Skip to main content

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IV))

  • 1599 Accesses

Abstract

Design of successful drug development candidates requires balancing a number of different characteristics simultaneously including intrinsic activity, biopharmaceutical properties, synthesis, stability, and many others. Independently, each of these can be considered a barrier to drug performance or development success (Kerns and Di, 2003). Among the most important of these processes determining in vivo performance are absorption, distribution, metabolism and excretion, collectively referred to as ADME. The structure and physicochemical characteristics of the drug are important determinants of these processes, as are the characteristics of the physiological mechanisms. Further complicating the issue is the interrelationship of many of these processes, frequently in antagonistic ways. Increasing solute lipophilicity, for example, can decrease aqueous solubility, which frequently compromises oral absorption. Also, it can increase metabolic clearance, thus making difficult sustaining the pharmacologically relevant systemic exposure. In contrast, permeability, in many cases, increases with increasing lipophilicity, favoring absorption (Conradi et al., 1996; Hansch et al., 2004). The actual result will be determined by the relative contributions of these two competing phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham MJ and Le J. The Correlation and Prediction of the Solubility of Compounds in Water Using and Amended Solvation Energy Relationship. J Pharm Sci 1999; 88:868–880.

    Article  PubMed  CAS  Google Scholar 

  • Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL and Ho NFH. Passive Diffusion of Weak Organic Electrolytes Across Caco-2 Cell Monolayers: Uncoupling the Contributions of Hydrodynamic, Transcellular and Paracellular Barriers. J Pharm Sci 1995; 84:1197–1204.

    Article  PubMed  CAS  Google Scholar 

  • Akhlaghi F and Trull AK. Distribution of Cyclosporin in Organ Transplant Recipients. Clin Pharmacokinet 2002; 41:615–637.

    Article  PubMed  CAS  Google Scholar 

  • Beresford AP, Segall M and Tarbit MH. In silico Prediction of ADMET Properties: Are we Making Progress? Curr Opin Drug Discov Devel 2004; 7:36–42.

    PubMed  CAS  Google Scholar 

  • Bernareggi A and Rowland M. Physiololgic Modeling of Cyclosporine Kinetics in Rat and Man. J Pharmacokinet Biopharm 1991; 19:21–50.

    Article  PubMed  CAS  Google Scholar 

  • Boffito M, Back DJ, Blaschke TF, Rowland M, Bertz RJ, Gerber JG and Miller V. Protein Binding in Antiretroviral Therapies. AIDS Res Hum Retroviruses 2003; 19:825–835.

    Article  PubMed  CAS  Google Scholar 

  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR and Beliles RP. Physiological Parameter Values for Physiologically Based Pharmacokinetic Models. Toxicol Indust Health 1997; 13:407–484.

    CAS  Google Scholar 

  • Butina D, Segall MD and Frankcombe K. Predicting ADME Properties in silico: Methods and Models. Drug Discov Today 2002; 11(Suppl):S83–S88.

    Article  Google Scholar 

  • Camenisch G, Folkers G and van de Waterbeembd H. Review of Theoretical Passive Drug Absorption Models: Historical, Background, Recent Developments and Limitations. Pharm Acta Helv 1996; 71:309–327.

    Article  PubMed  CAS  Google Scholar 

  • Chung NS and Wasan KM. Potential Role of the Low-density Lipoprotein Receptor Family as Mediators of Cellular Drug Uptake. Adv Drug Deliv Rev 2004; 56:1315–1334.

    Article  PubMed  CAS  Google Scholar 

  • Colmenarejo G. In silico Prediction of Drug-binding Strengths to Human Serum Albumin. Med Res Rev 2003; 23:275–301.

    Article  PubMed  CAS  Google Scholar 

  • Conradi RA, Hilgers AR, Ho NFH and Burton PS. The Influence of Peptide Structure on Transport Across Caco-2 Cells. Pharm Res 1991; 8:1453–1460.

    Article  PubMed  CAS  Google Scholar 

  • Conradi RA, Hilgers AR, Ho NFH and Burton PS. The Influence of Peptide Structure on Transport Across Caco-2 Cells. II. Peptide Bond Modification Which Results in Improved Permeability. Pharm Res 1992; 9:435–439.

