Confocal Microscopy of Living Cells

  • Michael E. Dailey
  • Erik Manders
  • David R. Soll
  • Mark Terasaki


If a picture is worth a thousand words, then a movie may be worth a million words. Microcinematography and, later, video microscopy have provided great insight into biological phenomena. One limitation, however, has been the difficulty of imaging in three dimensions. In many cases, observations have been made on cultured cells that are thin to start with or tissue preparations that have been sectioned.


Microglial Cell Fluorescence Resonance Energy Transfer Tissue Slice Differential Interference Contrast Slice Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C.L., Chen, Y.T., Smith, S.J., and Nelson, W.J., 1998, Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by highresolution tracking of E-cadherin-green fluorescent protein, J. Cell Biol. 142:1105–1119.Google Scholar
  2. Adams, M.C., Salmon, W.C., Gupton, S.L., Cohan, C.S., Wittmann, T., Prigozhina, N., and Waterman-Storer, C.M., 2003, A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells, Methods 29:29–41.PubMedGoogle Scholar
  3. Amos, W.B., Reichelt, S., Cattermole, D.M., and Laufer, J., 2003, Reevaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics, J. Microsc. 210:166–175.Google Scholar
  4. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A., 2002, An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein, Proc. Natl. Acad. Sci. USA 99:12651–12656.PubMedGoogle Scholar
  5. Ando, R., Mizuno, H., and Miyawaki, A., 2004, Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting, Science 306:1370–1373. PubMedGoogle Scholar
  6. Andrews, P.M., Petroll, W.M., Cavanagh, H.D., and Jester, J.V., 1991, Tandem scanning confocal microscopy (TSCM) of normal and ischemic living kidneys, Am. J. Anat. 191:95–102.PubMedGoogle Scholar
  7. Andrews, P.D., Harper, I.S., and Swedlow, J.R., 2002, To 5D and beyond: Quantitative fluorescence microscopy in the postgenomic era, Traffic 3:29–36.PubMedGoogle Scholar
  8. Ashkin, A., Schutze, K., Dziedzic, J.M., Euteneuer, U., and Schliwa, M., 1990, Force generation of organelle transport measured in vivo by an infrared laser trap, Nature 348:346–348.PubMedGoogle Scholar
  9. Ashworth, R., 2004, Approaches to measuring calcium in zebrafish: Focus on neuronal development, Cell Calcium 35:393–402.PubMedGoogle Scholar
  10. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., and Webb, W.W., 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16:1055–1069.Google Scholar
  11. Bacia, K., and Schwille, P., 2003, A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy, Methods 29:74–85.PubMedGoogle Scholar
  12. Baker, G.E., and Reese, B.E., 1993, Using confocal laser scanning microscopy to investigate the organization and development of neuronal projections labeled with DiI, Methods Cell Biol. 38:325–344.PubMedGoogle Scholar
  13. Baker, M.W., Kauffman B., Macagno, E.R., and Zipser, B., 2003, In vivo dynamics of CNS sensory arbor formation: a time-lapse study in the embryonic leech, J. Neurobiol. 56:41–53.Google Scholar
  14. Ballestrem, C., Hinz, B., Imhof, B.A., Wehrle-Haller, B., 2001, Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior, J. Cell Biol. 155(7):1319–1332.Google Scholar
  15. Barber, R.P., Phelps, P.E., and Vaughn, J.E., 1993, Preganglionic autonomic motor neurons display normal translocation patterns in slice cultures of embryonic rat spinal cord, J. Neurosci. 13:4898–4907.Google Scholar
  16. Bastiaens, P.I., and Pepperkok, R., 2000, Observing proteins in their natural habitat: The living cell, Trends Biochem. Sci. 25:631–637.Google Scholar
  17. Bastiaens, P.I., and Squire, A. 1999, Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell, Trends Cell Biol. 9:48–52.PubMedGoogle Scholar
  18. Baumgartner, W., Schutz, G.J., Wiegand, J., Golenhofen, N., and Drenckhahn, D., 2003, Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells, J. Cell Sci. 116:1001–1011.Google Scholar
  19. Bement, W.M., Sokac, A.M., and Mandato, C.A., 2003, Four-dimensional imaging of cytoskeletal dynamics in Xenopus oocytes and eggs, Differentiation 71:518–527.PubMedGoogle Scholar
  20. Benediktsson, A.M., Schachtele, S.J., Green, S.H., and Dailey, M.E., 2005, Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures, J. Neurosci. Methods 141:41–53.PubMedGoogle Scholar
  21. Berg, R.H., 2004, Evaluation of spectral imaging for plant cell analysis, J. Microsc. 214(Pt 2):174–181.Google Scholar
  22. Betz, W.J., Mao, F., and Bewick, G.S., 1992, Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals, J. Neurosci. 12:363–375.Google Scholar
  23. Block, S.M., Goldstein, L.S., and Schnapp, B.J., 1990, Bead movement by single kinesin molecules studied with optical tweezers, Nature 348:348–352.PubMedGoogle Scholar
  24. Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.PubMedGoogle Scholar
