Advertisement

Foundations of Confocal Scanned Imaging in Light Microscopy

  • Shinya Inoué

Abstract

Seldom has the introduction of a new instrument generated as instant an excitement among biologists as the laser-scanning confocal microscope. With the new microscope, one can slice incredibly clean, thin optical sections out of thick fluorescent specimens; view specimens in planes tilted to, and even running parallel to, the line of sight; penetrate deep into light-scattering tissues; gain impressive three-dimensional (3D) views at very high resolution; obtain differential interference or phase-contrast images in exact register with confocal fluorescence images; and improve the precision of microphotometry.

Keywords

Objective Lens Numerical Aperture Confocal Imaging Optical Section Axial Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe, E., 1884, Note on the proper definition of the amplifying power of a lens or a lens-system, J. Royal Microsc. Soc. 4:348–351.Google Scholar
  2. Agard, D.A., and Sedat, J.W., 1983, Three dimensional architecture of a polytene nucleus, Nature 302:676–681.CrossRefPubMedGoogle Scholar
  3. Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W., 1989, Fluorescence microscopy in three dimensions, Methods Cell Biol. 30: 353–377.CrossRefPubMedGoogle Scholar
  4. Allen, R.D., 1985, New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy, Annu. Rev. Biophys. Biophysical Chem. 14:265–290.CrossRefGoogle Scholar
  5. Allen, R.D., Travis, J.L., Allen, N.S., and Yilmaz, H., 1981a, Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris, Cell Motil. 1:275–289.CrossRefPubMedGoogle Scholar
  6. Allen, R.D., Allen, N.S., and Travis, J.L., 1981b, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris, Cell Motil. 1:291–302.CrossRefPubMedGoogle Scholar
  7. Amos, W.B., White, J.G., and Fordham, M., 1987, Use of confocal imaging in the study of biological structures, Appl. Opt. 26:3239–3243.CrossRefPubMedGoogle Scholar
  8. Åslund, N., Carlsson, K., Liljeborg, A., and Majlof, L., 1983, PHOIBOS, a microscope scanner designed for micro-fluorometric applications, using laser induced fluorescence. In: Proceedings of the Third Scandinavian Conference on Image Analysis, Studentliteratur, Lund, p. 338.Google Scholar
  9. Åslund, N., Liljeborg, A., Forsgren, P.-O., and Wahlsten, S., 1987, Three dimensional digital microscopy using the PHOIBOS scanner, Scanning 9:227–235.Google Scholar
  10. Baxes, G.A., 1984, Digital Image Processing: A Practical Primer, Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  11. Berek, M., 1927, Grundlagen der Tiefenwahrnehmung im Mikroskop, Marburg Sitzungs Ber. 62:189–223.Google Scholar
  12. Born, M., and Wolf, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford, England.Google Scholar
  13. Boyde, A., 1985a, Tandem scanning reflected light microscopy (TSRLM), Part 2: Pre-MICRO 84 applications at UCL, Proc. Royal Microsc. Soc. 20:131–139.Google Scholar
  14. Boyde, A., 1985b, Stereoscopic images in confocal (tandem scanning) microscopy, Science 230:1270–1272.CrossRefPubMedGoogle Scholar
  15. Boyde, A., 1987, Colour-coded stereo images from the tandem scanning reflected light microscope (TSRLM), J. Microsc. 146:137–142.PubMedGoogle Scholar
  16. Brakenhoff, G.J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117:219–232.Google Scholar
  17. Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., Linnemans, W.A.M., and Nanninga, N., 1985, Three dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy, Nature 317:748–749.CrossRefPubMedGoogle Scholar
