Skip to main content

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IV))

Abstract

Adverse drug reactions continue to pose a major impediment to drug development, and the clinical management of marketed products. These are typically divided into acute, dose dependent reactions (Type A), and reactions that may occur in only a small percentage of patients, where the frequency of occurrence in the population is not dependent on dose (Type B), although more complex classifications have also been proposed, (Park et al, 2000). According to a recent PhRMA review, the most frequently encountered toxicities in pre clinical drug development are hepatotoxicity and dermal reactions (Olson et al. 2000). Hepatotoxicity may take many forms (Ward and Daly 2001), so implying drug metabolism generally would be presumptive, but as the major organ responsible for the metabolism of drugs it seems clear that metabolism is important in many cases. Type A reactions generally may be mediated through parent compound or metabolites, and the role of chemically reactive metabolites has been well recognized (Hinson et al. 1994). Type B reactions, also referred to as idiosyncratic or hypersensitivity reactions, have been the subject of extensive reviews in recent years (Uetrecht 2000, Ju and Uetrecht, 2002). These are generally believed to be immune mediated, and are not predictable from pre clinical animal studies, thus they may not be identified until late clinical stages, or post marketing. Type B reactions have been reported to constitute 25% of all clinical adverse events (Lazarou et al, 1998). While direct T cell stimulation has been proposed as a possible mechanism (Zanni et al. 1998), bioactivation to reactive metabolites that covalently bind to proteins is still believed to be a key event in the origin of most Type B reactions, and is the basis of the Hapten hypothesis (Uetrecht 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano E and Tomassi A. Spin Trapping of Free Radical Intermediates Produced During the Metabolism of Isoniazid and Iproniazid in Isolated Hepatocytes. Biochem Pharmacol 1987; 36(18): 2913–20

    Article  PubMed  CAS  Google Scholar 

  • Bakke O.M. Drug Safety Discontinuations in the United Kingdom, the United States, and Spain from 1974–1993: A Regulatory Perspective. Clinical Pharmacology and Therapeutics 1995; 58(1): 108–117

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay U, Biswas K, and Banerjee RK. Extrathyroidal Actions of Anithyroid Thionamides. Toxicology Letters 2002; 128: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Bartke M and Pfleiderer W. Pteridines. LXXXVII. Oxidations and Reactions of 2-and 4-Thiolumazine Derivatives. Synthesis and Properties of Pteridinesulfinates and-Sulfonates. Pteridines. 1989; 1(1): 45–56

    CAS  Google Scholar 

  • Berson A, Wolf C, Chachaty C, Fau D, and Pessayre D. Interest of ESR in Determining the Mechanisms of Drug Toxicity: Application to the Antiandrogen Nilutamide. Journal de Chimie Physique et de Physico-Chimie Biologique 1994; 91(11/12): 1809–19

    CAS  Google Scholar 

  • Bonierbale E, Valadon P, Pons C, Desfosses B, and Dansette PM. Opposite Behaviors of Reactive Metabolites of Tienilic acid and It’s Isomer Towards Liver Proteins; Use of specific Anti-Tienilic Acid-Protein Adduct Antibodies and the Possible Relationship with different Hepatotoxic Effects of the Two Compounds. Chem Res Toxicol 1999; 12(3):286–296

    Article  PubMed  CAS  Google Scholar 

  • Borel AG, and Abbot FS. Characterization of Novel Isocyanate-derived Metabolites of the Formamide N-Formylamphetamine with Combined Use of Electrospray Mass spectrometry and Stable Isotope Methodology. Chem Res Toxicol 1995; 8(6): 891–9

    Article  PubMed  CAS  Google Scholar 

  • Cao K, Stack DE, Ramaanathan R, Gross ML, Rogan EG, and Cavalieri EL. Synthesis and Structure Elucidation of Estrogen quinones conjugated with Cysteine, N-Acetylcysteine, and Glutathione. Chem Res Toxicol 1998; 11: 909–916

    Article  PubMed  CAS  Google Scholar 

  • Chou HC, Lang NP, and Kadlubar FF. Metabolic Activation of N-Hydroxy Heterocyclic Amines by Human Sulfotransferases. Cancer Research 1995; 55(3):525–9