  25. Brum, G., Gonzalez, A., Rengifo, J., Shirokova, N., and Rios, E., 2000, Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle, J. Physiol. 528:419–433.Google Scholar
  26. Brustein, E., Marandi, N., Kovalchuk, Y., Drapeau, P., and Konnerth, A., 2003, “In vivo” monitoring of neuronal network activity in zebrafish by twophoton Ca(2+) imaging, Pflugers Arch. 446(6):766–773.PubMedGoogle Scholar
  27. Cahalan, M.D., Parker, I., Wei, S.H., and Miller, M.J., 2002, Two-photon tissue imaging: Seeing the immune system in a fresh light, Nat. Rev. Immunol. 2:872–880.PubMedGoogle Scholar
  28. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1994, Green fluorescent protein as a marker for gene expression, Science 263:802–805.PubMedGoogle Scholar
  29. Chen, Y., Mills, J.D., and Periasamy, A., 2003, Protein localization in living cells and tissues using FRET and FLIM, Differentiation 71:528–541.PubMedGoogle Scholar
  30. Cechin, S.R., Gottfried, C., Prestes, C.C., Andrighetti, L., Wofchuk, S.T., and Rodnight, R., 2002, Astrocyte stellation in saline media lacking bicarbon ate: possible relation to intracellular pH and tyrosine phosphorylation, Brain Res. 946:12–23.PubMedGoogle Scholar
  31. Cleemann, L., Wang, W., and Morad, M., 1998, Two-dimensional confocal images of organization, density and gating of focal Ca2+ release sites in rat cardiac myocytes, Proc. Natl. Acad. Sci. USA 95:10984–10989.PubMedGoogle Scholar
  32. Cogswell, C.J., and Sheppard, C.J.R., 1991, Visualization of 3-D phase structure in confocal and conventional microscopy, Proc. SPIE. 1450:323–328.Google Scholar
  33. Cogswell, C.J., and Sheppard, C.J.R., 1992, Confocal differential interference contrast (DIC) microscopy: Including a theoretical analysis of conventional and confocal DIC imaging, J. Microsc. 165:81–101.Google Scholar
  34. Cooper, M.S., Cornell-Bell, A.H., Chernjavsky, A., Dani, J.W., and Smith, S.J., 1990, Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum, Cell 61:135–145.PubMedGoogle Scholar
  35. Cooper, M.S., D’Amico, L.A., and Henry, C.A., 1999, Confocal microscopic analysis of morphogenetic movements, Methods Cell Biol. 59:179–204.PubMedGoogle Scholar
  36. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J., 1990, Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling, Science 247:470–473.PubMedGoogle Scholar
  37. Crittenden, S.L., and Kimble J., 1999, Confocal methods for Caenorhabditis elegans, Methods Mol Biol. 122:141–151.PubMedGoogle Scholar
  38. Dailey, M.E., and Smith, S.J., 1993, Confocal imaging of mossy fiber growth in live hippocampal slices, Jpn. J. Physiol. 43:S183–S192.PubMedGoogle Scholar
  39. Dailey, M.E., and Smith, S.J., 1994, Spontaneous Ca2+ transients in developing hippocampal pyramidal cells, J. Neurobiol. 25:243–251.Google Scholar
  40. Dailey, M.E., and Smith, S.J., 1996, The dynamics of dendritic structure in developing hippocampal slices, J. Neurosci. 16:2983–2994.Google Scholar
  41. Dailey, M.E., Buchanan, J., Bergles, D.E., and Smith, S.J., 1994, Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro, J. Neurosci. 14:1060–1078.Google Scholar
  42. Dailey, M.E., and Waite, M., 1999, Confocal imaging of microglial cell dynamics in hippocampal slice cultures, Methods 18:222–230.PubMedGoogle Scholar
  43. Dailey, M.E., Marrs, G.S., and Kurpius, D., 2005, Maintaining live cells and tissue slices in the imaging setup, In: Imaging in Neuroscience and Development (R. Yuste and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  44. Das, T., Payer, B., Cayouette, M., and Harris, W.A., 2003, In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina, Neuron 37:597–609.PubMedGoogle Scholar
  45. Delbridge, L.M., Harris, P.J., Pringle, J.T., Dally, L.J., and Morgan, T.O., 1990, A superfusion bath for single-cell recording with high-precision optical depth control, temperature regulation, and rapid solution switching, Pfluegers Arch. 416:94–97.Google Scholar
  46. Del Pozo, M.A., Kiosses, W.B., Alderson, N.B., Meller, N., Hahn, K.M., Schwartz, M.A., 2002, Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI, Nat. Cell Biol. 4(3):232–239.Google Scholar
  47. Dickinson, M.E., Bearman, G., Tille, S., Lansford, R., Fraser, S.E., 2001, Multispectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy, Biotechniques 31(6):1272, 1274–1276, 1278.Google Scholar
  48. Dirnagl, U., Villringer, A., and Einhaupi, K.M., 1992, In vivo confocal scanning laser microscopy of the cerebral microcirculation, J. Microsc. 165:147–157.Google Scholar
  49. Dixit, R., and Cyr, R., 2003, Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy, Plant J. 36:280–290.PubMedGoogle Scholar
  50. Dorman, G., and Prestwich, G.D., 2000, Using photolabile ligands in drug discovery and development, Trends Biotechnol. 18:64–77.PubMedGoogle Scholar