  18. Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., and Nanninga, N., 1986, Three dimensional imaging by confocal scanning fluorescence microscopy. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine, Vol. 483 (A. Somlyo, ed.), Ann. N.Y. Acad. Sci., New York, pp. 405–414.Google Scholar
  19. Brakenhoff, G.J., van Spronsen, E.A., van der Voort, H.T.M., and Nanninga, N., 1989, Three dimensional confocal fluorescence microscopy, Methods Cell Biol. 30:379–398.CrossRefPubMedGoogle Scholar
  20. Bright, G.R., Fisher, G.W., Rogowska, J., and Taylor, D.L., 1989, Fluorescence ratio imaging microscopy, Methods Cell Biol. 30:157–192.CrossRefPubMedGoogle Scholar
  21. Cagnet M., Françon, M., and Thrierr, J.C., 1962, Atlas of Optical Phenomena, Springer-Verlag, Berlin.Google Scholar
  22. Carlsson, K., Danielsson, P., Lenz, R., Liljeborg, A., Majlof, L., and Åslund, N., 1985, Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10:53–55.CrossRefPubMedGoogle Scholar
  23. Castleman, K.R., 1979, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  24. Castleman, K.R., 1987, Spatial and photometric resolution and calibration requirements for cell image analysis instruments, Appl. Opt. 26:3338–3342.CrossRefPubMedGoogle Scholar
  25. Castleman, K.R., 1993, Resolution and sampling requirements for digital image processing, analysis, and display. In: Electronic Light Microscopy (D. Shotton, ed.), Wiley-Liss Inc., New York, pp. 71–94.Google Scholar
  26. Conchello, J.-A., Heym, J.P., Wei, J.L., and Lichtman, J.W., 1997, NOVEL reflected light confocal profilometer, Proc. SPIE Conf. 2984:101–112.Google Scholar
  27. Cox, G., and Sheppard, C., 1993, Effects of image deconvolution on optical sectioning in conventional and confocal microscopes, Bioimaging 1:82–95.CrossRefGoogle Scholar
  28. Cox, I.J., and Sheppard, C.J.R., 1983, Scanning optical microscope incorporating a digital framestore and microcomputer, Appl. Opt. 22:1474–1478.CrossRefPubMedGoogle Scholar
  29. Cox, I.J., and Sheppard, C.J.R., 1986, Information capacity and resolution in an optical system, J. Opt. Soc. Am. 3:1152–1158.CrossRefGoogle Scholar
  30. Cremer, C., and Cremer, T. 1978, Considerations on a laser-scanningmicroscope with high resolution and depth of field, Microsc. Acta 81:31–44.PubMedGoogle Scholar
  31. Davidovits, P., and Egger, M.D., 1971, Scanning laser microscope for biological investigations, Appl. Opt. 10:1615–1619.CrossRefPubMedGoogle Scholar
  32. Davidovits, P., and Egger, M.D., 1972, U.S. Patent #3,643,015, Scanning Optical Microscope.Google Scholar
  33. Denk, W., and Webb, W.W., 1987, Displacement fluctuation spectroscopy of the sensory hair bundles of mechanosensitive cells of the inner ear, Bull. Am. Phys. Soc. 32:645.Google Scholar
  34. Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.CrossRefPubMedGoogle Scholar
  35. Egger, M.D., 1989, The development of confocal microscopy, Trends Neurosci.12:11.Google Scholar
  36. Egger, M.D., and Petrán?, M., 1967, New reflected-light microscope for viewing unstained brain and ganglion cells, Science 157:305–307.Google Scholar
  37. Ellis, G.W., 1966, Holomicrography: Transformation of image during reconstruction a posteriori, Science 154:1195–1196.CrossRefPubMedGoogle Scholar
  38. Ellis, G.W., 1978, Advances in visualization of mitosis in vivo. In: Cell Reproduction, in Honor of Daniel Mazia (E. Dirksen, D. Prescott, and C.F. Fox, eds.), Academic Press, New York, pp. 465–476.Google Scholar
  39. Ellis, G.W., 1979, A fiber-optic phase-randomizer for microscope illumination by laser, J. Cell Biol. 83:303a.Google Scholar
