Skip to main content

Transcriptional Activators and Activation Mechanisms

  • Chapter
Gene Expression and Regulation
  • 1305 Accesses

Abstract

Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to enhancers stimulate the assembly and activity of the transcription machinery at gene promoters. This article examines selected issues in understanding activator functions and activation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C. C., and Workman, J. L. (1995). Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15, 1405–1421.

    PubMed  CAS  Google Scholar 

  • Ares, M., Jr., and Proudfoot, N. J. (2005). The spanish connection; transcription and mRNA processing get even closer. Cell 120, 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Bai, C., and Elledge, S. J. (1996). Gene identification using the yeast two-hybrid system. Meth in Enzymol 273, 331–347.

    CAS  Google Scholar 

  • Bertolino, E., and Singh, H. (2002). POU/TBP cooperativity: a mechanism for enhancer action from a distance. Mol Cell 10, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Blackwood, E. M., and Kadonaga, J. T. (1998). Going the distance: a current view of enhancer action. Science 281, 61–63.

    Article  Google Scholar 

  • Blau, J., Xiao, H., McCracken, S., O’Hare, P., Greenblatt, J., and Bentley, D. (1996). Three functional classes of transcriptional activation domains. Mol Cell Biol 16, 2044–2055.

    PubMed  CAS  Google Scholar 

  • Breiling, A., Turner, B. M., Bianchi, M. E., and Orlando, V. (2001). General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655.

    Article  PubMed  CAS  Google Scholar 

  • Brent, R. (2004). Building an artificial regulatory system to understand a natural one. Cell 116, S73–74, 71 p following S76.

    Article  PubMed  CAS  Google Scholar 

  • Brent, R., and Ptashne, M. (1985). A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736.

    Article  PubMed  CAS  Google Scholar 

  • Brivanlou, A. H., and Darnell, J. E., Jr. (2002). Signal transduction and the control of gene expression. Science 295, 813–818.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, C. L., and Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15, 164–171.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. A., Imbalzano, A. N., and Kingston, R. E. (1996). Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev 10, 1479–1490.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, G. O., and Ptashne, M. (2003). Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 11, 1301–1309.

    Article  PubMed  CAS  Google Scholar 

  • Bryk, M., Briggs, S. D., Strahl, B. D., Curcio, M. J., Allis, C. D., and Winston, F. (2002). Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol 12, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Bulger, M., and Groudine, M. (1999). Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13, 2465–2477.

    Article  PubMed  CAS  Google Scholar 

  • Bunker, C. A., and Kingston, R. E. (1996). Activation domain-mediated enhancement of activator binding to chromatin in mammalian cells. Proc Natl Acad Sci USA 93, 10820–10825.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. C., and Levine, M. (2003). Coordinate regulation of an extended chromosome domain. Cell 113, 278–280.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. C., Stathopoulos, A., and Levine, M. (2002). Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 99, 9243–9247.

    Article  PubMed  CAS  Google Scholar 

  • Carey, M., and Smale, S. T. (2000). Transcriptional regulation in eukaryotes: Concepts, Strategies, and Techniques (Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Cavalli, G., and Paro, R. (1998). The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, S., and Struhl, K. (1995). Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374, 820–822.

    Article  PubMed  CAS  Google Scholar 

  • Chi, T., and Carey, M. (1996). Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Gen & Dev 10, 2540–2550.

    Article  CAS  Google Scholar 

  • Conaway, R. C., Brower, C. S., and Conaway, J. W. (2002). Emerging roles of ubiquitin in transcription regulation. Science 296, 1254–1258.

    Article  PubMed  CAS  Google Scholar 

  • Darnell, J. E., Jr., Kerr, I. M., and Stark, G. R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. L., Cheng, P. F., Lassar, A. B., and Weintraub, H. (1990). The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60, 733–746.

    Article  PubMed  CAS  Google Scholar 

  • de Bruin, D., Zaman, Z., Liberatore, R. A., and Ptashne, M. (2001). Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409, 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Dellino, G. I., Schwartz, Y. B., Farkas, G., McCabe, D., Elgin, S. C., and Pirrotta, V. (2004). Polycomb silencing blocks transcription initiation. Mol Cell 13, 887–893.

    Article  PubMed  CAS  Google Scholar 

  • Dorsett, D. (1999). Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr Opin Genet Dev 9, 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Driever, W., Ma, J., Nusslein-Volhard, C., and Ptashne, M. (1989). Rescue of biocid mutant Drosophila embryos by Bicoid fusion proteins containing heterologous activating sequences. Nature 342, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, I. W. (2002). Transvection effects in Drosophila. Annu Rev Genet 36, 521–556.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, J. A., and Neel, B. G. (2003). Signal transduction: an eye on organ development. Nature 426, 238–239.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, S., Simkovich, N., Wu, Y., Barberis, A., and Ptashne, M. (1996). Gene activation by recruitment of the RNA polymerase II holoenzyme. Gen & Dev 10, 2359–2367.