  51. Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R., and Zicha, D., 2002, Fluorescence localization after photobleaching (FLAP): Anew method for studying protein dynamics in living cells, J. Microsc. 205:109–112.Google Scholar
  52. Dunwiddie, T.V., 1981, Age-related differences in the in vitro rat hippocampus: Development of inhibition and the effects of hypoxia, Dev. Neurosci. 4:165–175.Google Scholar
  53. Dvorak, J.A., and Stotler, W.F., 1971, A controlled-environment culture system for high resolution light microscopy, Exp. Cell Res. 68:269–275.Google Scholar
  54. Dynes, J.L., and Ngai, J., 1998, Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos, Neuron 20:1081–1091.PubMedGoogle Scholar
  55. Edwards, A.M., Silva, E., Jofre, B., Becker, M.I., and De Ioannes, A.E., 1994, Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin, J. Photochem. Photobiol. B 24:179–186.PubMedGoogle Scholar
  56. Elangovan, M., Day, R.N., and Periasamy, A., 2002, Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell, J. Microsc. 205:3–14.Google Scholar
  57. Ellenberg, J., Lippincott-Schwartz, J., and Presley, J.F., 1999, Dual-colour imaging with GFP variants, Trends Cell Biol. 9:52–56.PubMedGoogle Scholar
  58. Elson, E.L., 2001, Fluorescence correlation spectroscopy measures molecular transport in cells, Traffic 2:789–796.PubMedGoogle Scholar
  59. Fan, G.Y., Fujisaki, H., Miyawaki, A., Tsay, R.K., Tsien, R.Y., and Ellisman, M.H., 1999, Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons, Biophys. J. 76:2412–2120.Google Scholar
  60. Firestone, L., Cook, K., Culp, K., Talsania, N., and Preston, K. Jr., 1991, Comparison of autofocus methods for automated microscopy, Cytometry 12:195–206.PubMedGoogle Scholar
  61. Flock, A., Flock, B., and Scarfone, E., 1998, Laser scanning confocal microscopy of the hearing organ: fluorochrome-dependent cellular damage is seen after overexposure, J. Neurocytol. 27:507–516.Google Scholar
  62. Forsythe, I.W., 1991, Microincubator for regulating temperature and superfusion of tissue-cultured neurons during electrophysiological or optical studies, Methods Neurosci. 4:301–318.Google Scholar
  63. Fraser, S.E., and O’Rourke, N.A., 1990, In situ analysis of neuronal dynamics and positional cues in the patterning of nerve connections, J. Exp. Biol. 153:61–70.PubMedGoogle Scholar
  64. Frostig, R., ed., 2002, In Vivo Optical Imaging of Brain Function, CRC Press, Boca Raton, Florida.Google Scholar
  65. Gahtan, E., Sankrithi, N., Campos, J.B., and O’Malley, D.M., 2002, Evidence for a widespread brain stem escape network in larval zebrafish, J. Neurophysiol. 87(1):608–614.Google Scholar
  66. Gähwiler, B.H., 1984, Development of the hippocampus in vitro: Cell types, synapses, and receptors, Neuroscience 11:751–760.PubMedGoogle Scholar
  67. Gähwiler B.H., Capogna M., Debanne D., McKinney R.A., and Thompson S.M., 1997, Organotypic slice cultures: A technique has come of age, Trends Neurosci. 20:471–477.PubMedGoogle Scholar
  68. Gan, W.B., Kwon, E., Feng, G., Sanes, J.R., and Lichtman, J.W., 2003, Synaptic dynamism measured over minutes to months: Age-dependent decline in an autonomic ganglion, Nat. Neurosci. 6:956–960.Google Scholar
  69. Gerlich, D., and Ellenberg, J., 2003, 4D imaging to assay complex dynamics in live specimens, Nat. Cell Biol. 5:S14–S19.Google Scholar
  70. Gerlich, D., Beaudouin, J., Gebhard, M., Ellenberg, J., and Eils, R., 2001, Fourdimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells, Nat. Cell Biol. 3:852.PubMedGoogle Scholar
  71. Gilland, E., Miller, A.L., Karplus, E., Baker. R., and Webb, S.E., 1999, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96:157–161.PubMedGoogle Scholar
  72. Gleason, M.R., Higashijima, S., Dallman, J., Liu, K., Mandel, G., and Fetcho, J.R., 2003, Translocation of CaM kinase II to synaptic sites in vivo, Nat. Neurosci. 6:217–218.Google Scholar
  73. Goksor, M., Enger, J., and Hanstorp, D., 2004, Optical manipulation in combination with multiphoton microscopy for single-cell studies, Appl. Opt. 43:4831–4837.Google Scholar
  74. Gong, Y., Mo, C., and Fraser, S.E., 2004, Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation, Nature 430:689–693.PubMedGoogle Scholar
  75. Griffin, F.M., Ashland, G., and Capizzi, R.L., 1981, Kinetics of phototoxicity of Fischer’s medium for L5178Y leukemic cells, Cancer Res. 41:2241–2248.PubMedGoogle Scholar
  76. Grossmann, R., Stence, N., Carr, J., Fuller, L., Waite, M., and Dailey, M.E., 2002, Juxtavascular microglia migrate along brain capillaries following activation during early postnatal development, Glia 37:229–240.PubMedGoogle Scholar
  77. Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R., and Hell, S.W., 2004, Combining 4Pi excitation and detection delivers seven-fold sharper sections in confocal imaging of live cells, Biophys. J. 87(6):4146–4152.Google Scholar
