Skip to main content

Transcription Control in Bacteria

  • Chapter
Book cover Gene Expression and Regulation
  • 1283 Accesses

Abstract

Regulation of transcription is a key step in controlling gene expression in all cells. Many diseases and cancers result from alterations of gene expression caused by defects in transcription machinery. The basic structure and function of RNA polymerase (RNAP) and RNAP-associated proteins are conserved throughout evolution. Sophisticated genetics and advanced biochemistry make single-cell organisms, such as E. coli, an ideal model system to study the role of RNAP and transcription factors in gene expression and regulation. Studies of the simple model system have contributed greatly to our knowledge of transcription in principle, which underpin our understanding of gene regulation in much more complex eukaryotic organisms. In addition, studies of E. coli and other microorganisms have laid the foundation for the biotechnology industry. This chapter describes transcription machinery including RNAP and RNAP-associated proteins and regulation of transcription cycle in E. coli, with a focus on the unique feature of global regulation by RNAP (re)distribution in response to environment cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, K., Yuzenkova, J., La Porta, A., Zenkin, N., Lee, J., Lis, J. T., Borukhov, S., Wang, M. D., and Severinov, K. (2004). Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol Cell 14, 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Ades, S. E., Connolly, L. E., Alba, B. M., and Gross, C. A. (1999). The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 13, 2449–2461.

    Article  PubMed  CAS  Google Scholar 

  • Adhya, S., Geanacopoulos, M., Lewis, D. E., Roy, S., and Aki, T. (1998). Transcription regulation by repressosome and by RNA polymerase contact. Cold Spring Harb Symp Quant Biol 63, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Alba, B. M., and Gross, C. A. (2004). Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52, 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Allison, L. A., Moyle, M., Shales, M., and Ingles, C. J. (1985). Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42, 599–610.

    Article  PubMed  CAS  Google Scholar 

  • A’Rndt, K. M., and Chamberlin, M. J. (1988). Transcription termination in Escherichia coli. Measurement of the rate of enzyme release from Rho-independent terminators. J Mol Biol 202, 271–285.

    Article  CAS  Google Scholar 

  • Artsimovitch, I., and Landick, R. (2000). Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci USA 97, 7090–7095.

    Article  PubMed  CAS  Google Scholar 

  • Aubry-Damon, H., Soussy, C. J., and Courvalin, P. (1998). Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 42, 2590–2594.

    PubMed  CAS  Google Scholar 

  • Ayers, D. G., Auble, D. T., and deHaseth, P. L. (1989). Promoter recognition by Escherichia coli RNA polymerase. Role of the spacer DNA in functional complex formation. J Mol Biol 207, 749–756.

    Article  PubMed  CAS  Google Scholar 

  • Azam, T. A., and Ishihama, A. (1999). Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 274, 33105–33113.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Nahum, G., and Nudler, E. (2001). Isolation and characterization of sigma(70)-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Blatter, E. E., Ross, W., Tang, H., Gourse, R. L., and Ebright, R. H. (1994). Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell 78, 889–896.

    Article  PubMed  CAS  Google Scholar 

  • Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  • Borukhov, S., Laptenko, O., and Lee, J. (2001). Escherichia coli transcript cleavage factors GreA and GreB: functions and mechanisms of action. Methods Enzymol 342, 64–76.

    PubMed  CAS  Google Scholar 

  • Borukhov, S., and Nudler, E. (2003). RNA polymerase holoenzyme: structure, function and biological implications. Curr Opin Microbiol 6, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, H., and Dennis, P. (1996). Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate. In Escherichia coli and Salmonella Typhimurium, F. Neidhardt, ed. (Washington, D.C., American Society for Microbiology), pp. 1553.

    Google Scholar 

  • Brendel, V., Hamm, G. H., and Trifonov, E. N. (1986). Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them. J Biomol Struct Dyn 3, 705–723.

    PubMed  CAS  Google Scholar 

  • Brennan, C. A., Dombroski, A. J., and Platt, T. (1987). Transcription termination factor rho is an RNA-DNA helicase. Cell 48, 945–952.

    Article  PubMed  CAS  Google Scholar 

  • Browning, D. F., and Busby, S. J. (2004). The regulation of bacterial transcription initiation. Nat Rev Microbiol 2, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, R., and Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209, 141–148.