    PubMed  CAS  Google Scholar 

  • Cohen SM. Risk Assessment in the Genomic Era. Toxicologic Pathology 2004; 32(Suppl. 1): 3–8

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM and Doherty MD. Free Radical Mediated Cell Toxicity by Redox Cycling Chemicals. Br J Cancer 1987; 55(Suppl VIII): 46–52

    CAS  Google Scholar 

  • Cooper AJL, Bruschi SA, and Anders MW. Toxic Halogenated Cysteine Sconjugates and Targeting of Mitochondrial Enzymes of Energy Metabolism. Biochemical Pharmacology 2002; 64: 553–564

    Article  PubMed  CAS  Google Scholar 

  • Cox PJ, Ryan DA, Holis FJ, Harris AM, Miller AK, Vousden M, and Cowley H. Absorption, Disposition and Metabolism of Rosiglitazone, a Potent Thiazolidinone Insulin Sensitizer in Humans. Drug Metab Dispos 2000; 28(7):772–780

    PubMed  CAS  Google Scholar 

  • Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, and O’Donnell JP. Biotransformation Reactions of Five-Membered Aromatic Heterocyclic Rings. Chem. Res Toxicol 2002; 15(3): 269–299

    Article  PubMed  CAS  Google Scholar 

  • Dansette PM, Thang DC, El Amiri H, and Mansuy D. Evidence for Thiophene Soxide as a Primary Reactive Metabolite of Thoiphene in vivo: Formation of a Dihydrothiophene Sulfoxide Mercapturic Acid. Biochem Biophys Res Commun 1992; 186(3): 1624–1630

    Article  PubMed  CAS  Google Scholar 

  • Dieckhaus CM, Miller TA, Sofia RD, and MacDonald TL. A Mechanistic Approach to Understanding Species Differences in Felbamate Bioactivation: Relevance to Drug-Induced Idiosyncratic Reactions. Drug Metab Dispos 2000; 28(7): 814–822

    PubMed  CAS  Google Scholar 

  • Evans DC, Watt AP, Nicoll-Griffith DA, and Baillie TA. Drug-Protein Adducts: An Industry Perspective on Minimizing the Potential for Drug Bioactivation in Drug Discovery and Development. Chem Res Toxicol 2004; 17: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Fan PW, Gu C, Marsh SA, Stevens JC. Mechanism Based Inactivation of Cytochrome P450 2B6 by a Novel Terminal Acetylene Inhibitor. Drug Metab Dispos 2003; 31(1): 28–36

    Article  PubMed  CAS  Google Scholar 

  • Fau D, Berson A, Eugene D, Fromenty B, Fisch C, and Pessayre D. Mechanism for the Hepatotoxicity of the Antiandrogen Nilutamide. Evidence Suggesting that Redox Cycling of this Nitroaromatic Drug Leads to Oxidative Stress in Isolated Hepatocytes. J Pharmacol. Exp Ther 1992; 263(1): 69–77

    PubMed  CAS  Google Scholar 

  • Galtier P. Biotransformation and Fate of Mycotoxins. J. Toxicology Toxin Reviews 1999; (183&4): 295–312

    CAS  Google Scholar 

  • Gemma S, Vittozzi L, Testai E. Metabolism of Chloroform in the Human Liver and Identification of the Competent P450’s. Drug Metab Dispos 2003; 31(3): 266–274

    Article  PubMed  CAS  Google Scholar 

  • Gillies PS and Dunn CJ. Pioglitazone. Drugs 2000; 60(2): 333–343

    Article  PubMed  CAS  Google Scholar 

  • Glatt H. Sulfotransferases in the Bioactivation of Xenobiotics. Chemico-Biological Interactions 2000; 129(1–2): 141–170

    Article  PubMed  CAS  Google Scholar 

  • Goldin C, and Boelsterli UA. Dissociation of Covalent Protein Adduct Formation from Oxidative Injury in Cultured Hepatocytes Exposed to Cocaine. Xenobiotica. 1994; 24(3): 251–264

    Article  Google Scholar 

  • Gorrod JW and Aislaitner G. The Metabolism of Alicyclic Amines to Reactive Iminium Ion Intermediates. Eur J of Drug Metabolism and Pharmacokinetics. 1994; 19(3): 209–217

    Article  CAS  Google Scholar 

  • Guengerich FP and Johnson WW. Kinetics of Hydrolysis and Reaction of Aflatoxin B1 Exo-8,9-Epoxide and Relevance to Toxicity and Deactivation. Drug Metab Rev 1999; 31(1): 141–158

    Article  PubMed  CAS  Google Scholar 

  • Hanzlik RP, Vyas KP, and Traiger GJ. Substituent Effects on the Hepatotoxicity of Thiobenzamide Derivatives in the Rat. Toxicol and Appl Pharmacol 1978; 46(3):685–94.