  78. Gustafsson, M., 1999, Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9:627–634.PubMedGoogle Scholar
  79. Hammond, A.T., and Glick, B.S., 2000, Raising the speed limits for 4D fluorescence microscopy, Traffic 1:935–40.PubMedGoogle Scholar
  80. Hasan, M.T., Friedrich, R.W., Euler, T., Larkum, M.E., Giese, G., Both, M., Duebel, J., Waters, J., Bujard, H., Griesbeck, O., Tsien, R.Y., Nagai, T., Miyawaki, A., and Denk, W., 2004, Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control, PLoS Biol. 2:e163. Epub 2004 Jun 15.Google Scholar
  81. Heid, P.J., Voss, E., and Soll, D.R., 2002, 3D-DIASemb: A computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo, Dev. Biol. 245:329–347.Google Scholar
  82. Hell, S.W., Dyba, M., and Jakobs, S., 2004, Concepts for nanoscale resolution in fluorescence microscopy, Curr. Opin. Neurobiol. 14:599–609.PubMedGoogle Scholar
  83. Hess, S.T., Huang, S., Heikal, A.A., and Webb, W.W., 2002, Biological and chemical applications of fluorescence correlation spectroscopy: A review, Biochemistry 41:697–705.PubMedGoogle Scholar
  84. Hiraoka, Y., Shimi, T., and Haraguchi, T., 2002, Multispectral imaging fluorescence microscopy for living cells, Cell Struct. Funct, 27:367–374.Google Scholar
  85. Hollingworth, S., Soeller, C., Baylor, S.M., and Cannell, M.B., 2000, Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy, J. Physiol. 526:551–560.Google Scholar
  86. Honig, M.G., and Hume, R.I., 1986, Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures, J. Cell Biol. 103:171–187.Google Scholar
  87. Hook, G.R., and Odeyale, C.O., 1989, Confocal scanning fluorescence microscopy: A new method for phagocytosis research, J. Leukoc. Biol. 45:277–282.PubMedGoogle Scholar
  88. Hoppe, A.D., Swanson, J.A., 2004, Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis, Mol. Biol. Cell 15(8):3509–3519.PubMedGoogle Scholar
  89. Ince, C., Ypey, D.L., Diesselhoff-Den Dulk, M.M., Visser, J.A., De Vos, A., and Van Furth, R., 1983, Micro-CO2-incubator for use on a microscope, J. Immun. Methods 60:269–275.Google Scholar
  90. Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M., and Weinstein, B.M., 2003, Angiogenic network formation in the developing vertebrate trunk, Development 130:5281–5290.PubMedGoogle Scholar
  91. Jester, J.V., Andrews, P.M., Petroll, W.M., Lemp, M.A., and Cavanagh, H.D., 1991, In vivo, real-time confocal imaging, J. Electron Microsc. Tech. 18:50–60.PubMedGoogle Scholar
  92. Jester, J.V., Petroll, W.M., Garana, R.M.R., Lemp, M.A., and Cavanagh, H.D., 1992, Comparison of in vivo and ex vivo cellular structure in rabbit eyes by tandem scanning microscopy, J. Microsc. 165:169–181.Google Scholar
  93. Johnson, L.V., Walsh, M.L., and Chen, L.B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77:990–994.PubMedGoogle Scholar
  94. Jontes, J.D., Buchanan, J., and Smith, S.J., 2000, Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo, Nat. Neurosci. 3:231–237.Google Scholar
  95. Kim, S.A., Heinze, K.G., Waxham, M.N., and Schwille, P., 2004, Intracellular calmodulin availability accessed with two-photon cross-correlation, Proc. Natl. Acad. Sci. USA 101:105–110.PubMedGoogle Scholar
  96. Keller, P., Toomre, D., Díaz, E., White, J., and Simons, K., 2001, Multicolour imaging of post-Golgi sorting and trafficking in live cells, Nat. Cell Biol. 3:140–149.Google Scholar
  97. Knebel, W., Quader, H., and Schnepf, E., 1990, Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: short- and long-term observations with a confocal laser scanning microscope, Eur. J. Cell Biol. 52:328–340.PubMedGoogle Scholar
  98. Knight, M.M., Roberts, S.R., Lee, D.A., and Bader, D.L., 2003, Live-cell imaging using confocal microscopy induces intracellular calcium transients and cell death, Am. J. Physiol. Cell Physiol. 284:C1083–C10839.PubMedGoogle Scholar
  99. Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E.L., and Webb, W.W., 1976, Dynamics of fluorescence marker concentration as a probe of mobility, Biophys. J. 16:1315–1329.Google Scholar
  100. Koster, R.W., and Fraser, S.E., 2001, Direct imaging of in vivo neuronal migration in the developing cerebellum, Curr. Biol. 11:1858–1863.Google Scholar
  101. Kuo, S.C., 2001, Review: Using optics to measure biological forces and mechanics, Traffic 2:757–763.PubMedGoogle Scholar
  102. Kuo, S.C., and Sheetz, M.P., 1993, Force of single kinesin molecules measured with optical tweezers, Science 260:232–234.PubMedGoogle Scholar
  103. Kurpius, D., and Dailey, M.E., 2005, Imaging microglia in live brain slices and slice cultures, In: Imaging in Neuroscience and Development (R. Yuste and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  104. Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., Berndt, K.W., and Johnson, M., 1992, Fluorescence lifetime imaging, Anal. Biochem. 202:316–330.Google Scholar