    Article  PubMed  CAS  Google Scholar 

  • Conradi RA, Burton PS and Borchrdt RT. Physicochemical and Biological Factors that Influence a Drug’s Cellular Permeability by Passive Diffusion. In: V Pliska, B Testa, H van de Waterbeemd, R Mannhold, H Kubinyi and H Timmerman. Lipophilicity in Drug Action and Toxicoloy,., VCH Publishers, BRD; 1996.

    Google Scholar 

  • Crimin KS, Orrenius C, Lee P, Gao H, Catana C, Crivori P, Dearden JC, Vidmar TJ, Goodwin JT, Stouten PFW and Burton PS. Prediction of Aqueous Solubility of Organic Molecules: Evaluation of Accuracy and Bias in Several Models. J Med Chem 2005; submitted.

    Google Scholar 

  • Crivori P, Poggesi I and Rocchetti M. Estimation of Human Drug Clearance from Chemical Structure. 14th European Symposium on Quantitative Structure-Activity Relationships. September 2002; Bournemouth, UK.

    Google Scholar 

  • Crivori P, Zamora I, Speed B, Orrenius C and Poggesi I. Model Based on GRID-Derived Descriptors for Estimating CYP3A4 Enzyme Stability of Potential Drug Candidates. J Comput Aided Mol Des 2004; 18:155–166.

    Article  PubMed  CAS  Google Scholar 

  • Curatolo W. Physical Chemical Properties of Oral Drug Candidates in the Discovery and Exploratory Development Settings. Pharm Sci Technol Today 1998; 1:387–393.

    Article  CAS  Google Scholar 

  • Diamond JM. The Epithelial Junction: Bridge, Gate and Fence. Physiologist 1977; 20:10–18.

    PubMed  CAS  Google Scholar 

  • Ekins S, Waller CL, Swaan PW, Cruciani G, Wrighton SA and Wikel JA. Progress in Predicting Human ADME Parameters in Silico. J Pharmacol Toxicol Methods 2000; 44:251–272.

    Article  PubMed  CAS  Google Scholar 

  • El Tayar N, Tsai R-S, Testa B, Carrupt P-A and Leo A. Partitioning of Solutes in Different Solvent Systems: The Contribution of Hydrogen-bonding Capacity and Polarity. J Pharm Sci 1991; 80:590–598.

    Article  PubMed  Google Scholar 

  • Ermondi G, Lorenti M and Caron G. Contribution of Ionization and Lipophilicity to Drug Binding to Albumin: A Preliminary Step Toward Biodistribution Prediction. J Med Chem 2004; 47:3949–3961.

    Article  PubMed  CAS  Google Scholar 

  • Ertl P, Rohde B and Selzer P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-based Contributions and its Application to the Prediction of Drug Transport Properties. J Med Chem 2000; 43:3714–3717.

    Article  PubMed  CAS  Google Scholar 

  • Faber KN, Muller M and Jansen PL. Drug Transport Proteins in the Liver. Adv Drug Deliv Rev 2003; 55:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Shanmugasundaram V and Lee P. Estimation of Aqueous Solubility of Organic Compounds with QSPR Approach. Pharm Res 2002; 19:497–503.

    Article  PubMed  CAS  Google Scholar 

  • Germani M, Crivori P, Rocchetti M, Burton PS, Wilson AGE, Smith ME and Poggesi I. Evaluation of a Physiologically-based Pharmacokinetic Approach for Simulating the First-time-in-animal Study. Basic Clin. Pharmacol. Toxicol. 2005; 96:254–6.

    Article  PubMed  CAS  Google Scholar 

  • Gombar VK, Polli JW, Humphreys JE, Wring SA and Serabjit-Singh CS. Predicting P-glycoprotein Substrates by a Quantitative Structure-Activity Relationship Model. J Pharm Sci 2004; 93:957–968.

    Article  PubMed  CAS  Google Scholar 

  • Grass GM and Sinko PJ. Physiololgically-based Pharmacokinetic Simulation Modeling. Adv Drug Deliv Rev 2002; 54:433–451.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner B. Structure, Biochemistry, and Assembly of Epithelial Tight Junctions. Am J Physiol 1987; 253:C749–C758.

    PubMed  CAS  Google Scholar 

  • Hansch C, Quinlan JE and Lawrence GL. The Linear Free Energy Relationship Between Partition Cofficients and the Aqueous Solubility of Organic Liquids. J Org Chem 1968; 33:347–350.

