Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 593))

Abstract

Cancer development and progression is a complex process that involves a host of functional and genetic abnormalities. Genomic perturbations and the gene expression they lead to, can now be globally identified with the use of DNA microarray. This relatively new technology has forever changed the scale of biological investigation. The enormous amount of data generated via a single chip has led to major global studies of the cellular processes underlying malignant transformation and progression. The multiplicity of platforms from different proprietors has offered investigators flexibility in their experimental design. Additionally, there are several more recent microarrays whose designs were inspired by the nucleotide-based technology. These include protein, multi-tissue, cell, and interference RNA microarrays. Combinations of microarray and other contemporary scientific methods, such as, laser capture microdissection (LCM), comparative genomic hybridization (CGH), single nude-otide polymorphism analysis (SNP) and chromatin immunoprecipitation (ChIP), have created entirely new fields of interest in the more global quest to better define the molecular basis of malignancy. In addition to basic science applications, many clinical inquiries have been performed. These queries have shown microarray to have clinical utility in cancer diagnosis, risk stratification, and patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dean M. Cancer as a complex developmental disorder-nineteenth Cornelius P. Rhoads Memorial Award Lecture. Cancer Res 1998; 58(24):5633–5636.

    PubMed  CAS  Google Scholar 

  2. Solomon E, Borrow J, Goddard AD. Chromosome aberrations and cancer. Science 1991; 254(5035):1153–1160.

    Article  PubMed  CAS  Google Scholar 

  3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61(5):759–767.

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  5. Ha PK, Benoit NE, Yochem R et al. A transcriptional progression model for head and neck cancer. Clin Cancer Res 2003; 9(8):3058–3064.

    PubMed  CAS  Google Scholar 

  6. Dave SS, Wright G, Tan B et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351(21):2159–2169.

    Article  PubMed  CAS  Google Scholar 

  7. van de Vijver MJ, He YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347(25):1999–2009.

    Article  PubMed  Google Scholar 

  8. Zhu H, Klemic JF, Chang S et al. Analysis of yeast protein kinases using protein chips. Nat Genet 2000; 26(3):283–289.

    Article  PubMed  CAS  Google Scholar 

  9. Houseman BT, Mrksich M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 2002; 9(4):443–454.

    Article  PubMed  CAS  Google Scholar 

  10. Kononen J, Bubendorf L, Kallionimeni A et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. 1998; 4(7):844–847, (1998/07//print).

    CAS  Google Scholar 

  11. Baghdoyan S, Roupioz Y, Pitaval A et al. Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res 2004; 32(9):e77.

    Article  PubMed  Google Scholar 

  12. Kuruvilla FG, Shamji AF, Sternson SM et al. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 2002; 416(6881):653–657.

    Article  PubMed  CAS  Google Scholar 

  13. Lockhart DJ, Dong H, Byrne MC et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14(13):1675–1680.

    Article  PubMed  CAS  Google Scholar 

  14. Pietu G, Alibert O, Guichard V et al. Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res 1996; 6(6):492–503.

    Article  PubMed  CAS  Google Scholar 

  15. DeRisi J, Penland L, Brown PO et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14(4):457–460.

    Article  PubMed  CAS  Google Scholar 

  16. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797):747–752.

    Article  PubMed  CAS  Google Scholar 

  17. van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871):530–536.

    Article  Google Scholar 

  18. Ma XJ, Salunga R, Tuggle JT et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100(10):5974–5979.

    Article  PubMed  CAS  Google Scholar 

  19. Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439):531–537.

    Article  PubMed  CAS  Google Scholar 

  20. Alizadeh AA, Eisen MB, Davis RE et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769):503–511.

    Article  PubMed  CAS  Google Scholar 

  21. Templin MF, Stoll D, Schwenk JM et al. Protein microarrays: Promising tools for proteomic research. Proteomics 2003; 3(11):2155–2166.

    Article  PubMed  CAS  Google Scholar 

  22. MacBeath G. Protein microarrays and proteomics. Nat Genet 2002; 32(Suppl):526–532.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science 2001; 293(5537):2101–2105.

    Article  PubMed  CAS  Google Scholar 

  24. Houseman BT, Huh JH, Kron SJ et al. Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 2002; 20(3):270–274.

    Article  PubMed  CAS  Google Scholar 

  25. Ge H. UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Res 2000; 28(2):e3.

    Article  PubMed  CAS  Google Scholar 

  26. Liotta LA, Espina V, Mehta AI et al. Protein microarrays: Meeting analytical challenges for clinical applications. Cancer Cell 2003; 3(4):317–325.