  105. Lansford, R., Bearman, G., and Fraser, S.E., 2001, Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy, J. Biomed. Opt. 6:311–318.PubMedGoogle Scholar
  106. Lawson, N.D., and Weinstein, B.M., 2002, In vivo imaging of embryonic vascular development using transgenic zebrafish, Dev. Biol. 248:307–318.Google Scholar
  107. Legg, J.W., Lewis, C.A., Parsons, M., Ng, T., Isacke, C.M., 2002, Anovel PKCregulated mechanism controls CD44 ezrin association and directional cell motility, Nat. Cell Biol. 4(6):399–407.Google Scholar
  108. Lepe-Zuniga, J.L., Zigler, J.S. Jr., and Gery, I., 1987, Toxicity of light-exposed Hepes media, J. Immunol. Methods 103:145.PubMedGoogle Scholar
  109. Lin, H.J., Herman, P., and Lakowicz, J.R., 2003, Fluorescence lifetimeresolved pH imaging of living cells, Cytometry 52A:77–89.Google Scholar
  110. Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A., 2001, Studying protein dynamics in living cells, Nat. Rev. Mol. Cell. Biol. 2:444–456.PubMedGoogle Scholar
  111. Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H., 2003, Review: Photobleaching and photoactivation: Following protein dynamics in living cells, Nat. Cell Biol. 5:S7–S14.Google Scholar
  112. Loew, L.M., 1993, Confocal microscopy of potentiometric fluorescent dyes, Methods Cell Biol. 38:195–209.PubMedGoogle Scholar
  113. Lorenzl, S., Koedel, U., Dirnagl, U., Ruckdeschel, G., and Pfister, H.W., 1993, Imaging of leukocyte-endothelium interaction using in vivo confocal laser scanning microscopy during the early phase of experimental pneumococcal meningitis, J. Infect. Dis. 168:927–933.PubMedGoogle Scholar
  114. Lucius, R., Mentlein, R., and Sievers, J., 1998, Riboflavin-mediated axonal degeneration of postnatal retinal ganglion cells in vitro is related to the formation of free radicals, Free Radic. Biol. Med. 24:798–808.Google Scholar
  115. Magde, D., Elson, E.L., and Webb, W.W., 1974, Fluorescence correlation spectroscopy. II. An experimental realization, Biopolymers 13:29–61.PubMedGoogle Scholar
  116. Manders, E.M.M., Stap, J., Strackee, J., Van Driel, R., and Aten, J.A., 1996, Dynamic behavior of DNA replication domains, Exp. Cell Res. 226:328–335.Google Scholar
  117. Manders, E.M.M., Kimura, H., and Cook, P.R., 1999, Direct imaging of DNA in living cells reveals the dynamics of chromosome formation, J. Cell Biol. 144:813–821.Google Scholar
  118. Manders, E.M.M., Visser, A.E., Koppen, A., de Leeuw, W.C., van Liere, R., Brakenhoff, G.J., and van Driel, R., 2003, Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus, Chromosome Res. 11:537–547.PubMedGoogle Scholar
  119. Marrs, G.S., Green, S.H., and Dailey, M.E., 2001, Rapid formation and remodeling of postsynaptic densities in developing dendrites, Nat. Neurosci. 4:1006–1013.Google Scholar
  120. Masters, B.R., 1992, Confocal microscopy of the in-situ crystalline lens, J. Microsc. 165:159–167.Google Scholar
  121. McKenna, N., and Wang, Y.L., 1986, Culturing cells on the microscope stage, Methods Cell Biol. 29:195–205.Google Scholar
  122. Megason, S.G., and Fraser, S.E., 2003, Digitizing life at the level of the cell: High-performance laser-scanning microscopy and image analysis for in toto imaging of development, Mechan. Dev. 120:1407–1420.Google Scholar
  123. Mehta, A.D., Jung, J.C., Blusberg, B.A., and Schnitzer, M.J., 2004, Fiber-optic in vivo imaging in the mammalian nervous system, Curr. Opin. Neurobiol. 14:617–628.PubMedGoogle Scholar
  124. Meyvis, T.K., De Smedt, S.C., Van Oostveldt, P., and Demeester, J., 1999, Fluorescence recovery after photobleaching: A versatile tool for mobility and interaction measurements in pharmaceutical research, Pharm. Res. 16: 1153–1162.Google Scholar
  125. Miller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D., 2002, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node, Science 296:1869–1973.PubMedGoogle Scholar
  126. Miller, M.J., Safrina, O., Parker, I., and Cahalan, M.D., 2004, Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes, J. Exp. Med. 200:847–856.PubMedGoogle Scholar
  127. Minta, A., Kao, J., and Tsien, R., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol Chem. 264:8171–8178.Google Scholar
  128. Miyawaki, A., 2003, Fluorescence imaging of physiological activity in complex systems using GFP-based probes, Curr. Opin. Neurobiol. 13:591–596.PubMedGoogle Scholar
  129. Mizrahi, A., Crowley, J.C., Shtoyerman, E., and Katz, L.C., 2004, Highresolution in vivo imaging of hippocampal dendrites and spines, J. Neurosci. 24:3147–3151.Google Scholar
  130. Moné, M.J., Bernas, T., Dinant, C., Goedvree, F.A., Manders, E.M.M., Volker, M., Houtsmuller, A.B., Hoeijmakers, J.H.J., Vermeulen, W., and van Driel, R., 2004, In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair, Proc. Natl. Acad. Sci. USA 101:15933–15937.PubMedGoogle Scholar
