Skip to main content

Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch

  • Chapter

Abstract

Modern optical microscopes are so good that many scientists forget that these instruments only provide their optimal performance if they are used under certain operating conditions. Typical users may be unaware of the very existence of such limitations either because they may unwittingly work within the limits or because they fail to recognize their effects. It is probably also correct to assume that the manufacturer does not intend to discourage purchase by emphasizing the pitfalls that unavoidably arise from the physics of imaging.

Keywords

  • Refractive Index
  • Objective Lens
  • Point Spread Function
  • Spherical Aberration
  • Axial Resolution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-45524-2_20
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-45524-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Booth, M.J., Neil, M.A.A., Juskaitis, R., and Wilson, T., 2002, Adaptive aberration correction in a confocal microscope, Proc. Natl. Acad. Sci. USA 99:5788–5792.

    CAS  CrossRef  PubMed  Google Scholar 

  • Born, M., and Wolf, E., 2002, Principles of Optics, Cambridge University Press, Cambridge, New York.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    CAS  CrossRef  PubMed  Google Scholar 

  • Egner, A., and Hell, S.W., 1999, Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread-functions in the presence of refractive index mismatch, J. Microsc. 193:244–249.

    CrossRef  Google Scholar 

  • Hell, S.W., and Stelzer, E.H.K., 1992, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.

    Google Scholar 

  • Hell, S.W., Lehtonen, E., and Stelzer, E.H.K., 1992, Confocal fluorescence microscopy: Wave optics considerations and applications to cell biology, In: Visualization in Biomedical Microscopies: 3-D Imaging and Computer Applications (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 145–160.

    Google Scholar 

  • Hell, S.W., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Google Scholar 

  • Hopkins, H.H., 1943, The Airy disc formula for systems of high relative aperture, Proc. Phys. Soc. 55:116.

    CrossRef  Google Scholar 

  • Kaiser, W., and Garret, C.B., 1961, Two-photon excitation in CaF2:Eu2+, Phys. Rev. Lett. 7:229–231.

    CAS  CrossRef  Google Scholar 

  • Li, Y.W., and Wolf, E., 1981, Focal shifts in diffracted converging spherical waves, Opt. Commun. 39:221–215.

    Google Scholar 

  • Martini, N., Bewersdorf, J., and Hell, S.W., 2002, A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy, J. Microsc. 206:146–151.

    CAS  CrossRef  Google Scholar 

  • Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. Lond. A 253:358–379.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1992a, Axial imaging through an aberrating layer of water in confocal microscopy, Opt. Commun. 88:180–190.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1992b, Image formation in two-photon fluorescence microscopy, Optik 86:104–106.

    Google Scholar 

  • Stelzer, E.H.K., Hell, S., Lindek, S., Pick, R., Storz, C., Stricker, R., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104:223–228.

    CAS  Google Scholar 

  • Stelzer, E.H.K., Wacker, I., and De Mey, J.R., 1991, Confocal fluorescence microscopy in modern cell biology, Semin. Cell. Biol. 2:145–152.

    CAS  PubMed  Google Scholar 

  • Török, P., Varga, P., Laczik, Z., and Booker, G.R., 1995, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refraction indices: An integral representation, J. Opt. Soc. Am. A 12:325–332.

    CrossRef  Google Scholar 

  • Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Egner, A., Hell, S.W. (2006). Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_20

Download citation