    Article  CAS  Google Scholar 

  • Hansch C, Leo A, Mekapati SB and Kurup A. QSAR and ADME. Bioorg Med Chem 2004; 12:3391–3400.

    Article  PubMed  CAS  Google Scholar 

  • Harris DL. In silico Predictive Metabolism: A Structural/electronic Filter Method. Curr Opin Drug Discov Devel 2004; 7:43–48.

    PubMed  CAS  Google Scholar 

  • Hilgers AR, Smith DP, Biermacher JJ, Day JS, Jensen JL, Sims SM, Adams WJ, Friis JM, Palandra J, Hosley JD, Shobe EM and Burton PS. Predicting Oral Absorption of Drugs: A Case Study with a Novel Class of Antimicrobial Agents. Pharm Res 2003; 8:1149–1155.

    Article  Google Scholar 

  • Hirano M, Maeda K, Shitara Y and Sugiyama Y. Contribution of OATP2(OATP1B1) and OATP8 (OATP1B3) to Hepatic Uptake of Pitavastatin in Humans. J Pharmacol Exp Ther 2004; 311:139–146.

    Article  PubMed  CAS  Google Scholar 

  • Ho NFH, Park JY, Morozowich W and Higuchi WI. Physical Model Approach to the Design of Drugs with Improved Intestinal Absorption. In: Roche EB. Design of Biopharmaceutical Properties Through Prodrugs and Analogs, American Pharmaceutical Association, Academy of Pharmaceutical Sciences, Washington, DC. 1977:136–227.

    Google Scholar 

  • Ho NFH, Park JY, Ni PF and Higuchi WI. Advancing Quantitative and Mechanistic Approaches in Interfacing Gastrointestinal Drug Absorption Studies in Animals and Man. In: Crouthamel WG and Sarapu A. Animal Models for Oral Drug Delivery in Man: In Situ and in vivo Approaches. AphA/APS, Washington, D.C. 1983: 27–106.

    Google Scholar 

  • Huuskonen J. Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. J Chem Inf Comput Sci 2000; 40:773–777.

    Article  PubMed  CAS  Google Scholar 

  • Kerns, EH and Di L. Pharmaceutical Profiling in Drug Discovery. Drug Discov Today 2003; 8:316–323.

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ. Drug Transport across Gastrointestinal Epithelia, in Physiology of the Gastrointestinal Tract, Second Edition (Johnson LR, ed) 1987; Raven Press, New York, pp 1597–1621.

    Google Scholar 

  • Johnson KC and Swindell AC. Guidance in the Setting of Drug Particle Size Specifications to Minimize Variability in Absorption. Pharm Res 1996; 13:1795–1798.

    Article  PubMed  CAS  Google Scholar 

  • Jones JP, Mysinger M and Korzekwa KR. Computational Modles for Cytochrome P450: A Predictive Electronic Model for Aromatic Oxidation and Hydrogen Atom Abstraction. Drug Metab Dispos 2002; 30:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL and Duffy EM. Prediction of Drug Solubility from Monte Carlo Simulations. Bioorg Med Chem Lett 2000; 10:1155–1158.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL and Duffy EM. Prediction of Drug Solubility from Structure. Adv Drug Deliv Rev 2002; 54:355–366.

    Article  PubMed  CAS  Google Scholar 

  • Kamlet MJ, Doherty RM, Abboud JLM, Abraham MW and Taft RW. Linear Solvation Energy Relationships:36. Molecular Properties Governing Solubilities of Organic Nonelectrolytes in Water. J Pharm Sci 1886; 75:338–349.

    Article  Google Scholar 

  • Katritzky AR, Wang Y, Tamm T and Karelson M. QSPR Studies on Vapor Pressure, Aqueous Solubility, and the Prediction of Water-air Partition Coefficients. J Chem Inf Comput Sci 1998; 38:720–725.

    Article  CAS  Google Scholar 

  • Katritzky AR, Maran U, Lobanov VS and Karelson M. Structurally Diverse Quantitative Structure-property Relationship Correlations of Technologically Relevant Physical Properties. J Chem Inf Comput Sci 2000; 40:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Kottra G and Frömter E. Functional Properties of the Paracellular Pathway in Some Leaky Epithelia. J Exp Biol 1983; 106:217–229.