    Article  CAS  Google Scholar 

  • Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  • Fields, S., and Sternglanz, R. (1994). The two-hybrid system: an assay for protein-protein interactions. TIg 10, 286–291.

    PubMed  CAS  Google Scholar 

  • Foley, K. P., and Engel, J. D. (1992). Individual stage selector element mutations lead to reciprocal changes in beta-vs. epsilon-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev 6, 730–744.

    Article  PubMed  CAS  Google Scholar 

  • Freiman, R. N., and Tjian, R. (2003). Regulating the regulators: lysine modifications make their mark. Cell 112, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Fu, D., Zhao, C., and Ma, J. (2003). Enhancer sequences influence the role of the amino terminal domain of Bicoid in transcription. Mol Cell Biol 23, 4439–4448.

    Article  PubMed  CAS  Google Scholar 

  • Garvie, C. W., and Wolberger, C. (2001). Recognition of specific DNA sequences. Mol Cell 8, 937–946.

    Article  PubMed  CAS  Google Scholar 

  • Giardina, C., and Lis, J. T. (1993). DNA melting on yeast RNA polymerase II promoters. Science 261, 759–762.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046–2059.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gouto, E., Klages, N., and Strubin, M. (1997). Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci USA 94, 8036–8041.

    Article  Google Scholar 

  • Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, S. (2004). Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11, 394–403.

    Article  PubMed  CAS  Google Scholar 

  • Hampsey, M. (1998). Molecular Genetics of the RNA polymerase II general transcription machinery. Microbiol & Mol Biol Rev 62, 465–503.

    CAS  Google Scholar 

  • Hampsey, M., and Reinberg, D. (2003). Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113, 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Han, M., and Grunstein, M. (1988). Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, F. J., and Triezenberg, S. J. (2004). Molecular biology: what ubiquitin can do for transcription. Curr Biol 14, R622–624.

    Article  PubMed  CAS  Google Scholar 

  • Hope, I. A., and Struhl, K. (1986). Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885–894.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S. P., and Tjian, R. (1988). O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, S. A., Salmeron, J. M., and Dincher, S. S. (1987). Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50, 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Kadonaga, J. T. (2004). Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Kamemura, K., and Hart, G. W. (2003). Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. Prog Nucleic Acid Res Mol Biol 73, 107–136.

    Article  PubMed  CAS  Google Scholar 

  • Keegan, L., Gill, G., and Ptashne, M. (1986). Separation of DNA binding from the transcriptional-activating function of a eukaryotic regulatory protein. Science 231, 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y., Geiger, J. H., Hahn, S., and Sigler, P. B. (1993). Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Klein, C., and Struhl, K. (1994). Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 266, 280–282.

    Article  PubMed  CAS  Google Scholar 

  • Krogan, N. J., Dover, J., Khorrami, S., Greenblatt, J. F., Schneider, J., Johnston, M., and Shilatifard, A. (2002). COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277, 10753–10755.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, E. J., and Geyer, P. K. (2003). Genomic insulators: connecting properties to mechanism. Curr Opin Cell Biol 15, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Levine, M., and Tjian, R. (2003). Transcription regulation and animal diversity. Nature 424, 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Levine, S. S., King, I. F., and Kingston, R. E. (2004). Division of labor in polycomb group repression. Trends Biochem Sci 29, 478–485.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Oghi, K. A., Zhang, J., Krones, A., Bush, K. T., Glass, C. K., Nigam, S. K., Aggarwal, A. K., Maas, R., Rose, D. W., and Rosenfeld, M. G. (2003). Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Li, X. Y., Virbasius, A., Zhu, X., and Green, M. R. (1999). Enhancement of TBP binding by activators and general transcription factors. Nature 399, 605–609.

    Article  PubMed  CAS  Google Scholar 

  • Lis, J. T., Mason, P., Peng, J., Price, D. H., and Werner, J. (2000). P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14, 792–803.

    PubMed  CAS  Google Scholar 

  • Lue, N. F., Chasman, D. I., Buchman, A. R., and Kornberg, R. D. (1987). Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol 7, 3446–3451.

    PubMed  CAS  Google Scholar 

  • Lund, A. H., and van Lohuizen, M. (2004). Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J. (2000). Yeast transcriptional activation and the two-hybrid system. In Yeast Hybrid Technologies, L. Zhu, and G. J. Hannon, eds. (Natick, MA, BioTechniques/Eaton Publishing), pp. 3–12.

    Google Scholar 

  • Ma, J. (2004). Actively seeking activating sequences. Cell S116, S75–S76.

