646.

    Google Scholar 

  • Denk, W., Delaney, K.R., Gelperin, A., Kleinfeld, D., Strowbridge, B.W., Tank, D.W., and Yuste, R., 1994, Anatomical and functional imaging of neurons using two-photon laser scanning microscopy, J. Neurosci. Methods 54:151–162.

    CAS  PubMed  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    CAS  PubMed  Google Scholar 

  • Denk, W., Sugimori, M., and Llinas, R., 1995, Two types of calcium response limited to single spines in cerebellar Purkinje cells, Proc. Natl. Acad. Sci. USA 92:8279–8282.

    CAS  PubMed  Google Scholar 

  • Denk, W., Yuste, R., Svoboda, K., and Tank, D.W., 1996, Imaging calcium dynamics in dendritic spines, Curr. Opin. Neurobiol. 6:372–378.

    CAS  PubMed  Google Scholar 

  • Dickinson, M.E., Murray, B.A., Haynes, S.M., Waters, C.W., and Longmuir, K.J., 2002, Using electroporation and lipid-mediated transfection of GFPexpressing plasmids to label embryonic avian cells for vital confocal and two-photon microscopy, Differentiation 70:172–180.

    CAS  PubMed  Google Scholar 

  • Dyba, M., and Hell, S.W., 2002, Focal spots of size lambda/23 open up farfield fluorescence microscopy at 33 nm axial resolution, Phys. Rev. Lett. 88:163901.

    PubMed  Google Scholar 

  • Eggeling, C., Widengren, J., Rigler, R., and Seidel, C.A.M., 1998, Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis, Anal. Chem. 70:2651–2659.

    CAS  Google Scholar 

  • Egner, A., and Hell, S.W., 2000, Time multiplexing and parallelization in multifocal multiphoton microscopy, J. Opt. Soc. A 17:1192–1201.

    Google Scholar 

  • Egner, A., Jakobs, S., and Hell, S.W., 2002, Fast 100-nm resolution threedimensional microscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99:3370–3375.

    CAS  PubMed  Google Scholar 

  • Engert, F., and Bonhoeffer, T., 1999, Dendritic spine changes associated with hippocampal long-term synaptic plasticity, Nature 399:66–70.

    CAS  PubMed  Google Scholar 

  • Euler, T., Detwiler, P.B., and Denk, W., 2002, Directionally selective calcium signals in dendrites of starburst amacrine cells, Nature 418:845–852.

    CAS  PubMed  Google Scholar 

  • Fan, G.Y., Fujisaki, H., Miyawaki, A., Tsay, R.K., Tsien, R.Y., and Ellisman, M.H., 1999, Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons, Biophys. J. 76:2412–2420.

    CAS  Google Scholar 

  • Fittinghoff, D.N., Schaffer, C.B., Mazur, E., and Squier, J.A., 2001, Timedecorrelated multifocal micromachining and trapping, IEEE J. Select Topics Quantum Electron. 7:559–566.

    CAS  Google Scholar 

  • Fork, R.L., Martinez, O.E., and Gordon, J.P., 1984, Negative dispersion using pairs of prisms, Opt. Lett. 9:150–152.

    CAS  Google Scholar 

  • Friedrich, D.M., and McClain, W.M., 1980, Two-photon molecular spectroscopy, Ann. Rev. Phys. Chem. 31:559–577.

    CAS  Google Scholar 

  • Fu, Q., Mak, G., and van Driel, H.M., 1992, High-power, 62fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser, Opt. Lett. 17:1006–1010.

    CAS  Google Scholar 

  • Furuta, T., Wang, S.S.H., Dantzker, J.L., Dore, T.M., Bybee, W.J., Callaway, E.M., Denk, W., and Tsien, R.Y., 1999, Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful crosssections for two photon photolysis, Proc. Natl. Acad. Sci. USA 96:1193–1200.