    PubMed  CAS  Google Scholar 

  • Kratochwil NA, Huber W, Muller F, Kansy M and Gerber PR. Predicting Plasma Protein Binding of Drugs: A New Approach. Biochem Pharmacol 2002; 64:1355–1374.

    Article  PubMed  CAS  Google Scholar 

  • Leahy DE. Progress in Simulation Modelling for Pharmacokinetics. Curr Topics Med Chem 2003; 3:1257–1268.

    Article  CAS  Google Scholar 

  • Lewis FV, Jacobs MN and Dickins M. Compound Lipophilicity for Substrate Binding to Human P450s in Drug Metabolism. Drug Discov Today 2004; 9:530–537.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J Pharmacol Toxicol Methods 2000; 44:235–249.

    Article  PubMed  CAS  Google Scholar 

  • Lombardo F, Gifford E and Shalaeva MY. In Silico ADME Prediction: Data, Models, Facts and Myths. Mini Rev Med Chem 2003; 3:861–875.

    Article  PubMed  CAS  Google Scholar 

  • Lombardo F, Obach RS, Shalaeva MY and Gao F. Prediction of Human Volume of Distribution Values for Neutral and Basic Drugs. 2. Extended Data Set and Leave-class-out Statistics. J Med Chem 2004; 47:1242–1250.

    Article  PubMed  CAS  Google Scholar 

  • McElroy NR and Jurs PC. Prediction of Aqueous Solubilty of Heteroatomcontaining Organic Compounds from Molecular Structure. J Chem Inf Comput Sci 2001; 45:1237–1247.

    Article  CAS  Google Scholar 

  • McFarland JW, Avdeef A, Berger CM and Raevsky OA. Estimating the Water Solubilities of Crystalline Compounds from Their Chemical Structures Alone. J Chem Inf Comput Sci 2001; 41:1355–1359.

    Article  PubMed  CAS  Google Scholar 

  • Myrdal PB, Manka AM and Yalkowski SH. AQUAFAC 3: Aqueous Functional Group Activity Coefficients: Application to the Estimate of Aqueous Solubility. Chemosphere 1995; 30:1619–1637.

    Article  CAS  Google Scholar 

  • Palm K, Luthman K, Ungell AL, Strandlund G and Artursson P. Correlation of Drug Absorption with Molecular Surface Properties. J Pharm Sci 1996; 85:32–39.

    Article  PubMed  CAS  Google Scholar 

  • Palm D, Stenberg P, Luthman K and Artursson P. Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans. Pharm Res 1997; 14:568–571.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou C, Camenisch G and Borer X. Cell Permeability as a Parameter for Lead Generation in the Protein Tyrosine Kinase Inhibition Field. Bioorg Med Chem Lett 2001; 11:1549–1552.

    Article  PubMed  CAS  Google Scholar 

  • Poggesi I. Predicting Human Pharmacokinetics from Preclinical Data. Curr Opinion Drug Discov Develop 2004; 7:100–111.

    CAS  Google Scholar 

  • Poulin P and Krishnan K. An Algorithm for Predicting Tissue:blood Partition Coefficients of Organic Chemicals from n-Octanol:water Partition Coefficient Data. J Toxicol Environ Health 1995; 46:117–129.

    Article  PubMed  CAS  Google Scholar 

  • Poulin P and Theil FP. A priori Prediction of Tissue:plasma Partition Coefficients of Drugs to Facilitate the use of Physiologically-Based Pharmacokinetic Models in Drug Discovery. J Pharm Sci 2000; 89:16–35.

    Article  PubMed  CAS  Google Scholar 

  • Poulin P and Theil FP. Prediction of Pharmacokinetics prior to in vivo Studies. II. Generic Physiologically Based Pharmacokinetic Models of Drug Disposition. J Pharm Sci 2002; 91:1358–1370.

    Article  PubMed  CAS  Google Scholar 

  • Raub TJ. Early Preclinical Evaluation in Support of Hit Identification and Lead Optimization for Brain Exposure. This volume, 2004.

    Google Scholar 

  • Rowland M, Benet L and Graham GC. Clearance Concept in Pharmacokinetics. J Pharmacokinet Biopharm 1973; 1:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Balant L and Peck C. Physiologically Based Pharmacokinetics in Drug Development and Regulatory Science: A Workshop Report (Georgetown University, Washington, DC, May 29–30, 2002). AAPS PharmSci 2004; 6:1–12.