    Article  Google Scholar 

  • Ma, J. (2005). Crossing the line between activation and repression. Trends in Genetics 21, 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., and Ptashne, M. (1987a). The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., and Ptashne, M. (1987b). Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., and Ptashne, M. (1987c). A new class of yeast transcriptional activators. Cell 51, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., and Ptashne, M. (1988). Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., Yuan, D., Diepold, K., Scarborough, T., and Ma, J. (1996). The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195–1206.

    PubMed  CAS  Google Scholar 

  • Malik, S., and Roeder, R. G. (2000). Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 25, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Mancebo, H. S., Lee, G., Flygare, J., Tomassini, J., Luu, P., Zhu, Y., Peng, J., Blau, C., Hazuda, D., Price, D., and Flores, O. (1997). P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 11, 2633–2644.

    PubMed  CAS  Google Scholar 

  • Merika, M., and Thanos, D. (2001). Enhanceosomes. Curr Opin Genet Dev 11, 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Morcillo, P., Rosen, C., Baylies, M. K., and Dorsett, D. (1997). Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev 11, 2729–2740.

    PubMed  CAS  Google Scholar 

  • Muller, H. P., and Schaffner, W. (1990). Transcriptional enhancers can act in trans. Trends Genet 6, 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Myers, L. C., and Kornberg, R. D. (2000). Mediator of transcriptional regulation. Annu Rev Biochem 69, 729–749.

    Article  PubMed  CAS  Google Scholar 

  • Naar, A. M., Lemon, B. D., and Tjian, R. (2001). Transcriptional coactivator complexes. Annu Rev Biochem 70, 475–501.

    Article  PubMed  CAS  Google Scholar 

  • Narlikar, G. J., Fan, H. Y., and Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Nevado, J., Gaudreau, L., Adam, M., and Ptashne, M. (1999). Transcriptional activation by artificial recruitment in mammalian cells. Proc Natl Acad Sci USA 96, 2674–2677.

    Article  PubMed  CAS  Google Scholar 

  • Ng, H. H., Robert, F., Young, R. A., and Struhl, K. (2003). Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11, 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Nikolov, D. B., Hu, S.-H., Lin, J., Gasch, A., Hoffmann, A., Horikoshi, M., Chua, N.-H., Roeder, R. G., and Burley, S. K. (1992). Crystal structure of TFIID TATA-box binding protein. Nature 360, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Orlando, V. (2003). Polycomb, epigenomes, and control of cell identity. Cell 112, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Orphanides, G., Lagrange, T., and Reinberg, D. (1996). The general transcription factors of RNA polymerase II. Genes & Dev 10, 2657–2683.

    Article  CAS  Google Scholar 

  • Patikoglou, G., and Burley, S. K. (1997). Eukaryotic transcription factor-DNA complexes. Annu Rev Biophys Biomol Struct 26, 289–325.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C. L., and Workman, J. L. (2000). Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Prives, C., and Manley, J. L. (2001). Why is p53 acetylated? Cell 107, 815–818.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M. (1986). Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M. (1988). How eukaryotic transcriptional activators work. Nature 335, 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M. (2004). Two “what if” experiments. Cell S116, S71–S72.

    Article  Google Scholar 

  • Ptashne, M., and Gann, A. (1997). Transcriptional activation by recruitment. Nature 386, 569–577.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M., and Gann, A. (1998). Imposing specificity by localization: mechanism and evolution. Curr Biol 8, R812–R822.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M., and Gann, A. A. F. (1990). Activators and targets. Nature 346, 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Ranish, J. A., and Hahn, S. (1996). Transcription: basal factors and activation. Curr Opin Genet Dev 6, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, E. B., and Lis, J. T. (1993). In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci USA 90, 7923–7927.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, E. B., and Lis, J. T. (1995). Short transcripts of the ternary complex provide insight into RNA polymerase II elongational pausing. J Mol Biol 252, 522–535.

    Article  PubMed  CAS  Google Scholar 

  • Rayapureddi, J. P., Kattamuri, C., Steinmetz, B. D., Frankfort, B. J., Ostrin, E. J., Mardon, G., and Hegde, R. S. (2003). Eyes absent represents a class of protein tyrosine phosphatases. Nature 426, 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Rebay, I., Silver, S. J., and Tootle, T. L. (2005). New vision from Eyes absent: transcription factors as enzymes. Trends Genet 21, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Rougvie, A. E., and Lis, J. T. (1988). The RNA polymerase II molecule at the 5′-end of the uninduced hsp70 genes of D. melanogaster is transcriptionally engaged. Cell 54, 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. (1988). GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564.

    Article  PubMed  CAS  Google Scholar 

  • Schena, M., Freedman, L. P., and Yamamoto, K. R. (1989). Mutations in the glucocorticoid receptor zinc finger region that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes Dev 3, 1590–1601.