    Article  CAS  Google Scholar 

  • He K, Talaat RE, Pool WF, Reily MD, Reed JE, Bridges AJ, and Woolf TF. Metabolic Activation of Troglitazone: Identification of A Reactive Metabolite and Mechanisms Involved. Drug Metab Dispos 2004; 32(6): 639–646

    Article  PubMed  CAS  Google Scholar 

  • Hinson JA, Pumford NR, and Nelson SD. The Role of Metabolic Activation in Drug Toxicity. Drug Metab Rev. 1994; 261(1&2): 395–412

    Article  Google Scholar 

  • Holme JA, Dahlin DC, Nelson SD, and Dybing E. Cytotoxic Effects of N-Acetylp-Benzoquinone Imine, a Common Arylating Intermediate of Paracetamol and N-Hydroxyparacetamol. Biochem Pharmacol 1984; 33: 401–406

    Article  PubMed  CAS  Google Scholar 

  • Jerina DM. From Arene Oxides to Diol Epoxides and DNA. Polycyclic Aromatic Hydrocarbons 2000; 19(1–4): 5–36

    Article  CAS  Google Scholar 

  • Johnston JN, Wright CL, Leeson GA. Regioselectivity of Metabolic Activation of Acetylenic Steroids by Hepatic Cytochrome P450 Enzymes. Steroids 1991; 56(4):180–184

    Article  PubMed  CAS  Google Scholar 

  • John K, and Scultz PG. Mechanistic Studies of the Oxidation of Isoniazid by Catalase Peroxidase from Mycobacterium tuberculosis. J Amer Chem Soc 1994; 116: 7425–7426

    Article  Google Scholar 

  • Ju C, and Uetrecht JP. Detection of 2-Hydroxyiminostilbene in the Urine of Patients Taking Carbamazepine and Its Oxidation to a Reactive Iminoquinone Intermediate. J Pharmacol Exp Ther 1999; 288: 51–56

    PubMed  CAS  Google Scholar 

  • Ju C and Uetrecht JP. Mechanism of Idiosyncratic Drug Reactions:Reactive Metabolite Formations, Protein Binding, and the Regulation of the Immune System. Current Drug Metabolism 2002; 3:367–377

    Article  PubMed  CAS  Google Scholar 

  • Kassahun K, Pearson P, Tang W, McIntosh I, Leung K, Elmore C, Dean D, Wang R, Doss G, and Baillie TA. Studies on the Metabolism of Troglitazone to a Reactive Intermediate in vitro and in vivo. Evidence for novel Biotransformation Pathways Involving Quinone Methide Formation and Thiazolidinedione Ring Scission. Chem Res Toxicol 2001; 14: 62–70

    Article  PubMed  CAS  Google Scholar 

  • Kalgutkar AS, Nguyen HT, Vaz ADN, Doan A, Dalvie DK, McLeod DG, and Murray JC. In vitro Metabolism Studies on the Isoxazole Ring Scission in the Anti-Inflammatory Agent Leflunomide to its Active alpha-Cyanoenol Metabolite A771726: Mechanistic Similarities with the Cytochrome P450-Catalysed Dehydration of Aldoximes. Drug Metab Dispos 2003; 31(10):1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GL. Biological effects of Acetamide, Formamide, and their Mono and Dimethyl Derivatives: An Update. Critical Reviews in Toxicology 2001; 31(2): 139–222

    PubMed  CAS  Google Scholar 

  • White INH, and Matteis FD. The role of CYP Forms in the Metabolism and Metabolic activation of HCFC’s and other Halocarbons. Toxicology Letters 2001; 124: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Knowles SR, Shapiro LE, and Shear NH. Reactive Metabolites and Adverse Drug Reactions. Clinical Reviews in Allergy and Immunology 2003; 24: 229–238