    PubMed  CAS  Google Scholar 

  • Burgess, R. R., Erickson, B., Gentry, D., Gribskov, M., Hager, D., Lesley, S., Strickland, M., and Thompson, N. (1987). Bacterial RNA polymerase subunits and genes. In RNA polymerase and the regulation of transcription, W. S. Reznikoff, ed. (New York, NY, Elsevier Science Publishing), pp. 3–15.

    Google Scholar 

  • Burgess, R. R., Travers, A. A., Dunn, J. J., and Bautz, E. K. (1969). Factor stimulating transcription by RNA polymerase. Nature 221, 43–46.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. M., Nowatzke, W. L., and Richardson, J. P. (1999). Activation of Rho-dependent transcription termination by NusG. Dependence on terminator location and acceleration of RNA release. J Biol Chem 274, 5245–5251.

    Article  PubMed  CAS  Google Scholar 

  • Burton, Z. F., Gross, C. A., Watanabe, K. K., and Burgess, R. R. (1983). The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell 32, 335–349.

    Article  PubMed  CAS  Google Scholar 

  • Cabrera, J. E., and Jin, D. J. (2003). The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 50, 1493–1505.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., and Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, E. A., Pavlova, O., Zenkin, N., Leon, F., Irschik, H., Jansen, R., Severinov, K., and Darst, S. A. (2005). Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24, 674–682.

    Article  PubMed  CAS  Google Scholar 

  • Cashel, M., Gentry, D. R., Hernandez, V. J., and Vinella, D. (1996). The stringent response. In Escherichia coli and Salmonella typhimurium, F. C. Neidhardt, ed. (Washington, D.C., A.S.M. Press), pp. 1458–1496.

    Google Scholar 

  • Citterio, E., Van Den Boom, V., Schnitzler, G., Kanaar, R., Bonte, E., Kingston, R. E., Hoeijmakers, J. H., and Vermeulen, W. (2000). ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol 20, 7643–7653.

    Article  PubMed  CAS  Google Scholar 

  • Condon, C., Squires, C., and Squires, C. L. (1995). Control of rRNA transcription in Escherichia coli. Microbiol Rev 59, 623–645.

    PubMed  CAS  Google Scholar 

  • Cook, P. R. (1999). The organization of replication and transcription. Science 284, 1790–1795.

    Article  PubMed  CAS  Google Scholar 

  • Crasnier, M. (1996). Cyclic AMP and catabolite repression. Res Microbiol 147, 479–482.

    Article  PubMed  CAS  Google Scholar 

  • d’Aubenton Carafa, Y., Brody, E., and Thermes, C. (1990). Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol 216, 835–858.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C. A., Capp, M. W., Record, M. T., Jr., and Saecker, R. M. (2005). The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 102, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • deHaseth, P. L., Zupancic, M. L., and Record, M. T., Jr. (1998). RNA polymerase-promoter interactions: the comings and goings of RNA polymerase. J Bacteriol 180, 3019–3025.

    PubMed  CAS  Google Scholar 

  • DeVito, J., and Das, A. (1994). Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci USA 91, 8660–8664.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, C. J., and Deighan, P. (2003). Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 13, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Drlica, K. (1987). The nucleoid. In Escherichia coli and Salmonella typhimurium, F. Neidhardt, ed. (Washington, D.C., American Society for Microbiology), pp. 91–103.

    Google Scholar 

  • Ebright, R. H. (1993). Transcription activation at Class I CAP-dependent promoters. Mol Microbiol 8, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Ebright, R. H. (2000). RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol 304, 687–698.

    Article  PubMed  CAS  Google Scholar 

  • Epshtein, V., Mironov, A. S., and Nudler, E. (2003). The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 100, 5052–5056.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J. W., and Gross, C. A. (1989). Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3, 1462–1471.

    Article  PubMed  CAS  Google Scholar 

  • Ezekiel, D. H., and Hutchins, J. E. (1968). Mutations affecting RNA polymerase associated with rifampicin resistance in Escherichia coli. Nature 220, 276–277.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, L. (1971). Rifampin—new and potent drug for TB treatment. Bull Natl Tuberc Respir Dis Assoc 57, 11–12.