  131. Montoya, M.C., Sancho, D., Bonello, G., Collette, P., Langlet, C., He, H.T., Aparicio, P., Alcover, A., Olive, D., and Sanchez-Madrid, F., 2002, Role of ICAM-3 in the initial interaction of T lymphocytes and APCs, Nat. Immunol. 3:159–168.Google Scholar
  132. Mulligan, S.J., MacVicar, B.A., 2004, Calcium transients in astrocyte endfeet cause cerebrovascular constrictions, Nature 431(7005):195–199.PubMedGoogle Scholar
  133. Myrdal, S., and Foster, M., 1994, Time-resolved confocal analysis of antibody penetration into living, solid tumor spheroids, Scanning 16:155–167.PubMedGoogle Scholar
  134. Nehls, S., Snapp, E.L., Cole, N.B., Zaal, K.J., Kenworthy, A.K., Robert, T.H., Ellenberg, J., Presley, J.F., Siggia, E., and Lippincott-Schwartz, J., 2000, Dynamics and retention of misfolded proteins in native ER membranes, Nat. Cell Biol. 2:288–295.Google Scholar
  135. Niell, C.M., Meyer, M.P., and Smith, S.J., 2004, In vivo imaging of synapse formation on a growing dendritic arbor, Nat. Neurosci. 7:254–260.Google Scholar
  136. Niggli, E., and Egger, M., 2004, Applications of multi-photon microscopy in cell physiology, Front Biosci. 9:1598–1610.PubMedGoogle Scholar
  137. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A.R., 2004, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nat. Neurosci. 7:136–144.Google Scholar
  138. O’Malley, D.M., Kao, Y.H., and Fetcho, J.R., 1996, Imaging the functional organization of zebrafish hindbrain segments during escape behaviors, Neuron 17:1145–1155.PubMedGoogle Scholar
  139. O’Rourke, N.A., and Fraser, S.E., 1990, Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: An in vivo confocal microscopic study, Neuron 5:159–171.PubMedGoogle Scholar
  140. O’Rourke, N.A., Dailey, M.E., Smith, S.J., and McConnell, S.K., 1992, Diverse migratory pathways in the developing cerebral cortex, Science 258:299–302.PubMedGoogle Scholar
  141. Paddock, S.W., 2002, Confocal imaging of Drosophila embryos, Methods Cell Biol. 70:361–378.PubMedGoogle Scholar
  142. Pagano, R.E., Martin, O.C., Kang, H.C., and Haugland, R.P., 1991, A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingoid precursor, J. Cell Biol. 11:1267–1279.Google Scholar
  143. Park, M.K., Tepikin, A.V., and Petersen, O.H., 2002, What can we learn about cell signalling by combining optical imaging and patch clamp techniques? Pflugers Arch. 444:305–316.PubMedGoogle Scholar
  144. Pasti, L., Zonta, M., Pozzan, T., Vicini, S., and Carmignoto, G., 2001, Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate, J. Neurosci. 21:477–484.Google Scholar
  145. Patterson, G.H., and Lippincott-Schwartz, J., 2002, A photoactivatable GFP for selective photolabeling of proteins and cells, Science 297:1873–1877.PubMedGoogle Scholar
  146. Patterson, G.H., and Lippincott-Schwartz, J., 2004, Selective photolabeling of proteins using photoactivatable GFP, Methods 32:445–450.PubMedGoogle Scholar
  147. Pepperkok, R., Squire, A., Geley, S., and Bastiaens, P.I., 1999, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Curr. Biol. 9:269–272.Google Scholar
  148. Periasamy, A., and Day, R.N., 1999, Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy, Methods Cell Biol. 58:293–314.PubMedGoogle Scholar
  149. Periasamy, A., Elangovan, M., Elliott, E., and Brautigan, D.L., 2002, Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells, Methods Mol. Biol. 183:89–100.Google Scholar
  150. Peter, M., Ameer-Beg, S.M., 2004, Imaging molecular interactions by multiphoton FLIM, Biol. Cell. 96(3):231–236.Google Scholar
  151. Petersen, M., and Dailey, M.E., 2004, Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices, Glia 46:195–206.PubMedGoogle Scholar
  152. Petran, M., Hadravsky, M., Benes, J., and Boyde, A., 1986, In vivo microscopy using the tandem scanning microscope, Ann. N.Y. Acad. Sci. 483:440–447.Google Scholar
  153. Petroll, W.M., Cavanagh, H.D., Lemp, M.A., Andrews, P.M., and Jester, J.V., 1992, Digital image acquisition in in vivo confocal microscopy, J. Microsc. 165:61–69.Google Scholar
  154. Petroll, W.M., Cavanagh, H.D., and Jester, J.V., 1993, Three-dimensional imaging of corneal cells using in vivo confocal microscopy, J. Microsc. 170:213–219.Google Scholar
  155. Politz, J.C., 1999, Use of caged fluorochromes to track macromolecular movement in living cells, Trends Cell Biol. 9:284–287.PubMedGoogle Scholar
  156. Pologruto, T.A., Yasuda, R., and Svoboda, K., 2004, Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators, J. Neurosci. 24:9572–9579.Google Scholar
  157. Poole, C.A., Brookes, N.H., and Clover, G.M., 1993, Keratocyte networks visualized in the living cornea using vital dyes, J. Cell Sci. 106:685–692.Google Scholar
  158. Potter, S. M., 2004. Two-photon microscopy for 4D imaging of living neurons, In: Imaging in Neuroscience and Development: A Laboratory Manual, 2nd ed., (R. Yuste and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 8.1–8.12.Google Scholar