    Article  PubMed  CAS  Google Scholar 

  • Kolberg M, Bleifuss G, Grslund A, Sjberg BM, Lubitz W, Lendzian F, and Lassmann G. Protein Thiyl Radicals Observed by EPR Spectroscopy. Archives of Biochemistry and Biophysics 2002; 403(1): 141–144

    Article  PubMed  CAS  Google Scholar 

  • Lanza DL, Code E, Crespi CL, Gonzalez FJ, and Yost GS. Specific Dehydrogenation of 3-Methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells. Drug Metab Dispos 1999; 27(7):798–803

    PubMed  CAS  Google Scholar 

  • Laurent A, Perdu-Durand E, alary J, Debrauwer L, and Cravedi JP. Metabolism of 4-Hydroxynonenal, a Cytotoxic Product of Lipid Peroxidation, in Rat Precision-Cut Liver Slices. Toxicol Lett 2000; 114(1–3): 203–214

    Article  PubMed  CAS  Google Scholar 

  • Lazarou J, Pomeranz BH, and Corey PN. Incidence of Adverse Drug Reactions in Hospitalized Patients. JAMA 1998; 279(15): 1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Li AP. A Review of the Common Properties of Drugs with Idiosyncratic Hepatotoxicity and the “Multiple Determinant Hypothesis” for the Manifestation of Idiosyncratic Drug Toxicity. Chemico-Biological Interactions 2002; 142: 7–23

    Article  PubMed  CAS  Google Scholar 

  • Li C, Olurinde MO, Hodges LM, Grillo MP and Benet LZ. Covalent Binding of 2-Phenylpropionyl-S-Acyl-CoA Thioester to Tissue Proteins in vitro. Drug Metab Dispos 2003; 31(6): 727–730

    Article  PubMed  CAS  Google Scholar 

  • Li C, Grillo MP, and Benet LZ. In vitro Studies on the Chemical Reactivity of 2,4-Dichlorophenoxyacetyl-S-Acyl CoA Thioester. Toxicology and Applied Pharmacology 2003; 187(2): 101–109

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist T, Kenne L, and Lindeke B. On the chemistry of the Reaction between N-Acetylcysteine and 4-[(4-Ethoxyphenyl)imino]-2,5-Cyclohexadien-1-one, an Ethoxyaniline Metabolite formed during Peroxidase Reactions. Chem Res Toxicol 1991; 494: 489–496

    Article  Google Scholar 

  • Lord PG. Progress in Applying Genomics in Drug Development. Toxicology Letters 2004; 149(1–3): 371–375

    Article  PubMed  CAS  Google Scholar 

  • Madden S, Maggs JL, and Park BK. Bioactivation of Carbamazepine in the Rat in vivo. Evidence for the Formation of Reactive Arene Oxides. Drug Metab Dispos 1996; 24(4): 469–479

    PubMed  CAS  Google Scholar 

  • Madden S, Spaldin V, Hayes RN, Woolf TF, Pool WF, and Park BK. Species Variation in the Bioactivation of Tacrine by Hepatic Microsomes. Xenobiotica 1995; 25(1): 103–106

    PubMed  CAS  Google Scholar 

  • Maggs JL, Naisbitt DJ, Tettey JNA, Pirmohamed M, and Park BK. Metabolism of Lamotrigine to a Reactive Arene Oxide Intermediate. Chem Res Toxicol 2000; 13(11): 1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Maggs JL and Park BK. Drug Protein Conjugates XVI. Studies of Sorbinil Metabolism: Formation of 2-Hydroxysorbinil and Unstable Protein Conjugates. Biochem Pharmacol 1988; 37(4): 743–748

    Article  PubMed  CAS  Google Scholar 

  • Maggs JL, Kitteringham NR, Breckenridge AM, and Park BK. Autoxidative Formation of a Chemically Reactive Intermediate from Amodiaquine, a Myelotoxin and Hepatotoxin in Man. Biochem Pharmacol 1987; 36(13): 2061–2062