  40. Ellis, G.W., 1985, Microscope illuminator with fiber-optic source integrator, J. Cell Biol. 101:83a.CrossRefGoogle Scholar
  41. Ellis, G.W., 1988, Scanned aperture light microscopy In: Proceedings of the Forty-sixth Annual Meeting of EMSA, San Francisco Press, San Francisco, pp. 48–49.Google Scholar
  42. Fay, F.S., Fogarty, K.E., and Coggins, J.M., 1985, Analysis of molecular distribution in single cells using a digital imaging microscope. In: Optical Methods in Cell Physiology (P. De Weer and B.M. Salzberg, eds.), John Wiley & Sons, New York.Google Scholar
  43. Flory, L.E., 1951, The television microscope, Cold Spring Harbor Symp. Quant. Biol. 16:505–509.PubMedGoogle Scholar
  44. Freed, J.J., and Engle, J.L. 1962, Development of the vibrating-mirror flying spot microscope for ultraviolet spectrophotometry, Ann. N.Y. Acad. Sci. 97:412–448.Google Scholar
  45. Fuchs, H., Pizer, S.M., Heinz, E.R., Bloomberg, S.H., Tsai, L-C., and Strickland, D.C., 1982, Design and image editing with a space-filling 3D display based on a standard raster graphics system, Proc. Soc. Photo. Opt. Instrum. Eng. 367:117–127.Google Scholar
  46. Gibson, S.F., and Lanni, F., 1991. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy, J. Opt. Soc. Am. A 8:1601–1613.Google Scholar
  47. Goldstein, S.R., Hubin, T., Rosenthal, S., and Washburn, C., 1990, The VRIDICOM: a video rate image dissector confocal microscope. In: Optical Microscopy for Biology (B. Herman and K. Jacobson, eds.), Wiley-Liss, Inc., New York, pp. 59–72.Google Scholar
  48. Gonzales, R.C., and Wintz, P., 1987, Digital Image Processing, 2nd ed., Addison-Wesley, Reading, Massachusetts.Google Scholar
  49. Grego, S., Cantillana, V., and Salmon, E.D., 21, Microtubule treadmilling in vitro investigated by fluorescence speckle and confocal microscopy, Biophys. J. 81:66–78.Google Scholar
  50. Gustafsson, M.G.L., 20, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198:82–87.Google Scholar
  51. Hamilton, D.K., and Wilson, T. 1984, Two-dimensional phase imaging in the scanning optical microscope, Appl. Opt. 23:348–352.CrossRefPubMedGoogle Scholar
  52. Hansen, E.W., 1986, Appendix II. In: Video Microscopy (S. Inoué, ed.), Plenum Press, New York, pp. 467–475.Google Scholar
  53. Hard, R., Zeh, R., and Allen, R.D., 1977, Phase-randomized laser illumination for microscopy, J. Cell Sci. 23:335–343.PubMedGoogle Scholar
  54. Harris, J.L., 1964, Diffraction and resolving power, J. Opt. Soc. Am. 54:931–936.CrossRefGoogle Scholar
  55. Hecht, E., 1987, Optics, 2nd ed., Addison-Wesley, Reading, Massachusetts. Hell, S.W., and Wichmann, J., 1994, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19:780–782.Google Scholar
  56. Hell, S.W., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.Google Scholar
  57. Hellwarth, R., and Christensen, P., 1974, Nonlinear optical microscopic examination of structure in polycrystalline ZnSe, Optics Comm. 12:318–322.CrossRefGoogle Scholar
  58. Hoffman, R., and Gross, L., 1975, Modulation contrast microscopy, Appl. Opt. 14:1169–1176.CrossRefPubMedGoogle Scholar
  59. Hopkins, H.H., 1951, The concept of partial coherence in optics, Proc. Royal Soc. Lond. 208A:263.CrossRefGoogle Scholar
  60. Hopkins, H.H., and Barham, P.M., 1950, The influence of the condenser on microscopic resolution, Proc. Royal Soc. Lond. 63B:737–744.Google Scholar
  61. Ichihara, A., Tanaami, T., Isozaki, K., Sugiyama, Y., Kosugi, Y., Mikuriya, K., Abe, M., and Uemura, I., 1996, High-speed confocal fluorescence micro microscopy using a Nipkow scanner with microlenses – for 3-D imaging of single fluorescent molecule in real-time, Bioimages 4:57–62.Google Scholar