    CAS  PubMed  Google Scholar 

  • Gauderon, R., and Sheppard, C.J.R., 1999, Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy, Appl. Opt. 38:3562–3565.

    CAS  Google Scholar 

  • Goeppert-Mayer, M., 1931, Ueber Elementarakte mit zwei Quantenspruengen, Ann. Phys. 9:273.

    Google Scholar 

  • Goldstein, S.R., Hubin, T., and Smith, T.G., 1992, An improved no-movingparts video-rate confocal microscope, Microsc. Microanal. 23:437–446.

    Google Scholar 

  • Gosnell, T.R., and Taylor, A.J., eds., 1991, Selected Papers on Ultrafast Laser Technology, SPIE, Bellingham.

    Google Scholar 

  • Grutzendler, J., Kasthuri, N., and Gan, W.B., 2002, Long-term dendritic spine stability in the adult cortex, Nature 420:812–816.

    CAS  PubMed  Google Scholar 

  • Guild, J.B., Xu, C., and Webb, W.W., 1997, Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence, Appl. Opt. 36:397–401.

    CAS  Google Scholar 

  • Han, M.Y., Gao, X.H., Su, J.Z., and Nie, S., 2001, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19:631–635.

    CAS  Google Scholar 

  • Hanninen, P.E., Lehtela, L., and Hell, S.W., 1996, Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser, Opt. Commun. 130:29–33.

    Google Scholar 

  • Hanninen, P.E., Soini, E., and Hell, S.W., 1994, Continuous-wave excitation two-photon fluorescence microscopy, J. Microsc. 176:222–225.

    Google Scholar 

  • He, G.S., Xu, G.C., Prasad, P.N., Reinhardt, B.A., Bhatt, J.C., and Dillard, A.G., 1995, Two-photon absorption and optical-limiting properties of novel organic-compounds, Opt. Lett. 20:435–437.

    CAS  Google Scholar 

  • He, G.S., Yuan, L.X., Cheng, N., Bhawalkar, J.D., Prasad, P.N., Brott, L.L., Clarson, S.J., and Reinhardt, B.A., 1997, Nonlinear optical properties of a new chromophore, J. Opt. Soc. Am. B 14:1079–1087.

    CAS  Google Scholar 

  • Hell, S., and Stelzer, E.K.H., 1992, Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.

    Google Scholar 

  • Hell, S., Reiner, G., Cremer, C., and Stelzer, E.K.H., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Google Scholar 

  • Hell, S.W., and Andresen, V., 2001, Space-multiplexed multifocal nonlinear microscopy, J. Microsc. 202:457–463.

    CAS  Google Scholar 

  • Hell, S.W., Booth, M., Wilms, S., Schnetter, C.M., Kirsch, A.K., Arndt-Jovin, D.J., and Jovin, T.M., 1998, Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation, Opt. Lett. 23:1238–1240.

    CAS  Google Scholar 

  • Hellwarth, R., and Christiansen, P., 1974, Nonlinear optical microscopy examination of structure in polycrystalline ZnSe, Opt. Commun. 12:318–322.

    CAS  Google Scholar 

  • Helmchen, F., Fee, M.S., Tank, D.W., and Denk, W., 2001, A miniature headmounted two-photon microscope. High-resolution brain imaging in freely moving animals, Neuron 31:903–912.

    CAS  Google Scholar 

  • Helmchen, F., Tank, D.W., and Denk, W., 2002, Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core, Appl. Opt. 41:2930–2934.

    Google Scholar 

  • Hockberger, P.E., Skimina, T.A., Centonze, V.E., Lavin, C., Chu, S., Dadras, S., Reddy, J.K., and White, J.G., 1999, Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells, Proc. Natl. Acad. Sci. USA 96:6255–6260.

    CAS  PubMed  Google Scholar 

  • Hopt, A., and Neher, E., 2001, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J. 80:2029–2036.