    Article  PubMed  CAS  Google Scholar 

  • Martin AM, Nolan D, Gaudieri S, Almedia CA, Nolan R, James I, Carvalho F, Philips E, Christiansen FT, Purcell AW, McClusky J, and Mallal S. Predisposition to Abacavir Hypersensitivity Conferred by HLA-B 5701 and Haplotypic Hsp-Hom Variant. Proceedings of the National Academy of Sciences 2004; 101(12): 4180–4185

    Article  CAS  Google Scholar 

  • Martin JL, Kenna JG, Martin BM, Thomassen D, Reed GF, and Pohl LR. Halothane Hepatitis Patients have Serum Antibodies that React with Protein Disulfide Isomerase. Hepatology 1993; 18(4): 858–863

    Article  PubMed  CAS  Google Scholar 

  • Martinat C, Amar C, Dansette PM, Leclaire J, Lopez Garcia P, Do Cao T, Nguyen HN, Mansuy D. In vitro Metabolism of Isaxonine Phosphate: Formation of Two metabolites, 5-Hydroxyisoaxonine and 2-Aminopyrimidine, and Covalent Binding to Microsomal Proteins. Eur J of Pharmacology 1992; 228(1): 63–71

    CAS  Google Scholar 

  • Matzinger P. Tolerance Danger, and the Extended Family. Ann Rev Immunol 1994;12: 991–1045

    CAS  Google Scholar 

  • Melnick RL. Carcinogenicity and Mechanistic Insights on the Behavior of Epoxides and Epoxide Forming Chemicals. Annals of NY Acad Sci 2002; 982: 177–189

    Article  CAS  Google Scholar 

  • Mile B. Free Radical Participation in Organic Chemistry: Electron Spin Resonance (ESR) Studies of Their Structures and Reactions. Current Organic Chemistry 2000; 4: 55–83

    Article  CAS  Google Scholar 

  • Moncada C, Torres V, Vargese G, Albano E, and Israel Y. Ethanol-Derived Immunoreactive Species Formed by Free Radical Mechanisms. Molecular Pharmacology 1994; 46(4): 786–91

    PubMed  CAS  Google Scholar 

  • Miyamoto G, Zahid N, and Uetrecht JP. Oxidation of Diclofenac to Reactive Intermediates by Neutrophils, Myeloperoxidase, and Hypochlorous acid. Chem Res Toxicol 1997; 10: 414–419

    Article  PubMed  CAS  Google Scholar 

  • Murray M, Hetnarski K, and Wilkinson CF. Selective Inhibitory Interactions of Alkoxymethylenedioxybenzenes towards Mono-Oxygenase Activity in Rat Hepatic Microsomes. Xenobiotica 1985; 15(3): 369–379

    Article  PubMed  CAS  Google Scholar 

  • Naisbitt DJ, Hough SJ, Gill HJ, Pirmohamed M, Kitteringham NR, and Park BK. Cellular Disposition of Sulphamethoxazole and its Metabolites: Implications for Hypersensitivity. Br J Pharmacology 1999; 126: 1393–1407

    Article  CAS  Google Scholar 

  • Naisbitt DJ, O’Neill P, Pirmohamed M, and Park BK. Synthesis and Reactions of Nitroso Sulphamethoxazole with Biological Nucleophiles: Implications for Immune Mediated Toxicity. Bioorganic & Medicinal Chemistry Letters 1996; 6(13): 1511–1516

    Article  CAS  Google Scholar 

  • Nelson SD. Molecular Mechanisms of Adverse Drug Reactions. Current Therapeutic Research 2001; 62(12): 885–899

    Article  CAS  Google Scholar 

  • Nguyen M, Claparols C, Bernadou J, and Meunier B. A Fast Efficient Metal-Mediated Oxidation of Isoniazid and Identification of Isoniazid-NAD(H) Adducts. CHEMBIOCHEM 2001; 2: 877–883

    Article  PubMed  CAS  Google Scholar 

  • Nunez-Vergara LJ, Farais D, Bollo S, and Sequella JA. An Electrochemical Evidence of Free Radicals Formation from Flutamide and its Reactivity with Endo/Xenobiotics of Pharmacological Relevance. Bioelectrochemistry 2001; 53(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Olson H, Betton G, Robinson D, Thomas K, Monro Akolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, and Heller A. Concordance of the Toxicity of Pharmaceuticals in Humans and Animals. Regulatory Toxicology and Pharmacology 2000; 32: 56–67

