Booth, M.J., Neil, M.A.A., Juskaitis, R., and Wilson, T., 2002, Adaptive aberration correction in a confocal microscope, Proc. Natl. Acad. Sci. USA 99:5788–5792.
CAS
CrossRef
PubMed
Google Scholar
Born, M., and Wolf, E., 2002, Principles of Optics, Cambridge University Press, Cambridge, New York.
Google Scholar
Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.
CAS
CrossRef
PubMed
Google Scholar
Egner, A., and Hell, S.W., 1999, Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread-functions in the presence of refractive index mismatch, J. Microsc. 193:244–249.
CrossRef
Google Scholar
Hell, S.W., and Stelzer, E.H.K., 1992, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.
Google Scholar
Hell, S.W., Lehtonen, E., and Stelzer, E.H.K., 1992, Confocal fluorescence microscopy: Wave optics considerations and applications to cell biology, In: Visualization in Biomedical Microscopies: 3-D Imaging and Computer Applications (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 145–160.
Google Scholar
Hell, S.W., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.
Google Scholar
Hopkins, H.H., 1943, The Airy disc formula for systems of high relative aperture, Proc. Phys. Soc. 55:116.
CrossRef
Google Scholar
Kaiser, W., and Garret, C.B., 1961, Two-photon excitation in CaF2:Eu2+, Phys. Rev. Lett. 7:229–231.
CAS
CrossRef
Google Scholar
Li, Y.W., and Wolf, E., 1981, Focal shifts in diffracted converging spherical waves, Opt. Commun. 39:221–215.
Google Scholar
Martini, N., Bewersdorf, J., and Hell, S.W., 2002, A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy, J. Microsc. 206:146–151.
CAS
CrossRef
Google Scholar
Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. Lond. A 253:358–379.
Google Scholar
Sheppard, C.J.R., and Gu, M., 1992a, Axial imaging through an aberrating layer of water in confocal microscopy, Opt. Commun. 88:180–190.
Google Scholar
Sheppard, C.J.R., and Gu, M., 1992b, Image formation in two-photon fluorescence microscopy, Optik 86:104–106.
Google Scholar
Stelzer, E.H.K., Hell, S., Lindek, S., Pick, R., Storz, C., Stricker, R., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104:223–228.
CAS
Google Scholar
Stelzer, E.H.K., Wacker, I., and De Mey, J.R., 1991, Confocal fluorescence microscopy in modern cell biology, Semin. Cell. Biol. 2:145–152.
CAS
PubMed
Google Scholar
Török, P., Varga, P., Laczik, Z., and Booker, G.R., 1995, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refraction indices: An integral representation, J. Opt. Soc. Am. A 12:325–332.
CrossRef
Google Scholar
Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.
Google Scholar