    PubMed  CAS  Google Scholar 

  • Friedman, D. I., and Court, D. L. (1995). Transcription antitermination: the lambda paradigm updated. Mol Microbiol 18, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J., Gnatt, A. L., Bushnell, D. A., Jensen, G. J., Thompson, N. E., Burgess, R. R., David, P. R., and Kornberg, R. D. (1999). Yeast RNA polymerase II at 5 A resolution. Cell 98, 799–810.

    Article  PubMed  CAS  Google Scholar 

  • Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L., Jr., and Gourse, R. L. (1997). Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278, 2092–2097.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S. C., Weitzel, S. E., and von Hippel, P. H. (1991). Escherichia coli sigma 70 and NusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. J Mol Biol 220, 307–324.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, M. E., and Weisberg, R. A. (2004). Little lambda, who made thee? Microbiol Mol Biol Rev 68, 796–813.

    Article  PubMed  CAS  Google Scholar 

  • Gralla, J. D. (2005). Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase-binding protein. Mol Microbiol 55, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, J., and Li, J. (1981). Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription. Cell 24, 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, J., McLimont, M., and Hanly, S. (1981). Termination of transcription by nusA gene protein of Escherichia coli. Nature 292, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Gross, C. A., Chan, C., Dombroski, A., Gruber, T., Sharp, M., Tupy, J., and Young, B. (1998). The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb Symp Quant Biol 63, 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, A. D., Erickson, J. W., and Gross, C. A. (1984). The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38, 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Grundy, F. J., and Henkin, T. M. (2003). The T box and S box transcription termination control systems. Front Biosci 8, d20–31.

    Article  PubMed  CAS  Google Scholar 

  • Gusarov, I., and Nudler, E. (1999). The mechanism of intrinsic transcription termination. Mol Cell 3, 495–504.

    Article  PubMed  CAS  Google Scholar 

  • Gusarov, I., and Nudler, E. (2001). Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107, 437–449.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A. M., Lehnherr, H., Wang, X., Mobley, V., and Jin, D. J. (2003). Escherichia coli SspA is a transcription activator for bacteriophage P1 late genes. Mol Microbiol 48, 1621–1631.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A. M., Qiu, Y., Yeh, N., Blattner, F. R., Durfee, T., and Jin, D. J. (2005). SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol Microbiol 56, 719–734.

    Article  PubMed  CAS  Google Scholar 

  • Harley, C. B., and Reynolds, R. P. (1987). Analysis of E. coli promoter sequences. Nucleic Acids Res 15, 2343–2361.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, D. K., and McClure, W. R. (1983). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237–2255.

    Article  PubMed  CAS  Google Scholar 

  • Heisler, L. M., Suzuki, H., Landick, R., and Gross, C. A. (1993). Four contiguous amino acids define the target for streptolydigin resistance in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 268, 25369–25375.

    PubMed  CAS  Google Scholar 

  • Helmann, J. D. (1991). Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 5, 2875–2882.

    Article  PubMed  CAS  Google Scholar 

  • Henkin, T. M. (2000). Transcription termination control in bacteria. Curr Opin Microbiol 3, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Henkin, T. M., and Yanofsky, C. (2002). Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24, 700–707.

    Article  PubMed  CAS  Google Scholar 

  • Hobot, J. A., Villiger, W., Escaig, J., Maeder, M., Ryter, A., and Kellenberger, E. (1985). Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J Bacteriol 162, 960–971.

    PubMed  CAS  Google Scholar 

  • Hsu, L. M., Vo, N. V., and Chamberlin, M. J. (1995). Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. Proc Natl Acad Sci USA 92, 11588–11592.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, L. M., Vo, N. V., Kane, C. M., and Chamberlin, M. J. (2003). In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters. Biochemistry 42, 3777–3786.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, K. T., and Mathee, K. (1998). The anti-sigma factors. Annu Rev Microbiol 52, 231–286.

    Article  PubMed  CAS  Google Scholar 

  • Ishihama, A. (1981). Subunit of assembly of Escherichia coli RNA polymerase. Adv Biophys 14, 1–35.