    CAS  Google Scholar 

  • Huang, H., Vogel, S.S., Liu, N., Melton, D.A., and Lin, S., 2001, Analysis of pancreatic development in living transgenic zebrafish embryos, Mol. Cell Endocrinol. 177:117–124.

    CAS  Google Scholar 

  • Huang, S.H., Heikal, A.A., and Webb, W.W., 2002, Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein, Biophys. J. 82:2811–2825.

    CAS  Google Scholar 

  • Kaiser, W., and Garrett, C.B.G., 1961, Two-photon excitation in CaF2: Eu2+, Phys. Rev. Lett. 7:229–231.

    CAS  Google Scholar 

  • Kao, J.P.K., and Adams, S.R., 1993, Photosensitive caged compounds, In: Optical Microscopy, Emerging Methods and Applications (B. Herman and J.J. Lemasters, eds.), Academic Press, San Diego, California, pp. 27–85.

    Google Scholar 

  • Kasai, H., Matsuzaki, M., and Ellis-Davies, G.C.R., 2002, Two-photon mapping of functional glutamate receptors in dendritic spines of hippocampal CA1 pyramidal neurons, Jpn. J. Pharmacol. 88:S22.

    Google Scholar 

  • Keller, U., 1994, Ultrafast all-solid-state laser technology, Appl. Phys. B Lasers Opt. 58:347–363.

    Google Scholar 

  • Keller, U., 1996, Materials and new approaches for ultrashort pulse lasers, Curr. Opin. Solid State Mater. Sci. 1:218–224.

    CAS  Google Scholar 

  • Kennedy, S.M., and Lytle, F.E., 1986, p-Bis(i-methylstyryl)benzene as a powersquared sensor for two-photon absorption measurements between 537 and 694 nm, Anal. Chem. 58:2643–2647.

    CAS  Google Scholar 

  • Kim, O.K., Lee, K.S., Woo, H.Y., Kim, K.S., He, G.S., Swiatkiewicz, J., and Prasad, P.N., 2000, New class of two-photon-absorbing chromophores based on dithienothiophene, Chem. Mater. 12:284.

    CAS  Google Scholar 

  • Kiskin, N.I., Chillingworth, R., McCray, J.A., Piston, D., and Ogden, D., 2002, The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals, Eur. Biophys. J. Biophys. Lett. 30:588–604.

    CAS  Google Scholar 

  • Kleinfeld, D., Mitra, P.P., Helmchen, F., and Denk, W., 1998, Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex, Proc. Natl. Acad. Sci. USA 95:15741–15746.

    CAS  PubMed  Google Scholar 

  • Kliger, D.S.E., 1983, Ultrasensitive Laser Spectroscopy, Academic Press, New York.

    Google Scholar 

  • Kloppenburg, P., Zipfel, W.R., Webb, W.W., and Harris-Warrick, R.M., 2000, Highly localized Ca2+ accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine, J. Neurosci. 20:2523–2533.

    CAS  Google Scholar 

  • Koester, H.J., and Sakmann, B., 1998, Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials, Proc. Natl. Acad. Sci. USA 95:9596–9601.

    CAS  PubMed  Google Scholar 

  • Koester, H.J., Baur, D., Uhl, R., and Hell, S.W., 1999, Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage, Biophys. J. 77:2226–2236.

    CAS  Google Scholar 

  • Konig, K., Becker, T.W., Fischer, P., Riemann, I., and Halbhuber, K.J., 1999, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes, Opt. Lett. 24:113–115.

    CAS  Google Scholar 

  • Konig, K., Kimel, S., and Berns, M.W., 1996, Photodynamic effects on human and chicken erythrocytes studied with microirradiation and confocal laser scanning microscopy, Lasers Surg. Med. 19:284–298.

    CAS  Google Scholar 

  • Lansford, R., Bearman, G., and Fraser, S.E., 2001, Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy, J. Biomed. Opt. 6:311–318.

    CAS  PubMed  Google Scholar 

  • Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., and Webb, W.W., 2003, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 300:1434–1436.