  62. Ingelstam, E., 1956, Different forms of optical information and some interrelations between them. In: Problem in Contemporary Optics, Istituto Nazionale di Ottica, Arcetri-Firenze, pp. 128–143.Google Scholar
  63. Inoué, S., 1981, Video image processing greatly enhances contrast, quality, and speed in polarization based microscopy, J. Cell Biol. 89:346–356.CrossRefPubMedGoogle Scholar
  64. Inoué, S., 1986, Video Microscopy, Plenum Press, New YorkGoogle Scholar
  65. Inoué S., 1989, Imaging of unresolved objects, superresolution, and precision of distance measurement, with video microscopy, Methods Cell Biol. 30:85–112.CrossRefPubMedGoogle Scholar
  66. Inoué S., 1994, Ultra-thin optical sectioning and dynamic volume investigation with conventional light microscopy. In: Three-Dimensional Confocal Microscopy (J.K. Stevens, L.R. Mills, and J. Trogadis, eds.), Academic Press, San Diego, pp. 397–419.Google Scholar
  67. Inoué, S., and Inoué, T.D., 1986, Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine, Vol. 483 (A. Somlyo, ed.), Ann. N.Y. Acad. Sci., New York, pp. 392–404.Google Scholar
  68. Inoué, S., and Inoué, T.D., 22, Direct-view high-speed confocal scanner —the CSU-10. In: Cell Biological Applications of Confocal Microscopy, 2nd ed. (B. Matsumoto, ed.), Academic Press, San Diego, pp. 87–123.Google Scholar
  69. Inoué, S., and Oldenbourg, R., 1995, Optical instruments: Microscopes. In: Handbook of Optics, 2nd ed., Vol. 2 (M. Bass, ed.), McGraw-Hill, New York, pp. 17.1–17.52.Google Scholar
  70. Inoué, S., and Spring, K., 1997, Video Microscopy, 2nd ed., Plenum Press, New York.Google Scholar
  71. Inoué, S., Goda, M., and Knudson, R.A., 21a, Centrifuge polarizing microscope. II. Sample biological applications, J. Microsc. 201:357–367.Google Scholar
  72. Inoué, S., Knudson, R.A., Goda, M., Suzuki, K., Nagano, C., Okada, N., Takahashi, H., Ichie, K., Iida, M., and Yamanaka, K., 21b, Centrifuge polarizing microscope. I. Rationale, design, and instrument performance, J. Microsc. 201:341–356.Google Scholar
  73. Inoué, S., Shimomura, O., Goda, M., Shribak, M., and Tran, P.T., 22, Fluorescence polarization of green fluorescent protein (GFP), Proc. Natl. Acad. Sci. 99:4272–4277.Google Scholar
  74. Kam, Z., Hanser, B., Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 21, Computational adaptive optics for live three-dimensional biological imaging, Proc. Natl. Acad. Sci. 98:3790–3795.Google Scholar
  75. Klar, T.A., Jacobs, S., Dyba, M., Egner, A., and Hell, S.W., 20, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. 97:8206–8210.Google Scholar
  76. Koester, C.J., 1980, Scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Opt. 19:1749–1757.CrossRefPubMedGoogle Scholar
  77. Kubota, H., and Inoué, S., 1959, Diffraction images in the polarizing microscope, J. Opt. Soc. Am. 49:191–198.CrossRefPubMedGoogle Scholar
  78. Leith, E.N., and Upatnieks, J., 1963, Wavefront reconstruction with continuous-tone objects, J. Opt. Soc. Am. 53:1377–1381.CrossRefGoogle Scholar
  79. Leith, E.N., and Upatnieks, J., 1964, Wavefront reconstruction with diffused illumination and 3D objects, J. Opt. Soc. Am. 54:1295–1301.CrossRefGoogle Scholar
  80. Lewin, R., 1985, New horizons for light microscopy, Science 230:1258–1262.CrossRefPubMedGoogle Scholar
  81. Linfoot, E.H., and Wolf, E., 1953, Diffraction images in systems with an annular aperture, Proc. Phys. Soc. B 66:145–149.CrossRefGoogle Scholar