    PubMed  CAS  Google Scholar 

  • Ishihama, A. (2000). Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54, 499–518.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3, 318–356.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D. J. (1994). Slippage synthesis at the galP2 promoter of Escherichia coli and its regulation by UTP concentration and cAMP.cAMP receptor protein. J Biol Chem 269, 17221–17227.

    PubMed  CAS  Google Scholar 

  • Jin, D. J., Burgess, R. R., Richardson, J. P., and Gross, C. A. (1992). Termination effciency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. Proc Natl Acad Sci USA 89, 1453–1457.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D. J., Cashel, M., Friedman, D. I., Nakamura, Y., Walter, W. A., and Gross, C. A. (1988). Effects of rifampicin resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli. J Mol Biol 204, 247–261.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D. J., and Gross, C. A. (1988). Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202, 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D. J., and Gross, C. A. (1989). Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli. J Bacteriol 171, 5229–5231.

    PubMed  CAS  Google Scholar 

  • Jin, D. J., and Gross, C. A. (1991). RpoB8, a rifampicin-resistant termination-proficient RNA polymerase, has an increased Km for purine nucleotides during transcription elongation. J Biol Chem 266, 14478–14485.

    PubMed  CAS  Google Scholar 

  • Jin, D. J., and Turnbough, C. L., Jr. (1994). An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products. J Mol Biol 236, 72–80.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D. J., and Zhou, Y. N. (1996). Mutational analysis of structure-function relationship of RNA polymerase in Escherichia coli. Methods Enzymol 273, 300–319.

    PubMed  CAS  Google Scholar 

  • Kapusnik, J. E., Parenti, F., and Sande, M. A. (1984). The use of rifampicin in staphylococcal infections—a review. J Antimicrob Chemother 13Suppl C, 61–66.

    PubMed  CAS  Google Scholar 

  • Keilty, S., and Rosenberg, M. (1987). Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem 262, 6389–6395.

    PubMed  CAS  Google Scholar 

  • Kingston, R. E., and Chamberlin, M. J. (1981). Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli. Cell 27, 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Kireeva, M. L., Hancock, B., Cremona, G. H., Walter, W., Studitsky, V. M., and Kashlev, M. (2005). Nature of the Nucleosomal Barrier to RNA Polymerase II. Mol Cell 18, 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Komissarova, N., Becker, J., Solter, S., Kireeva, M., and Kashlev, M. (2002). Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol Cell 10, 1151–1162.

    Article  PubMed  CAS  Google Scholar 

  • Komissarova, N., and Kashlev, M. (1997a). RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. J Biol Chem 272, 15329–15338.

    Article  PubMed  CAS  Google Scholar 

  • Komissarova, N., and Kashlev, M. (1997b). Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc Natl Acad Sci USA 94, 1755–1760.

    Article  PubMed  CAS  Google Scholar 

  • Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S. A. (2000). A structural model of transcription elongation. Science 289, 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Kustu, S., Santero, E., Keener, J., Popham, D., and Weiss, D. (1989). Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 53, 367–376.

    PubMed  CAS  Google Scholar 

  • Landick, R., Carey, J., and Yanofsky, C. (1987). Detection of transcription-pausing in vivo in the trp operon leader region. Proc Natl Acad Sci USA 84, 1507–1511.

    Article  PubMed  CAS  Google Scholar 

  • Landick, R., Wang, D., and Chan, C. L. (1996). Quantitative analysis of transcriptional pausing by Escherichia coli RNA polymerase: his leader pause site as paradigm. Methods Enzymol 274, 334–353.

    PubMed  CAS  Google Scholar 

  • Lawson, C. L., Swigon, D., Murakami, K. S., Darst, S. A., Berman, H. M., and Ebright, R. H. (2004). Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14, 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Leung, M. J., Kell, A. D., and Collignon, P. (1998). Antibiotic guidelines for meningococcal prophylaxis. Med J Aust 169, 396.

    PubMed  CAS  Google Scholar 

  • Levin, J. R., and Chamberlin, M. J. (1987). Mapping and characterization of transcriptional pause sites in the early genetic region of bacteriophage T7. J Mol Biol 196, 61–84.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., Heath, L. S., and Turnbough, C. L., Jr. (1994). Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev 8, 2904–2912.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Durfee, T., Cabrera, J. E., Zhao, K., Jin, D. J., and Blattner, F. R. (2005). Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem. 280:15921–15927.