    CAS  PubMed  Google Scholar 

  • Lechleiter, J.D., Lin, D.T., and Sieneart, I., 2002, Multi-photon laser scanning microscopy using an acoustic optical deflector, Biophys. J. 83:2292–2299.

    CAS  Google Scholar 

  • Lippitz, M., Erker, W., Decker, H., van Holde, K.E., and Basche, T., 2002, Twophoton excitation microscopy of tryptophan-containing proteins, Proc. Natl. Acad. Sci. USA 99:2772–2777.

    CAS  PubMed  Google Scholar 

  • Liu, T.M., Chu, S.W., Sun, C.K., Lin, B.L., Cheng, P.C., and Johnson, I., 2001, Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser, Scanning 23:249–254.

    CAS  PubMed  Google Scholar 

  • Loudon, R., 1983, The Quantum Theory of Light, Oxford University Press, New York.

    Google Scholar 

  • Lozovoy, V.V., Pastirk, I., Walowicz, K.A., and Dantus, M., 2003, Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses, J. Chem. Phys. 118:3187–3196.

    CAS  Google Scholar 

  • Maiman, T.H., 1960, Stimulated optical radiation in ruby, Nature 187:493–494.

    Google Scholar 

  • Mainen, Z.F., Maletic-Savatic, M., Shi, S.H., Hayashi, Y., Malinow, R., and Svoboda, K., 1999a, Two-photon imaging in living brain slices, Methods 18:231–239.

    CAS  PubMed  Google Scholar 

  • Mainen, Z.F., Malinow, R., and Svoboda, K., 1999b, Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated, Nature 399:151–155.

    CAS  PubMed  Google Scholar 

  • Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R., and Webb, W.W., 1997, Measuring serotonin distribution in live cells with three-photon excitation, Science 275:530–532.

    CAS  PubMed  Google Scholar 

  • Maletic-Savatic, M., Malinow, R., and Svoboda, K., 1999, Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity, Science 283:1923–1927.

    CAS  PubMed  Google Scholar 

  • Marder, S.R., Torruellas, W.E., BlanchardDesce, M., Ricci, V., Stegeman, G.I., Gilmour, S., Bredas, J.L., Li, J., Bublitz, G.U., and Boxer, S.G., 1997, Large molecular third-order optical nonlinearities in polarized carotenoids, Science 276:1233–1236.

    CAS  PubMed  Google Scholar 

  • Masters, B.R., ed., 2003, Selected Papers on Multi-Photon Excitation Microscopy, SPIE, Bellingham.

    Google Scholar 

  • Masters, B.R., So, P.T.C., and Gratton, E., 1997, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin, Biophys. J. 72:2405–2412.

    CAS  Google Scholar 

  • Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T., Miyashita, Y., Iino, M., and Kasai, H., 2001, Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons, Nat. Neurosci. 4:1086–1092.

    CAS  Google Scholar 

  • McClain, W.M., 1971, Excited state symmetry assignment through polarized two-photon absorption studies of fluids, J. Chem. Phys. 55:2789–2796.

    Google Scholar 

  • Meyer, A.J., and Fricker, M.D., 2000, Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy, J. Microsc. 198:174–181.

    CAS  Google Scholar 

  • Milburn, T., Matsubara, N., Billington, A.P., Udgaonkar, J.B., Walker, J.W., Carpenter, B.K., Webb, W.W., Marque, J., Denk, W., McCray, J.A., and Hess, G.P., 1989, Synthesis, photochemistry, and biological-activity of a caged photolabile acetylcholine-receptor ligand, Biochemistry 28:49–55.

    CAS  PubMed  Google Scholar 

  • Mohler, W.A., Simske, J.S., Williams-Masson, E.M., Hardin, J.D., and White, J.G., 1998, Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis, Curr. Biol. 8:1087–1090.