    Article  PubMed  CAS  Google Scholar 

  27. Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: A technical review with interpretive guidelines. Hum Pathol 2005; 36(3):250–261.

    Article  PubMed  CAS  Google Scholar 

  28. Wheeler DB, Bailey SN, Guertin DA et al. RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nat Methods 2004; 1(2):127–132.

    Article  PubMed  CAS  Google Scholar 

  29. Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science 1996; 274(5289):998–1001.

    Article  PubMed  CAS  Google Scholar 

  30. Segal JP, Stallings NR, Lee CE et al. Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. J Neurosci 2005; 25(16):4181–4188.

    Article  PubMed  CAS  Google Scholar 

  31. Wang E, Miller LD, Ohnmacht GA et al. High-fidelity mRNA amplification for gene profiling. Nat Biotechnol 2000; 18(4):457–459.

    Article  PubMed  CAS  Google Scholar 

  32. Aoyagi K, Tatsuta T, Nishigaki M et al. A faithful method for PCR-mediated global mRNA amplification and its integration into microarray analysis on laser-captured cells. Biochem Biophys Res Commun 2003; 300(4):915–920.

    Article  PubMed  CAS  Google Scholar 

  33. Polacek DC, Passerini AG, Shi C et al. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiol Genomics 2003; 13(2):147–156.

    PubMed  CAS  Google Scholar 

  34. Zhao H, Hastie T, Whitfield ML et al. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis. BMC Genomics 2002; 3(1):31.

    Article  PubMed  CAS  Google Scholar 

  35. Simone NL, Bonner RF, Gillespie JW et al. Laser-capture microdissection: Opening the microscopic frontier to molecular analysis. Trends Genet 1998; 14(7):272–276.

    Article  PubMed  CAS  Google Scholar 

  36. Pollack JR, Perou CM, Alizadeh AA et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23(1):41–46.

    Article  PubMed  CAS  Google Scholar 

  37. Zardo G, Tiirikainen MI, Hong C et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 2002; 32(3):453–458.

    Article  PubMed  CAS  Google Scholar 

  38. Schwaenen C, Nessling M, Wessendorf S et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: Development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 2004; 101(4):1039–1044.

    Article  PubMed  CAS  Google Scholar 

  39. Paris PL, Andaya A, Fridlyand J et al. Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum Mol Genet 2004; 13(13):1303–1313.

    Article  PubMed  CAS  Google Scholar 

  40. Callagy G, Pharoah P, Chin SF et al. Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol 2005; 205(3):388–396.

    Article  PubMed  CAS  Google Scholar 

  41. Weiss MM, Kuipers EJ, Postma C et al. Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 2004; 26(5–6):307–317.

    PubMed  CAS  Google Scholar 

  42. Martinez-Climent JA, Alizadeh AA, Segraves R et al. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 2003; 101(8):3109–3H7.

    Article  PubMed  CAS  Google Scholar 

  43. The International HapMap Project. Nature 2003; 426(6968):789–796.

    Google Scholar 

  44. Gabriel SB, SchafTner SF, Nguyen H et al. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225–2229.

    Article  PubMed  CAS  Google Scholar 

  45. Judson R, Salisbury B, Schneider J et al. How many SNPs does a genome-wide haplotype map require? Pharmacogenomics 2002; 3(3):379–391.

    Article  PubMed  CAS  Google Scholar 

  46. Matsuzaki H, Loi H, Dong S et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonudeotide array. Genome Res 2004; 14(3):414–425.

    Article  PubMed  CAS  Google Scholar 

  47. Liu S, Li Y, Fu X et al. Analysis of the factors affecting the accuracy of detection for single base alterations by oligonudeotide microarray. Exp Mol Med 2005; 37(2):71–77.

    PubMed  CAS  Google Scholar 

  48. Zhou X, Rao NP, Cole SW et al. Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet Cytogenet 2005; 159(1):53–57.

    Article  PubMed  CAS  Google Scholar 

  49. Irving JA, Bloodworth L, Bown NP et al. Loss of heterozygosity in childhood acute lymphoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res 2005; 65(8):3053–3058.

    PubMed  CAS  Google Scholar 

  50. Evans DM, Cardon LR. Guidelines for genotyping in genomewide linkage studies: Single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 2004; 75(4):687–692.

    Article  PubMed  CAS  Google Scholar 

  51. Middleton FA, Pato MT, Gentile KL et al. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: A comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet 2004; 74(5):886–897.