    Article  PubMed  CAS  Google Scholar 

  • Loewen, P. C., and Hengge-Aronis, R. (1994). The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol 48, 53–80.

    Article  PubMed  CAS  Google Scholar 

  • Lounis, N., and Roscigno, G. (2004). In vitro and in vivo activities of new rifamycin derivatives against mycobacterial infections. Curr Pharm Des 10, 3229–3238.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H., Fujita, N., and Ishihama, A. (2000). Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res 28, 3497–3503.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F. H., and Tinoco, I., Jr. (1980). DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res 8, 2295–2299.

    Article  PubMed  CAS  Google Scholar 

  • McClure, W. R. (1980). Rate-limiting steps in RNA chain initiation. Proc Natl Acad Sci USA 77, 5634–5638.

    Article  PubMed  CAS  Google Scholar 

  • McClure, W. R., and Cech, C. L. (1978). On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253, 8949–8956.

    PubMed  CAS  Google Scholar 

  • McDowell, J. C., Roberts, J. W., Jin, D. J., and Gross, C. (1994). Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266, 822–825.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, S. M., Aiyar, S. E., Gourse, R. L., and Johnson, R. C. (2002). The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J Mol Biol 316, 517–529.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, S., Schreiber, G., Aizenman, E., Cashel, M., and Glaser, G. (1989). Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J Biol Chem 264, 21146–21152.

    PubMed  CAS  Google Scholar 

  • Mitchell, J. E., Zheng, D., Busby, S. J., and Minchin, S. D. (2003). Identification and analysis of ‘extended-10’ promoters in Escherichia coli. Nucleic Acids Res 31, 4689–4695.

    Article  PubMed  CAS  Google Scholar 

  • Muchardt, C., and Yaniv, M. (1999). The mammalian SWI/SNF complex and the control of cell growth. Semin Cell Dev Biol 10, 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, J., Kapanidis, A. N., Mekler, V., Kortkhonjia, E., Ebright, Y. W., and Ebright, R. H. (2001). Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, K. S., Masuda, S., Campbell, E. A., Muzzin, O., and Darst, S. A. (2002). Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290.

    Article  PubMed  CAS  Google Scholar 

  • Mustaev, A., Zaychikov, E., Severinov, K., Kashlev, M., Polyakov, A., Nikiforov, V., and Goldfarb, A. (1994). Topology of the RNA polymerase active center probed by chimeric rifampicin-nucleotide compounds. Proc Natl Acad Sci USA 91, 12036–12040.

    Article  PubMed  CAS  Google Scholar 

  • Nehrke, K. W., and Platt, T. (1994). A quaternary transcription termination complex. Reciprocal stabilization by Rho factor and NusG protein. J Mol Biol 243, 830–839.

    Article  PubMed  CAS  Google Scholar 

  • Nudler, E., and Gottesman, M. E. (2002). Transcription termination and anti-termination in E. coli. Genes Cells 7, 755–768.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. S., Marr, M. T., and Roberts, J. W. (2002). E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Paul, B. J., Barker, M. M., Ross, W., Schneider, D. A., Webb, C., Foster, J. W., and Gourse, R. L. (2004a). DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Paul, B. J., Ross, W., Gaal, T., and Gourse, R. L. (2004b). rRNA transcription in Escherichia coli. Annu Rev Genet 38, 749–770.

    Article  PubMed  CAS  Google Scholar 

  • Pazin, M. J., and Kadonaga, J. T. (1997). SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88, 737–740.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C. L. (1996). Multiple SWItches to turn on chromatin? Curr Opin Genet Dev 6, 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Pettijohn, D. E. (1996). The nucleoid. In Escherichia coli and Salmonella Typhimurium, F. Neidhardt, ed. (Washington, D. C., American Society for Microbiology), pp. 158.

    Google Scholar 

  • Platt, T. (1994). Rho and RNA: models for recognition and response. Mol Microbiol 11, 983–990.

    Article  PubMed  CAS  Google Scholar 

  • Pressler, U., Staudenmaier, H., Zimmermann, L., and Braun, V. (1988). Genetics of the iron dicitrate transport system of Escherichia coli. J Bacteriol 170, 2716–2724.