    CAS  Google Scholar 

  • Moreaux, L., Sandre, O., Charpak, S., Blanchard-Desce, M., and Mertz, J., 2001, Coherent scattering in multi-harmonic light microscopy, Biophys. J. 80:1568–1574.

    CAS  Google Scholar 

  • Mortensen, O.S., and Svendsen, E.N., 1981, Initial and final molecular states as “virtual” states in two-photon processes, J. Chem. Phys. 74:3185–3189.

    CAS  Google Scholar 

  • Muller, M., Squier, J., Wolleschensky, R., Simon, U., and Brakenhoff, G.J., 1998, Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives, J. Microsc. 191:141–150.

    Google Scholar 

  • Nakamura, O., 1993, Three-dimensional imaging characteristics of laser scan fluorescence microscopy — two-photon excitation vs single-photon excitation, Optik 93:39–42.

    Google Scholar 

  • Neu, T.R., Kuhlicke, U., and Lawrence, J.R., 2002, Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms, Appl. Environ. Microbiol. 68:901–909.

    CAS  PubMed  Google Scholar 

  • Neuman, K.C., Chadd, E., Liou, G.F., Brau, A., Bergman, K., and Block, S.M., 1999, Characterization of photodamage induced by optical traps, Biophys. J. 76:A96.

    Google Scholar 

  • Nielsen, T., Frick, M., Hellweg., D., and Andresen, P., 2001, High efficiency beam splitter for multifocal multiphoton microscopy, J. Microsc. 201:368–376.

    CAS  Google Scholar 

  • Niggli, E., Piston, D.W., Kirby, M.S., Cheng, H., Sandison, D.R., Webb, W.W., and Lederer, W.J., 1994, A confocal laser scanning microscope designed for indicators with ultraviolet excitation wavelengths, Am. J. Physiol. 266:C303–C310.

    CAS  PubMed  Google Scholar 

  • Oehring, H., Riemann, I., Fischer, P., Halbhuber, K.J., and Konig, K., 2000, Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near-infrared femtosecond laser pulses, Scanning 22:263– 270.

    CAS  PubMed  Google Scholar 

  • Oertner, T.G., Sabatini, B.L., Nimchinsky, E.A., and Svoboda, K., 2002, Facilitation at single synapses probed with optical quantal analysis, Nat. Neurosci. 10:10.

    Google Scholar 

  • Ouzounov, D.G., Moll, K.D., Foster, M.A., Zipfel, W.R., Webb, W.W., and Gaeta, A.L., 2002, Delivery of nanojoule femtosecond pulses through large-core microstructured fibers, Opt. Lett. 27:1513–1515.

    CAS  Google Scholar 

  • Patel, C.K.N., and Tam, A.C., 1981, Pulsed optoacoustic spectroscopy of condensed matter, Rev. Mod. Phys. 53:517–550.

    CAS  Google Scholar 

  • Patterson, G.H., and Piston, D.W., 2000, Photobleaching in two-photon excitation microscopy, Biophys. J. 78:2159–2162.

    CAS  Google Scholar 

  • Periasamy, A., Skoglund, P., Noakes, C., and Keller, R., 1999, An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis, Microsc. Res. Technol. 47:172–181.

    CAS  Google Scholar 

  • Piston, D.W., and Knobel, S.M., 1999, Real-time analysis of glucose metabolism by microscopy, Trends Endocrinol. Metab. 10:413–417.

    CAS  Google Scholar 

  • Piston, D.W., Kirby, M.S., Cheng, H.P., Lederer, W.J., and Webb, W.W., 1994, Two-photon-excitation fluorescence imaging of 3-dimensional calciumion activity, Appl. Opt. 33:662–669.

    CAS  Google Scholar 

  • Piston, D.W., Masters, B.R., and Webb, W.W., 1995, 3-dimensionally resolved Nad(P)H cellular metabolic redox imaging of the in-situ cornea with twophoton excitation laser-scanning microscopy, J. Microsc. 178:20–27.