    Article  PubMed  CAS  Google Scholar 

  • Ortiz De Montellano PR. Free Radical Modification of Prosthetic Heme Groups. Pharmac Ther 1990; 48: 95–120

    Article  Google Scholar 

  • Ostdal H, Anderson HJ, Davies MJ. Formation of Long Lived Radicals on Proteins by Radical Transfer from Heme Enzymes-A Common Process? Archives of Biochemistry and Biophysics 1999; 362(1): 105–112

    Article  PubMed  CAS  Google Scholar 

  • Park BK, Kitteringham NR, Powell H, and Pirmohamed M. Advances in Molecular Toxicology-Towards Understanding Idiosyncratic Drug Reactions. Toxicology 2000; 153: 39–60

    Article  PubMed  CAS  Google Scholar 

  • Pirmohamed M, Naisbitt DJ, Gordon F, and Park BK. The Danger Hypothesis-Potential Role in Idiosyncratic Drug Reactions. Toxicology 2002;181–182: 55–63

    Article  PubMed  Google Scholar 

  • Pumford NR, Martin BM, Thomassen D, Burris JA, Kenna JG, Martin JL, and Pohl LR. Serum Antibodies from Halothane Hepatitis Patients React with the Rat Endoplasmic Reticulum Protein ERp72. Chem Res Toxicol 1993; 6: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Rosemond MJC, and Walsh JS. Human Carbonyl Reduction Pathways and a Strategy for their Study In vitro. Drug Metab Rev 2004; 36(2): 335–361

    Article  PubMed  CAS  Google Scholar 

  • Salustio BC, Sabordo L, Evans AM, and Nation RL. Hepatic Dispositon of Electrophilic Acyl Glucuronide Conjugates. Current Drug Metabolism 2000; 1: 163–180

    Article  Google Scholar 

  • Scott AM, Powell GM, Upshall DG, and Curtis CG. Pulmonary Toxicity of Thioureas in the Rat. Environmental Health Perspectives 1990; 85: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Selkirk JK, and Tennant RW. Toxicogenomics: Impact on Human Health. Pure and Applied Chemistry 2003; 75(11–12): 2413–2414

    Article  CAS  Google Scholar 

  • Sillanaukee P, Hurme L, Tuominen J, Ranta E, Nikkari S, and Seppa K. Structural Characterization of Acetaldehyde adducts formed by a Synthetic Peptide Mimicking the N-terminus of Hemoglobin β-Chain under Reducing and Nonreducing Conditions. Eur J Biochem 1996; 249: 30–36

    Article  Google Scholar 

  • Singh S, and Dryhurst G. Interactions between 5,6-Dihydroxytryptamine and Cysteine. Bioorganic Chemistry 1993; 19(3): 274–82

    Article  Google Scholar 

  • Sinha BK. Activation of Hydrazine Derivatives to Free Radicals in the Perfused Rat Liver: A Spin Trapping Study. Biochimica et Biophysica Acta 1987; 924(2): 261–9

    PubMed  CAS  Google Scholar 

  • Sipe HJ, Jaszewski AR, and Mason RP. Fast Flow EPR Spectroscopic Observation of the Isoniazid, Iproniazid, and Phenylhydrazine Hydrazyl Radicals. Chem Res Toxicol 2004; 17: 226–233

    Article  PubMed  CAS  Google Scholar 

  • Sorg O. Oxidative Stress: Theoretical Model or a Biological Reality ? Comptes Rendus Biologies 2004; 327: 649–662

    Article  PubMed  CAS  Google Scholar 

  • Soriani M, Pietraforte D, Minetti M. Antioxidant Potential of Anaerobic Human Plasma: Role of Serum Albumin and Thiols as Scavengers of Carbon Radicals. Archives of Biochemistry and Biophysics 1994; 312(1): 180–188

    Article  PubMed  CAS  Google Scholar 

  • Spah-Langguth H, and Benet LZ. Acyl Glucuronides Revisited: Is the Glucuronidation Process a Toxification as well as a Detoxification Mechanism ?. Drug Metab Rev 1992; 24(1): 5–48