    PubMed  CAS  Google Scholar 

  • Qi, F., and Turnbough, C. L., Jr. (1995). Regulation of codBA operon expression in Escherichia coli by UTP-dependent reiterative transcription and UTP-sensitive transcriptional start site switching. J Mol Biol 254, 552–565.

    Article  PubMed  CAS  Google Scholar 

  • Rabussay, D., and Zillig, W. (1969). A rifampicin resistent rna-polymerase from E. coli altered in the beta-subunit. FEBS Lett 5, 104–106.

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy, S., and Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79, 3–29.

    Article  PubMed  CAS  Google Scholar 

  • Rees, W. A., Weitzel, S. E., Yager, T. D., Das, A., and von Hippel, P. H. (1996). Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc Natl Acad Sci USA 93, 342–346.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. P. (2002). Rho-dependent termination and ATPases in transcript termination. Biochim Biophys Acta 1577, 251–260.

    PubMed  CAS  Google Scholar 

  • Richardson, J. P. (2003). Loading Rho to terminate transcription. Cell 114, 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J., and Park, J. S. (2004). Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. Curr Opin Microbiol 7, 120–125.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. W., Yarnell, W., Bartlett, E., Guo, J., Marr, M., Ko, D. C., Sun, H., and Roberts, C. W. (1998). Antitermination by bacteriophage lambda Q protein. Cold Spring Harb Symp Quant Biol 63, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Robinow, C., and Kellenberger, E. (1994). The bacterial nucleoid revisited. Microbiol Rev 58, 211–232.

    PubMed  CAS  Google Scholar 

  • Ross, W., Gosink, K. K., Salomon, J., Igarashi, K., Zou, C., Ishihama, A., Severinov, K., and Gourse, R. L. (1993). A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262, 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  • Saecker, R. M., Tsodikov, O. V., McQuade, K. L., Schlax, P. E., Jr., Capp, M. W., and Record, M. T., Jr. (2002). Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. J Mol Biol 319, 649–671.

    Article  PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr. (1998). Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 58, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Savery, N., Rhodius, V., and Busby, S. (1996). Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci 351, 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Schroder, O., and Wagner, R. (2000). The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J Mol Biol 298, 737–748.

    Article  PubMed  CAS  Google Scholar 

  • Selby, C. P., and Sancar, A. (1993). Molecular mechanism of transcription-repair coupling. Science 260, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Severinov, K., Markov, D., Severinova, E., Nikiforov, V., Landick, R., Darst, S. A., and Goldfarb, A. (1995). Streptolydigin-resistant mutants in an evolutionarily conserved region of the beta’ subunit of Escherichia coli RNA polymerase. J Biol Chem 270, 23926–23929.

    Article  PubMed  CAS  Google Scholar 

  • Severinov, K., Soushko, M., Goldfarb, A., and Nikiforov, V. (1993). Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 268, 14820–14825.

    PubMed  CAS  Google Scholar 

  • Shimamoto, N., Kamigochi, T., and Utiyama, H. (1986). Release of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase depends mainly on time elapsed after the start of initiation, not on length of product RNA. J Biol Chem 261, 11859–11865.

    PubMed  CAS  Google Scholar 

  • Shuman, H. A., and Silhavy, T. J. (2003). The art and design of genetic screens: Escherichia coli. Nat Rev Genet 4, 419–431.

    Article  PubMed  CAS  Google Scholar 

  • Squires, C. L., Condon, C., and Seoh, H. K. (2003). Assay of antitermination of ribosomal RNA transcription. Methods Enzymol 371, 472–487.

    Article  PubMed  CAS  Google Scholar 

  • Squires, C. L., Greenblatt, J., Li, J., and Condon, C. (1993). Ribosomal RNA antitermination in vitro: requirement for Nus factors and one or more unidentified cellular components. Proc Natl Acad Sci USA 90, 970–974.

    Article  PubMed  CAS  Google Scholar 

  • Stefano, J. E., and Gralla, J. D. (1982). Spacer mutations in the lac ps promoter. Proc Natl Acad Sci USA 79, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  • Straus, D., Walter, W., and Gross, C. A. (1990). DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4, 2202–2209.