    CAS  Google Scholar 

  • Piston, D.W., Sandison, D.R., and Webb, W.W., 1992, Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy, Proc. SPIE. 1640:379–389.

    CAS  Google Scholar 

  • Piston, D.W., Summers, R.G., and Webb, W.W., 1993, Observation of nuclear division in living sea urchin embryos by two-photon fluorescence microscopy, Biophys. J. 63:A110.

    Google Scholar 

  • Piston, D.W., Summers, R.G., Knobel, S.M., and Morrill, J.B., 1998, Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy, Microsc. Microanal. 4:404–414.

    CAS  Google Scholar 

  • Potma, E.O., Jones, D.J., Cheng, J.X., Xie, X.S., and Ye, J., 2002, Highsensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond laser, Opt. Lett. 27:1168–1170.

    Google Scholar 

  • Powers, P.E., Tang, C.L., and Cheng, L.K., 1994, High-repetition-rate femtosecond optical parametric oscillator based on Cstioaso4, Opt. Lett. 19:37–39.

    CAS  Google Scholar 

  • Rehms, A.A., and Callis, P.R., 1993, Two-photon fluorescence excitationspectra of aromatic-amino-acids, Chem. Phys. Lett. 208:276–282.

    CAS  Google Scholar 

  • Sabatini, B.L., and Svoboda, K., 2000, Analysis of calcium channels in single spines using optical fluctuation analysis, Nature 408:589–593.

    CAS  PubMed  Google Scholar 

  • Sandison, D.R., and Webb, W.W., 1994, Background rejection and signal-tonoise optimization in confocal and alternative fluorescence microscopes, Appl. Opt. 33:603–615.

    CAS  Google Scholar 

  • Schilders, S.P., and Gu, M., 1999, Three-dimensional autofluorescence spectroscopy of rat skeletal muscle tissue under two-photon excitation, Appl. Opt. 38:720–723.

    CAS  Google Scholar 

  • Schönle, A., and Hell, S.W., 1998, Heating by absorption in the focus of an objective lens, Opt. Lett. 23:325–327.

    Google Scholar 

  • Sheppard, C.J.R., and Cogswell, C.J., 1990, Confocal microscopy with detector arrays, J. Mod. Opt. 37:267–279.

    CAS  Google Scholar 

  • Sheppard, C.J.R., and Cogswell, C.J., 1991, Effects of aberrating layers and tube length on confocal imaging properties, Optik 87:34–38.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1990, Image-formation in two-photon fluorescence microscopy, Optik 86:104–106.

    CAS  Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1994, Imaging performance of confocal fluorescence microscopes with finite-sized source, J. Mod. Opt. 41:1521–1530.

    Google Scholar 

  • Sheppard, C.J.R., and Kompfner, R., 1978, Resonant scanning optical microscope, Appl. Opt. 17:2879–2882.

    CAS  Google Scholar 

  • Singh, S., and Bradley, L.T., 1964, Three-photon absorption in napthalene crystals by laser excitation, Phys. Rev. Lett. 12:612.

    CAS  Google Scholar 

  • Spence, D.E., Kean, P.N., and Sibbett, W., 1991, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16:42–44.

    CAS  Google Scholar 

  • Squier, J.A., Fittinghoff, D.N., Barty, C.P.J., Wilson, K.R, Muller, M., and Brakenhoff, C.J., 1998, Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-thirdharmonic generation, Opt. Commun. 147:153–156.

    CAS  Google Scholar 

  • Squirrell, J.M., Wokosin, D.L., White, J.G., and Bavister, B.D., 1999, Longterm two-photon fluorescence imaging of mammalian embryos without compromising viability, Nat. Biotechnol. 17:763–767.

    CAS  Google Scholar 

  • Stelzer, E.H.K., Hell, S., and Lindek, S., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104:223–228.