  159. Potter, S.M., and DeMarse, T.B., 2001, A new approach to neural cell culture for long-term studies, J. Neurosci. Methods 110:17–24.PubMedGoogle Scholar
  160. Reits, E.A., and Neefjes, J.J., 2001, From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3(6):E145–E147.PubMedGoogle Scholar
  161. Rios, E., Shirokova, N., Kirsch, W.G., Pizarro, G., Stern, M.D., Cheng, H., and Gonzalez, A., 2001, A preferred amplitude of calcium sparks in skeletal muscle, Biophys. J. 80:169–183.Google Scholar
  162. Robb, D.L., and Wylie, C., 1999, Confocal microscopy on Xenopus laevis oocytes and embryos, Methods Mol. Biol. 122:173–183.Google Scholar
  163. Rubart, M., 2004, Two-photon microscopy of cells and tissue, Circ. Res. 95:1154–1166.Google Scholar
  164. Salmon, W.C., Adams, M.C., and Waterman-Storer, C.M., 2002, Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells, J. Cell Biol. 158:31–37.Google Scholar
  165. Schmidt, C.E., Horwitz, A.F., Lauffenburger, D.A., and Sheetz, M.P., 1993, Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated, J. Cell Biol. 123:977–991.Google Scholar
  166. Schwarzbauer, J.E., 1997, Cell migration: may the force be with you, Curr. Biol. 7(5):R292–R294.Google Scholar
  167. Sekar, R.B., and Periasamy, A., 2003, Fluorescence resonance energy transfer (FRET) microscopy imaging of live-cell protein localizations, J. Cell Biol. 160:629–633.Google Scholar
  168. Seyfried, V., Birk, H., Storz, R., and Ulrich, H., 2003, Advances in multispectral confocal imaging, Progress in Biomedical Optics and Imaging 5139:146–157.Google Scholar
  169. Sheetz, M.P., ed., 1998, Laser Tweezers in Cell Biology, Academic Press, San Diego, California.Google Scholar
  170. Siegel, W.H., and Pritchett, T., 2000, Tutorial: Examining the relationship between media and light, Biopharmaceuticals 13:65–66.Google Scholar
  171. Silva, E., Salim-Hanna, M., Edwards, A.M., Becker, M.I., and De Ioannes, A.E., 1991, A light-induced tryptophan-riboflavin binding: biological implications, Adv. Exp. Med. Biol. 289:33–48.PubMedGoogle Scholar
  172. Silva, E., and Godoy, J., 1994, Riboflavin sensitized photooxidation of tyrosine, Int. J. Vitam. Nutr. Res. 64:253–256.PubMedGoogle Scholar
  173. Smith, S.J., Cooper, M., and Waxman, A., 1990, Laser microscopy of subcellular structure in living neocortex: Can one see dendritic spines twitch? In: XYIII Symposia Medica Hoechst, Biology of Memory (L. Squire and E. Lindenlaub, eds.), Schattauer, Stuttgart, Germany, pp. 49–71.Google Scholar
  174. Soll, D., 1995, The use of computers in understanding how animal cells crawl, Int. Rev. Cytol. 163:43–104.PubMedGoogle Scholar
  175. Soll, D.R., 1999, Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells, Comput. Med. Imaging Graphics 23:3–14.Google Scholar
  176. Spierenburg, G.T., Oerlemans, F.T., van Laarhoven, J.P., and de Bruyn, C.H., 1984, Phototoxicity of N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid-buffered culture media for human leukemic cell lines, Cancer Res. 44:2253–2254.PubMedGoogle Scholar
  177. Stence, N., Waite, M., and Dailey, M.E., 2001, Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices, Glia 33:256–266.PubMedGoogle Scholar
  178. Stoll, S., Delon, J., Brotz, T.M., and Germain, R.N., 2002, Dynamic imaging of T cell-dendritic cell interactions in lymph nodes, Science 296:1873–1876.PubMedGoogle Scholar
  179. Stoppini, L., Buchs, P.A., and Muller, D., 1991, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37:173–182.PubMedGoogle Scholar
  180. Strange, K., and Spring, K.R., 1986, Methods for imaging renal tubule cells, Kidney Int. 30:192–200.PubMedGoogle Scholar
  181. Streit, W.J., and Kreutzberg, G.W., 1987, Lectin binding by resting and reactive microglia, J. Neurocytol. 16:249–260.Google Scholar
  182. Stricker, S.A., 2004, Dual-channel confocal ratioing of calcium dynamics in living eggs and oocytes, Methods Mol. Biol. 254:137–148.Google Scholar
  183. Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47:819–846.PubMedGoogle Scholar
  184. Sullivan, W., Daily, D.R., Fogarty, P., Yook, K.J., and Pimpinelli, S., 1993, Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo, Mol. Biol. Cell 4:885–896.PubMedGoogle Scholar
  185. Svoboda, K., Denk, W., Kleinfeld, D., and Tank, D., 1997, In vivo dendritic calcium dynamics in neocortical pyramidal neurons, Nature 385:161–165.PubMedGoogle Scholar
  186. Tauer, U., 2002, Advantages and risks of multiphoton microscopy in physiology, Exp. Physiol. 87:709–714.Google Scholar
  187. Terasaki, M., Song, J., Wong, J.R., Weiss, M.J., and Chen, L.B., 1984, Localization of endoplasmic reticulum in living and glutaraldehyde fixed cells with fluorescent dyes, Cell 8:101–108.Google Scholar
  188. Thomas, C.F., and White, J.G., 1998, Four-dimensional imaging: The exploration of space and time, Trends Biotechnol. 16:175–182.PubMedGoogle Scholar