    Article  PubMed  CAS  Google Scholar 

  52. Nal B, Mohr E, Ferrier P. Location analysis of DNA-bound proteins at the whole-genome level: Untangling transcriptional regulatory networks. Bioessays 2001; 23(6):473–476.

    Article  PubMed  CAS  Google Scholar 

  53. Blais A, Dynlacht BD. Devising transcriptional regulatory networks operating during the cell cycle and differentiation using ChlP-on-chip. Chromosome Res 2005; 13(3):275–288.

    Article  PubMed  CAS  Google Scholar 

  54. Ren B, Robert F, Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290(5500):2306–2309.

    Article  PubMed  CAS  Google Scholar 

  55. Orlando V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 2000; 25(3):99–104.

    Article  PubMed  CAS  Google Scholar 

  56. Darville MI, Terryn S, Eizirik DL. An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta-cells. Endocrinology 2004; 145(3):1130–1136.

    Article  PubMed  CAS  Google Scholar 

  57. Palmiter RD, Haines ME. Regulation of protein synthesis in chick oviduct. 4th, Role of testosterone. J Biol Chem 1973; 248(6):2107–2116.

    PubMed  CAS  Google Scholar 

  58. Tenenbaum SA, Carson CC, Atasoy U et al. Genome-wide regulatory analysis using en masse nuclear run-ons and ribonomic profiling with autoimmune sera. Gene 2003; 317(1–2):79–87.

    Article  PubMed  CAS  Google Scholar 

  59. Mazzanti CM, Tandle A, Lorang D et al. Early genetic mechanisms underlying the inhibitory effects of endostatin and fumagillin on human endothelial cells. Genome Res 2004; 14(8):1585–1593.

    Article  PubMed  CAS  Google Scholar 

  60. Feldman AL, Stetler-Stevenson WG, Costouros NG et al. Modulation of tumor-host interactions, angiogenesis, and tumor growth by tissue inhibitor of metalloproteinase 2 via a novel mechanism. Cancer Res 2004; 64(13):4481–4486.

    Article  PubMed  CAS  Google Scholar 

  61. Mazzanti C, Zeiger MA, Costouros NG et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res 2004; 64(8):2898–2903.

    Article  PubMed  CAS  Google Scholar 

  62. Rosen J, He M, Umbricht C et al. A six gene model for differentiating benign from malignant thyroid tumors based on gene expression. Surgery 2005; 138(6):1050–6.

    Article  PubMed  Google Scholar 

  63. Eschrich S, Yang I, Bloom G et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 2005; 23(15):3526–3535.

    Article  PubMed  CAS  Google Scholar 

  64. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115(6):1503–1521.

    Article  PubMed  CAS  Google Scholar 

  65. Sanchez-Carbayo M, Socci ND, Lozano JJ et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol 2003; 163(2):505–516.

    PubMed  CAS  Google Scholar 

  66. Kim JM, Sohn HY, Yoon SY et al. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res 2005; 11(2 Pt 1):473–482.

    PubMed  Google Scholar 

  67. Xu L, Tan AC, Naiman DQ et al. Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data. Bioinformatics 2005; 21(20):3905–3911.

    Article  PubMed  CAS  Google Scholar 

  68. Rhodes DR, Yu J, Shanker K et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 2004; 101(25):9309–9314.

    Article  PubMed  CAS  Google Scholar 

  69. Zhong L, Hidalgo GE, Stromberg AJ et al. Using protein microarray as a diagnostic assay for nonsmall cell lung cancer. Am J Respir Crit Care Med 2005; 172(10):1308–1314.

    Article  PubMed  Google Scholar 

  70. Kang JY, Dolled-Filhart M, Ocal IT et al. Tissue microarray analysis of hepatocyte growth factor/ Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003; 63(5):1101–1105.

    PubMed  CAS  Google Scholar 

  71. Bubendorf L, Kononen J, Koivisto P et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999; 59(4):803–806.

    PubMed  CAS  Google Scholar 

  72. Mousses S, Bubendorf L, Wagner U et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 2002; 62(5):1256–1260.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Libutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

He, M., Rosen, J., Mangiameli, D., Libutti, S.K. (2007). Cancer Development and Progression. In: Mocellin, S. (eds) Microarray Technology and Cancer Gene Profiling. Advances in Experimental Medicine and Biology, vol 593. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39978-2_12

Download citation

Publish with us

Policies and ethics