    CAS  Google Scholar 

  • Straub, M., and Hell, S.W., 1998, Multifocal multiphoton microscopy: A fast and efficient tool for 3-D fluorescence imaging, Bioimaging 6:177–185.

    Google Scholar 

  • Summers, R.G., Morrill, J.B., Leith, A., Marko, M., Piston, D.W., and Stonebraker, A.T., 1993, A stereometric analysis of karyokinesis, cytokinesis and cell arrangements during and following 4th cleavage period in the sea-urchin, Lytechinus variegatus, Dev. Growth Diff. 35:41–57.

    Google Scholar 

  • Summers, R.G., Piston, D.W., Harris, K.M., and Morrill, J.B., 1996, The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry, Dev. Biol. 175:177–183.

    CAS  Google Scholar 

  • Svoboda, K., and Block, S.M., 1994, Biological applications of optical forces, Ann. Rev. Biophys. Biomol. Struct. 23:247–285.

    CAS  Google Scholar 

  • Svoboda, K., Denk, W., Kleinfeld, D., and Tank, D.W., 1997, In vivo dendritic calcium dynamics in neocortical pyramidal neurons, Nature 385:161–165.

    CAS  PubMed  Google Scholar 

  • Svoboda, K., Denk, W., Knox, W., and Tsuda, S., 1996a, Two-photon laser scanning fluorescence microscopy of living neurons using a diode-pumped Cr: LiSrAlFl laser mode-locked with a saturable Bragg reflector, Opt. Lett. 21:1411–1413.

    CAS  Google Scholar 

  • Svoboda, K., Helmchen, F., Denk, W., and Tank, D.W., 1999, Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo, Nat. Neurosci. 2:65–73.

    CAS  Google Scholar 

  • Svoboda, K., Tank, D.W., and Denk, W., 1996b, Direct measurement of coupling between dendritic spines and shafts, Science 272:716–719.

    CAS  PubMed  Google Scholar 

  • Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F., and Neher, E., 1999, Fast scanning and efficient photodetection in a simple two-photon microscope, J. Neurosci. Methods 92:123–135.

    CAS  PubMed  Google Scholar 

  • Theer, P., Hasan, M.T., and Denk, W., 2003, Two-photon imaging to a depth of 1000mm in living brains by use of a Ti :Al2O3 regenerative amplifier, Opt. Lett. 28:1022–1024.

    CAS  Google Scholar 

  • Tirlapur, U.K., Konig, K., Peuckert, C., Krieg, R., and Halbhuber, K.J., 2001, Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death, Exp. Cell Res. 263:88–97.

    CAS  Google Scholar 

  • Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K., 2002, Long-term in vivo imaging of experiencedependent synaptic plasticity in adult cortex, Nature 420:788–794.

    CAS  PubMed  Google Scholar 

  • Valdmanis, J.A., and Fork, R.L., 1986, Design considerations for a femtosecond pulse laser balancing self phase modulation, group-velocity dispersion, saturable absorption, and saturable gain, IEEE J. Quant. Electron. 22:112–118.

    Google Scholar 

  • Ventelon, L., Moreaux, L., Mertz, J., and Blanchard-Desce, M., 1999, New quadrupolar fluorophores with high two-photon excited fluorescence, Chem. Commun. 20:2055–2056.

    Google Scholar 

  • Ventelon, L., Moreaux, L., Mertz, J., and Blanchard-Desce, M., 2002, Optimization of quadrupolar chromophores for molecular two-photon absorption, Synth. Met. 127:17–21.

    CAS  Google Scholar 

  • Visser, T.D., Brakenhoff, G.J., and Groen, F.C.A., 1991, The one-point fluorescence response in confocal microscopy, Optik 87:39–40.

    CAS  Google Scholar 

  • Volkmer, A., Book, L.D., and Xie, X.S., 2002, Time-resolved coherent anti- Stokes Raman scattering microscopy: Imaging based on Raman free induction decay, Appl. Phys. Lett. 80:1505–1507.