    Google Scholar 

  • Ruelle P. The n-Octanol and n-Hexane/water Partition Coefficient of Environmentally Relevant Chemicals Predicted from the Mobile Order and Disorder (MOD) Thermodynamics. Chemosphere 2000; 40:457–512.

    Article  PubMed  CAS  Google Scholar 

  • Seelig A. A General Pattern for Substrate Recognition by P-glycoprotein. Eur J Biochem 1998; 251:252–261.

    Article  PubMed  CAS  Google Scholar 

  • Seiler P. Interconversion of Lipophilicities from Hydrocarbon/water Systems into the Octanol/water System. Eur J Med Chem 1974; 9:473–479.

    CAS  Google Scholar 

  • Stenberg P, Luthman K and Artursson P. Prediction of Membrane Permeability to Peptides from Calculated Dynamic Molecular Surface Properties. Pharm Res 1999; 16:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Stouch TR and Gudmundsson O. Progress in Understanding the Structure-activity Relationships of P-glycoprotein. Adv Drug Deliv Rev 2002; 54:314–328.

    Article  Google Scholar 

  • Stouch TR, Kenyon JR, Johnson SR, Chen X, Doweyko A and Li Y. In silico ADME/Tox: Why Models Fail. J Comp-Aided Mol Design 2003; 17:83–92.

    Article  CAS  Google Scholar 

  • Tsuji A and Tamai E. Carrier-mediated Intestinal Transport of Drugs. Pharm Res 1996; 13:963–977.

    Article  PubMed  CAS  Google Scholar 

  • Tsujikawa K, Dan Y, Nogawa K, Sato H, Yamada Y, Murakami H, Ohtani H, Sawada Y and Iga T. Potentiation of Domperidone-induced Catalepsy by a Pglycoprotein Inhibitor, Cyclosporin A. Biopharm Drug Dispos 2003; 24:105–114.

    Article  PubMed  CAS  Google Scholar 

  • Valvani SC, Yalkowsky SH and Roseman TJ. Solubility and Partitioning IV: Aqueous Solubility and Octanol-water Partition Coefficiencts of Liquid Nonelectrolytes. J Pharm Sci 1981; 70:502–507.

    Article  PubMed  CAS  Google Scholar 

  • van de Waterbeembd H and Gifford E. ADMET in silico Modelling: Toward Prediction Paradise? Nat Rev Drug Discov 2003; 2:192–204.

    Article  CAS  Google Scholar 

  • Westergaard H and Dietschy JM. Delineation of the Dimensions and Permeability Characteristics of the Two Major Diffusion Barriers to Passive Mucosal Uptake in the Rabbit Intestine. J Clin Investig 1974; 54:718–732.

    PubMed  CAS  Google Scholar 

  • Wilson AGE, White AC and Mueller RA. Role of Predictive Metabolism and Toxicity Modeling in Drug Discovery. Curr Opinion Drug Discov Devel 2003; 6:123–128.

    CAS  Google Scholar 

  • Yalkowsky SH. Solubility and Solubilization in Aqueous Media. 1999; Oxford University Press, New York.

    Google Scholar 

  • Yu LX, Lipka E, Crison JR and Amidon GL. Transport Approaches to the Biopharmaceutical Design of Oral Drug Delivery Systems: Prediction of Intestinal Absorption. Adv Drug Deliv Rev 1996; 19:359–376.

    Article  CAS  Google Scholar 

  • Yu LX and Amidon GL. A Compartmental Absorption and Transit Model for Estimating Oral Drug Absorption. Int J Pharm 1999; 186:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Zamora I, Afzelius L and Cruciani G. Predicting Drug Metabolism: A Site of Metabolism Prediction Tool Applied to the Cytochrome P450 2C9. J Med Chem 2003; 46:3213–2324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Burton, P.S., Poggesi, I., Germani, M., Goodwin, J.T. (2006). Computational Models Supporting Lead Optimization in Drug Discovery. In: Borchardt, R.T., Kerns, E.H., Hageman, M.J., Thakker, D.R., Stevens, J.L. (eds) Optimizing the “Drug-Like” Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, vol IV. Springer, New York, NY. https://doi.org/10.1007/978-0-387-44961-6_9

Download citation

Publish with us

Policies and ethics