  82. Linfoot, E.H., and Wolf, E., 1956, Phase distribution near focus in an aberration- free diffraction image, Proc. Phys. Soc. B 69:823–832.CrossRefGoogle Scholar
  83. Maddox, P., Desai, A., Oegema, K., Mitchison, T.J., and Salmon, E.D., 22, Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos, Curr. Biol. 12:1670–1674.Google Scholar
  84. McCarthy, J.J., and Walker, J.S., 1988, Scanning confocal optical microscopy, EMSA Bull. 18:75–79.Google Scholar
  85. Minsky, M., 1957, U.S. Patent #3013467, Microscopy Apparatus. Minsky, M., 1988, Memoir on inventing the confocal scanning microscope, Scanning 10:128–138.Google Scholar
  86. Montgomery, P.O., Roberts, F., and Bonner, W., 1956, The flying-spot monochromatic ultra-violet television microscope, Nature 177:1172.CrossRefPubMedGoogle Scholar
  87. Nipkow, P., 1884, German Patent #30,105.Google Scholar
  88. Nomarski, G., 1955, Microinterférométre différentiel à ondes polarisées, J. Phys. Radium 16:S9–S13.Google Scholar
  89. Oldenbourg, R., 1996, A new view on polarization microscopy, Nature 381:811–812.CrossRefPubMedGoogle Scholar
  90. Oldenbourg, R., and Mei, G., 1995, New polarized light microscope with precision universal compensator, J. Microsc. 180:140–147.PubMedGoogle Scholar
  91. Oldenbourg, R., Salmon, E.D., and Tran, P.T., 1998, Birefringence of single and bundled microtubules, Biophys. J. 74:645–654.CrossRefPubMedGoogle Scholar
  92. Oldenbourg, R., Terada, H., Tiberio, R., and Inoué, S., 1993, Image sharpness and contrast transfer in coherent confocal microscopy, J. Microsc. 172:31–39.Google Scholar
  93. Pawley, J.B., 22, Limitations on optical sectioning in live-cell confocal microscopy, Scanning 21:241–246.Google Scholar
  94. Petrán, M., Hadravsky, M., Egger, D., and Galambos, R., 1968, Tandemscanning reflected-light microscope, J. Opt. Soc. Am. 58:661–664.Google Scholar
  95. Quate, C.F., 1980, Microwaves, acoustic and scanning microscopy. In: Scanned Image Microscopy (E.A. Ash, ed.), Academic Press, San Diego, pp. 23–55.Google Scholar
  96. Sharnoff, M., Brehm, L., and Henry, R., 1986, Dynamic structures through microdifferential holography, Biophys. J. 49:281–291.CrossRefPubMedGoogle Scholar
  97. Sheppard, C.J.R., and Choudhury, A., 1977, Image formation in the scanning microscope, Optica 24:1051.CrossRefGoogle Scholar
  98. Sheppard, C.J.R., Gannaway, J.N., Walsh, D., and Wilson, T., 1978, Scanning Optical Microscope for the Inspection of Electronic Devices, Microcircuit Engineering Conference, Cambridge.Google Scholar
  99. Sher, L.D., and Barry, C.D., 1985, The use of an oscillating mirror for 3D displays. In: New Methodologies in Studies of Protein Configuration (T.T. Wu, ed.), Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  100. Shimizu, Y., and Takenaka, H., 1994, Microscope objective design. In: Advances in Optical and Electron Microscopy, Vol. 14 (C. Sheppard and T. Mulvey, eds.), Academic Press, San Diego, pp. 249–334.Google Scholar
  101. Shotten, D., ed., 1993, Electronic Light Microscopy: The Principles and Practice of Video-enhanced Contrast, Digital Intensified Fluorescence, and Confocal Scanning Light Microscopy, John Wiley & Sons, New York.Google Scholar
  102. Shribak, M., Inoué, S., and Oldenbourg, R., 22, Polarization aberrations caused by differential transmission and phase shift in high-numericalaperture lenses: theory, measurement, and rectification, Opt. Eng. 41:943–954.Google Scholar
  103. Smith, L.W., and Osterberg, H., 1961, Diffraction images of circular selfradiant disks, J. Opt. Soc. Am. 51:412–414.CrossRefGoogle Scholar