    CAS  Google Scholar 

  • Walowicz, K.A., Pastirk, I., Lozovoy, V.V., and Dantus, M., 2002, Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases, J. Phys. Chem. A 106:9369–9373.

    CAS  Google Scholar 

  • Wang, S.S.H., Denk, W., and Hausser, M., 2000, Coincidence detection in single dendritic spines mediated by calcium release, Nat. Neurosci. 3:1266–1273.

    CAS  Google Scholar 

  • Whinnery, J.R., 1974, Laser measurement of optical absorption in liquids, Acc. Chem. Res. 7:225–231.

    CAS  Google Scholar 

  • Williams, R.M., Shear, J.B., Zipfel, W.R., Maiti, S., and Webb, WW., 1999, Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence, Biophys. J. 76:1835–1846.

    CAS  Google Scholar 

  • Williams, S.A., and Callis, P.R., 1990, Two-photon electronic spectra of nucleotides, Proc. SPIE 1204:332–343.

    CAS  Google Scholar 

  • Wilson, T., and Sheppard, C., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.

    Google Scholar 

  • Wokosin, D.L., Centonze, V., White, J.G., Armstrong, D., Robertson, G., and Ferguson, A.I., 1996a, All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging, IEEE J. Quant. Electron. 2:1051–1065.

    CAS  Google Scholar 

  • Wokosin, D.L., Centonze, V.E., Crittenden, S., and White, J., 1996b, Threephoton excitation fluorescence imaging of biological specimens using an all-solid-state laser, Bioimaging 4:1–7.

    Google Scholar 

  • Wolleschensky, R., Feurer, T., Sauerbrey, R., and Simon, I., 1998, Characterization and optimization of a laser-scanning microscope in the femtosecond regime, Appl. Phys. B Lasers Opt. 67:87–94.

    CAS  Google Scholar 

  • Xu, C., and Denk, W., 1997, Two-photon optical beam induced current imaging through the backside of integrated circuits, Appl. Phys. Lett. 71:2578–2580.

    CAS  Google Scholar 

  • Xu, C., and Denk, W., 1999, Comparison of one- and two-photon optical beaminduced current imaging, J. Appl. Phys. 86:2226–2231.

    CAS  Google Scholar 

  • Xu, C., and Webb, W.W., 1996, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B 13:481–491.

    CAS  Google Scholar 

  • Xu, C., Guild, J., Webb, W.W., and Denk, W., 1995, Determination of absolute two-photon excitation cross-sections by in-situ 2nd-order autocorrelation, Opt. Lett. 20:2372–2374.

    CAS  Google Scholar 

  • Xu, C., Zipfel, W., Shear, J., Williams, R., and Webb, W., 1996, Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93:10763–10768. Yuste, R., and Denk, W., 1995, Dendritic spines as basic functional units of neuronal integration, Nature 375:682–684. Zhang, Q., Piston, D.W., and Goodman, R.H., 2002, Regulation of corepressor function by nuclear NADH, Science 295:1895–1897.

    Google Scholar 

  • Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T., and Webb, W.W., 2003, Live tissue intrinsic emission microscopy using multiphoton- excited native fluorescence and second harmonic generation, Proc. Natl. Acad. Sci. USA 100:7075–7080.

    CAS  PubMed  Google Scholar 

  • Zojer, E., Beljonne, D., Kogej, T., Vogel, H., Marder, S.R., Perry, J.W., and Bredas, J.L., 2002, Tuning the two-photon absorption response of

    Google Scholar 

  • quadrupolar organic molecules, J. Chem. Phys. 116:3646–3658.

    Google Scholar 

  • Zumbusch, A., Holtom, G.R., and Xie, X.S., 1999, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Phys. Rev. Lett. 82:4142–4145.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Denk, W., Piston, D.W., Webb, W.W. (2006). Multi-Photon Molecular Excitation in Laser-Scanning Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_28

Download citation

Publish with us

Policies and ethics