    Article  PubMed  CAS  Google Scholar 

  • Sukhodolets, M. V., Cabrera, J. E., Zhi, H., and Jin, D. J. (2001). RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev 15, 3330–3341.

    Article  PubMed  CAS  Google Scholar 

  • Sukhodolets, M. V., and Jin, D. J. (1998). RapA, a novel RNA polymerase-associated protein, is a bacterial homolog of SWI2/SNF2. J Biol Chem 273, 7018–7023.

    Article  PubMed  CAS  Google Scholar 

  • Sweetser, D., Nonet, M., and Young, R. A. (1987). Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci USA 84, 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  • Toulme, F., Mosrin-Huaman, C., Sparkowski, J., Das, A., Leng, M., and Rahmouni, A. R. (2000). GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J 19, 6853–6859.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A., Schneider, R., and Muskhelishvili, G. (2001). DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie 83, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Tse-Dinh, Y. C., Qi, H., and Menzel, R. (1997). DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. Trends Microbiol 5, 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Vassylyev, D. G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S., and Yokoyama, S. (2002). Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417, 712–719.

    Article  PubMed  CAS  Google Scholar 

  • von Hippel, P. H. (1998). An integrated model of the transcription complex in elongation, termination, and editing. Science 281, 660–665.

    Article  Google Scholar 

  • von Hippel, P. H., Rees, W. A., Rippe, K., and Wilson, K. S. (1996). Specificity mechanisms in the control of transcription. Biophys Chem 59, 231–246.

    Article  Google Scholar 

  • Walstrom, K. M., Dozono, J. M., and von Hippel, P. H. (1997). Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 2. Processivity, ATP consumption, and RNA binding. Biochemistry 36, 7993–8004.

    Article  PubMed  CAS  Google Scholar 

  • Weisberg, R. A., and Gottesman, M. E. (1999). Processive antitermination. J Bacteriol 181, 359–367.

    PubMed  CAS  Google Scholar 

  • Wu, H. Y., Shyy, S. H., Wang, J. C., and Liu, L. F. (1988). Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Xu, M., Zhou, Y. N., Goldstein, B. P., and Jin, D. J. (2005). Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol 187, 2783–2792.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., and Price, C. W. (1995). Streptolydigin resistance can be conferred by alterations to either the beta or beta’ subunits of Bacillus subtilis RNA polymerase. J Biol Chem 270, 23930–23933.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, C. (2000). Transcription attenuation: once viewed as a novel regulatory strategy. J Bacteriol 182, 1–8.

    PubMed  CAS  Google Scholar 

  • Young, B. A., Gruber, T. M., and Gross, C. A. (2002). Views of transcription initiation. Cell 109, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G., Campbell, E. A., Minakhin, L., Richter, C., Severinov, K., and Darst, S. A. (1999). Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98, 811–824.

    Article  PubMed  CAS  Google Scholar 

  • Zhi, H., Wang, X., Cabrera, J. E., Johnson, R. C., and Jin, D. J. (2003a). Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J Biol Chem 278, 47340–47349.

    Article  PubMed  CAS  Google Scholar 

  • Zhi, H., Yang, W., and Jin, D. J. (2003b). Escherichia coli proteins eluted from mono Q chromatography, a final step during RNA polymerase purification procedure. Methods Enzymol 370, 291–300.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., Gottesman, S., Hoskins, J. R., Maurizi, M. R., and Wickner, S. (2001). The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 15, 627–637.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y. N., and Jin, D. J. (1998). The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proc Natl Acad Sci USA 95, 2908–2913.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y. N., Walter, W. A., and Gross, C. A. (1992). A mutant sigma 32 with a small deletion in conserved region 3 of sigma has reduced affinity for core RNA polymerase. J Bacteriol 174, 5005–5012.

    PubMed  CAS  Google Scholar 

  • Zurawski, G., Elseviers, D., Stauffer, G. V., and Yanofsky, C. (1978). Translational control of transcription termination at the attenuator of the Escherichia coli tryptophan operon. Proc Natl Acad Sci USA 75, 5988–5992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Higher Education Press

About this chapter

Cite this chapter

Jin, D.J., Zhou, Y.N. (2006). Transcription Control in Bacteria. In: Ma, J. (eds) Gene Expression and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-40049-5_34

Download citation

Publish with us

Policies and ethics