  189. Thompson, N.L., 1991, Fluorescence correlation spectroscopy, In: Topics in Fluorescence Spectroscopy, Vol. 1 (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 337–378.Google Scholar
  190. Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K., 2002, Long-term in vivo imaging of experiencedependent synaptic plasticity in adult cortex, Nature 420:788–794.PubMedGoogle Scholar
  191. Tsurui, H., Nishimura, H., Hattori, S., Hirose, S., Okumura, K., and Shirai, T., 2000, Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition, J. Histochem. Cytochem. 48:653–662.PubMedGoogle Scholar
  192. Verschure, P.J., van der Kraan, I., Manders, E.M., and van Driel, R., 1999, Spatial relationship between transcription sites and chromosome territories, J. Cell Biol. 147:13–24.Google Scholar
  193. Vesely, P., Maly, J., Cumpelik, J., Pluta, M., and Tuma V., 1982, Improved spatial and temporal resolution in an apparatus for time-lapse, phase contrast cine light micrography of cells in vitro, J. Microsc. 125:67–76.Google Scholar
  194. Visscher, K., and Brakenhoff, G.J., 1991, Single beam optical trapping integrated in a confocal microscope for biological applications, Cytometry 12:486–491.PubMedGoogle Scholar
  195. Walcerz, D.B., and Diller, K.R., 1991, Quantitative light microscopy of combined perfusion and freezing processes, J. Microsc. 161:297–311, and US Patent 5,257,128.Google Scholar
  196. Wang, S.Q., Wei, C., Zhao, G., Brochet, D.X., Shen, J., Song, L.S., Wang, W., Yang, D., and Cheng, H., 2004, Imaging microdomain Ca2+ in muscle cells, Circ. Res. 94:1011–1022.Google Scholar
  197. Waterman-Storer, C.M., Sanger, J.W., and Sanger, J.M., 1993, Dynamics of organelles in the mitotic spindles of living cells: Membrane and microtubule interactions, Cell Motil. Cytosketelon 26:19–39.Google Scholar
  198. Waterman-Storer, C.M., Desai, A., Bulinski, J.C., and Salmon, E.D., 1998, Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells, Curr. Biol. 8:1227–1230.Google Scholar
  199. Weiss, M., 2004, Challenges and artifacts in quantitative photobleaching experiments, Traffic 5:662–671.PubMedGoogle Scholar
  200. Wiseman, P.W., and Petersen, N.O., 1999, Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells, Biophys. J. 76:963–977.PubMedGoogle Scholar
  201. Wiseman, P.W., Squier, J.A., Ellisman, M.H., and Wilson, K.R., 2000, Twophoton image correlation spectroscopy and image cross-correlation spectroscopy, J. Microsc. 200:14–25.Google Scholar
  202. Wood, C., Kabat, E.A., Murphy, L.A., and Goldstein, I.J., 1979, Immunochemical studies of the combining sites of the two isolectins, A4 and B4, isolated from Bandeiraea simplicifolia, Arch. Biochem. Biophys. 198:1–11.PubMedGoogle Scholar
  203. Wouters, F.S., Verveer, P.J., and Bastiaens, P.I.H., 2001, Imaging biochemistry inside cells, Trends Cell Biol. 11:203–211.PubMedGoogle Scholar
  204. Yoder, E.J., and Kleinfeld, D., 2002, Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy, Microsc. Res. Techn. 56:304–305.Google Scholar
  205. Zhang, S., Boyd, J., Delaney, K., Murphy, T.H., 2005, Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia, J. Neurosci. 25(22):5333–5338.Google Scholar
  206. Zicha, D., Dobbie, I.M., Holt, M.R., Monypenny, J., Soong, D.Y., Gray, C., and Dunn, G.A., 2003, Rapid actin transport during cell protrusion, Science 300:142–145.PubMedGoogle Scholar
  207. Zieger, M.A., Glofcheski, D.J., Lepock, J.R., and Kruuv, J., 1991, Factors influencing survival of mammalian cells exposed to hypothermia. V. Effects of hepes, free radicals, and H2O2 under light and dark conditions, Cryobiology 28:8–17.PubMedGoogle Scholar
  208. Zigler, J.S. Jr., Lepe-Zuniga, J.L., Vistica, B., and Gery, I., 1985, Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium, In Vitro Cell Dev. Biol. 21:282–287.Google Scholar
  209. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., and Pepperkok, R., 2002, Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair, FEBS Lett. 531:245–249. PubMedGoogle Scholar
  210. Zimmermann, T., Rietdorf, J., and Pepperkok, R., 2003, Spectral imaging and its applications in live-cell microscopy, FEBS Lett. 546:87–92.PubMedGoogle Scholar
  211. Zuo, Y., Lubischer, J.L., Kang, H., Tian, L., Mikesh, M., Marks, A., Scofield, V.L., Maika, S., Newman, C., Krieg, P., and Thompson, W.J., 2004. Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination, J. Neurosci. 24:10999–11009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Michael E. Dailey
    • 1
  • Erik Manders
    • 2
  • David R. Soll
    • 3
  • Mark Terasaki
    • 4
  1. 1.University of IowaIowa CityUSA
  2. 2.Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.University of IowaIowa CityUSA
  4. 4.University of Connecticut Health CenterFarmingtonUSA

Personalised recommendations