    Article  PubMed  CAS  Google Scholar 

  • Sekinger, E. A., and Gross, D. S. (2001). Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 105, 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, J., Nonchev, S., Gould, A., Whiting, J., and Krumlauf, R. (1998). Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. Embo J 17, 1788–1798.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., and Shi, Y. (2004). Metabolic enzymes and coenzymes in transcription—a direct link between metabolism and transcription? Trends Genet 20, 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Sims, R. J., 3rd, Belotserkovskaya, R., and Reinberg, D. (2004a). Elongation by RNA polymerase II: the short and long of it. Genes Dev 18, 2437–2468.

    Article  PubMed  CAS  Google Scholar 

  • Sims, R. J., 3rd, Mandal, S. S., and Reinberg, D. (2004b). Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 16, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Sims, R. J., 3rd, Nishioka, K., and Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends Genet 19, 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Southgate, C. D., and Green, M. R. (1991). The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function. Genes Dev 5, 2496–2507.

    Article  PubMed  CAS  Google Scholar 

  • Spellman, P. T., and Rubin, G. M. (2002). Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1, 5.

    Article  PubMed  Google Scholar 

  • Spitz, F., Gonzalez, F., and Duboule, D. (2003). A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417.

    Article  PubMed  CAS  Google Scholar 

  • Stargell, L. A., and Struhl, K. (1996). Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet 12, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M. (1996). Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc Natl Acad Sci USA 93, 4311–4315.

    Article  PubMed  CAS  Google Scholar 

  • Thanos, D., and Maniatis, T. (1995). Virus induction of human INFb gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  • Tollervey, D. (2004). Molecular biology: termination by torpedo. Nature 432, 456–457.

    Article  PubMed  CAS  Google Scholar 

  • Tootle, T. L., Silver, S. J., Davies, E. L., Newman, V., Latek, R. R., Mills, I. A., Selengut, J. D., Parlikar, B. E., and Rebay, I. (2003). The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426, 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Torigoi, E., Bennani-Baiti, I. M., Rosen, C., Gonzalez, K., Morcillo, P., Ptashne, M., and Dorsett, D. (2000). Chip interacts with diverse homeodomain proteins and potentiates bicoid activity in vivo. Proc Natl Acad Sci USA 97, 2686–2691.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A. (2000). Recognition of distorted DNA structures by HMG domains. Curr Opin Struct Biol 10, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Triezenberg, S. J., Kingsbury, R. C., and McKnight, S. L. (1988). Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes & Dev 2, 718–729.

    Article  CAS  Google Scholar 

  • Wang, W., Carey, M., and Gralla, J. D. (1992). Polymerase II promoter activation: Closed complex formation and ATP-driven start-site opening. Science 255, 450–453.

    Article  PubMed  CAS  Google Scholar 

  • West, A. G., Gaszner, M., and Felsenfeld, G. (2002). Insulators: many functions, many mechanisms. Genes Dev 16, 271–288.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. (1997). Chromatin remodeling and the control of gene expression. J Biol Chem 272, 28171–28174.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., and Grunstein, M. (2000). 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25, 619–623.

    Article  PubMed  CAS  Google Scholar 

  • Wyrick, J. J., Holstege, F. C., Jennings, E. G., Causton, H. C., Shore, D., Grunstein, M., Lander, E. S., and Young, R. A. (1999). Chromsomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, H., Friesen, J. D., and Lis, J. T. (1995). Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol Cell Biol 15, 5757–5761.

    PubMed  CAS  Google Scholar 

  • Zhao, C., Dave, V., Fu, D., York, A., and Ma, J. (2003). Insights into the molecular functions of the Drosophila morphogenetic protein Bicoid. Recent Res Devel Mol Cell Biol 4, 115–126.

    CAS  Google Scholar 

  • Zhao, C., York, A., Yang, F., Forsthoefel, D. J., Dave, V., Fu, D., Zhang, D., Corado, M. S., Small, S., Seeger, M. A., and Ma, J. (2002). The activity of the Drosophila morphogenetic protein Bicoid is inhibited by a domain located outside its homeodomain. Development 129, 1669–1680.

    PubMed  CAS  Google Scholar 

  • Zhou, Q., Chen, D., Pierstorff, E., and Luo, K. (1998). Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. Embo J 17, 3681–3691.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Pe’ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997). Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11, 2622–2632.

    PubMed  CAS  Google Scholar 

  • Zuniga, A., Michos, O., Spitz, F., Haramis, A. P., Panman, L., Galli, A., Vintersten, K., Klasen, C., Mansfield, W., Kuc, S., et al. (2004). Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 18, 1553–1564.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Higher Education Press

About this chapter

Cite this chapter

Ma, J. (2006). Transcriptional Activators and Activation Mechanisms. In: Ma, J. (eds) Gene Expression and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-40049-5_8

Download citation

Publish with us

Policies and ethics