  104. Squirrel, J.M., Wokosin, D.L., White, J.G., and Bavister, B.D., 1999, Longterm two-photon fluorescence imaging of mammalian embryos without compromising viability, Nature Biotech. 17:763–767.CrossRefGoogle Scholar
  105. Stevens, J.K., Mills, L.R., and Trogadis, J., 1994, Three-Dimensional Confocal Microscopy, Academic Press, San Diego.Google Scholar
  106. Streibl, N., 1985, Three dimensional imaging by a microscope, J. Opt. Soc. Am. A 2:121–127.Google Scholar
  107. Suzuki, T., and Hirokawa, Y., 1986, Development of a real-time scanning laser microscope for biological use, Appl. Opt. 25:4115–4121.Google Scholar
  108. Tanasugarn, L., McNeil, P., Reynolds, G.T., and Taylor, D.L., 1984, Microspectrofluorometry by digital image processing: Measurement of cytoplasmic pH, J. Cell Biol. 89:717–724.Google Scholar
  109. Tolardo di Francia, G., 1955, Resolving power and information, J. Opt. Soc. Am. 45:497–501.Google Scholar
  110. Tran, P.T., Marsh, L., Doye, V., Inoué, S., and Chang, F., 21, A mechanism for nuclear positioning in fission yeast based on microtubule pushing, J. Cell Biol. 153:397–411.Google Scholar
  111. Tsien, R.Y., 1989, Fluorescent indicators of ion concentration, Methods Cell Biol. 30:127–156.CrossRefPubMedGoogle Scholar
  112. Volkmer, A., Cheng, J.-X., and Xie, X. S., 21, Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy, Phys. Rev. Lett. 87:023901-1-023901-4.Google Scholar
  113. Waterman-Storer, C.M., and Salmon, E.D., 1997, Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling, J. Cell Biol. 139:417–434.CrossRefPubMedGoogle Scholar
  114. White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.CrossRefPubMedGoogle Scholar
  115. Wijnaendts van Resandt, R.W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Strickler, R., 1985, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29–34.Google Scholar
  116. Wilke, V., Gödecke, U., and Seidel, P., 1983, Laser-scan-mikroskop, Laser and Optoelecktron 15:93–101.Google Scholar
  117. Wilson, T., 1985, Scanning optical microscopy, Scanning 7:79–87.Google Scholar
  118. Wilson, T., 1990, Confocal Microscopy, Academic Press, London.Google Scholar
  119. Wilson, T., and Sheppard, C., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.Google Scholar
  120. Wilson, T., Gannaway, J.N., and Johnson, P., 1980, A scanning optical microscope for the inspection of semiconductor materials and devices, J. Microsc. 118:390–314.Google Scholar
  121. Xiao, G.Q., and Kino, G.S., 1987, Areal-time confocal scanning optical microscope. In: Proceedings of SPIE, Vol. 809, Scanning Imaging Technology (T. Wilson and L. Balk, eds.), pp. 107–113.Google Scholar
  122. Young, J.Z., and Roberts, F., 1951, A flying-spot microscope, Nature 167: 231.CrossRefPubMedGoogle Scholar
  123. Zernicke, V.F., 1935, Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung, Z. Tech. Phys. 16:454–457.Google Scholar
  124. Zworykin, V.K., 1934, The iconoscope – a modern version of the electric eye, Proceedings of IRE 22:16–32.CrossRefGoogle Scholar
  125. Zworykin, V.K., and Morton, G.A., 1954, Television: The Electronics of Image Transmission in Color and Monochrome, 2nd ed., John Wiley & Sons, New York.Google Scholar
  126. Abbe, E., 1873, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Schultzes Arc. f. Mikr. Anat. 9:413–468.CrossRefGoogle Scholar
  127. Inoué, S., 1988, Progress in video microscopy, Cell Motil. Cytoskel. 10:13–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shinya Inoué
    • 1
  1. 1.Marine Biological LaboratoryWoods Hole

Personalised recommendations