    Article  Google Scholar 

  • Stiborova M, Frei E, Weissler M, and Schmeiser HH. Human Enzymes Involved in the Metabolic Activation of Carcinogenic Aristolochic Acids: Evidence for Reductive Activation by Cytochromes P450 1A1 and 1A2. Chem Res Toxicol 2001; 14:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ. The Role of Free Radicals in Toxicity and Disease. Journal of Basic & Clinical Physiology & Pharmacology 1995; 6(3–4): 205–228

    CAS  Google Scholar 

  • Thomassen D, Knebel N, Slattery JT, McClanahan RH and Nelson S. Reactive Intermediates in the Oxidation of Menthofuran by Cyochromes P-450. Chem Res Toxicol 1992: 5: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Thompson DC, Perera K, and London R. Spontaneous Hydrolysis of 4-Trifluoromethylphenol to a Quinone Methide and Subsequent Protein Alkylation. Chemico-Biological Interactions 2000; 126: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Uetrecht JP. Bioactivation In: Lee JS, Obach RS, and Fisher MB. Drug Metabolizing Enzymes. Cytochrome P450 and Other Enzymes in Drug Discovery and Development.: New York: Marcel Decker; 2003: 87–145

    Google Scholar 

  • Uetrecht JP. Is it Possible to More Accurately Predict which Drug Candidates will cause Idiosyncratic Reactions ?. Current Drug Metabolism 2000;1:133–141

    Article  PubMed  CAS  Google Scholar 

  • Uetrecht JP, Zahid N, and Whitefield D. metabolism of Vesnarinone by Activated Neutrophils: Implications for Vesnarinone-Induced Agranulocytosis. J Pharmacol Exp Ther 1994; 270(3): 865–872

    PubMed  CAS  Google Scholar 

  • Van Roon EN, Jansen TLTA, Houtman NM, Spoelstra P, Brouwers JRBJ. Leflunomide for the Treatment of Rheumatoid Arthritis in Clinical Practice: Incidence and Severity of Hepatotoxicity. Drug Safety 2004; 27(5): 345–352

    Article  PubMed  Google Scholar 

  • Vasquez-Vivar J and Augusto O. Oxidative Activity of Primaquine Metabolites on Rat Ethrocytes In vitro and In vivo. Biochemical Pharmacology 1994; 47(2): 309–316

    Article  PubMed  CAS  Google Scholar 

  • Waldhauser L, and Uetrecht J. Oxidation of Propylthiouracil to Reactive Metabolites by Activated Neutrophils. Implications for Agranulocytosis. Drug Metab Dispos 1991; 19(2): 354–9

    PubMed  CAS  Google Scholar 

  • Walgren JL and Thompson DC. Application of Proteomic Technology in the Drug Development Process. Toxicology Letters 2004; 149(1–3): 377–385

    Article  PubMed  CAS  Google Scholar 

  • Wallace KB. Doxorubicin-Induced Cardiac Mitochondrionopathy. Pharmacology & Toxicology. 2003; 93(3): 105–115

    Article  CAS  Google Scholar 

  • Walsh JS, Reese M, and Thurmond LM. The Metabolic Activation of Abacavir by human Liver Cytosol and Expressed Human Alcohol Dehydrogenase Isozymes. Chemico-Biological Interactions 2002; 142(1–2): 135–154

    Article  PubMed  CAS  Google Scholar 

  • Ward F, and Daly M. Hepatic Disorders. In: Lee A. Adverse Drug Reactions Pharmaceuticl Press 2001: 77–97.

    Google Scholar 

  • Zanni MP, von Greyerz S, Schnyder B, Brander KA, Frutig K, Hari Y, Valitutti S, and Pichler WJ. HLA Restricted Processing-and Metabolism-Independent Pathway of Drug Recognition by Human ·. T Lymphocytes. J Clin Invest 1998; 102(8): 1591–1598

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Walsh, J.S. (2006). Metabolic Activation-Role in Toxicity and Idiosyncratic Reactions. In: Borchardt, R.T., Kerns, E.H., Hageman, M.J., Thakker, D.R., Stevens, J.L. (eds) Optimizing the “Drug-Like” Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, vol IV. Springer, New York, NY. https://doi.org/10.1007/978-0-387-44961-6_3

Download citation

Publish with us

Policies and ethics