Skip to main content

Structural Determinants of CtBP Function

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The structural characteristics of the CtBP family of transcriptional corepressors suggest an additional role for coenzyme nicotinamide adenine dinudeotide in the repression of gene expression. Remarkably, CtBP orthologues are unique among transcriptional regulators in that they display striking primary sequence and structural similarity to the D-isomer specific 2-hydroxyacid dehydrogenase class of enzymes. Recent structural studies of rat CtBP/BARS and human CtBPl provide insight into the role of pyridine dinucleotide binding in regulation of CtBP quaternary structure, and corepression activity through association with -PXDLS-containing targets.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: Signalling functions of NAD(P). Trends Biochem Sci 2004; 29:111–118.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Dioum EM, Rutter J, Tuckerman JR et al. NPAS2: A gas-responsive transcription factor. Science 2002; 298:2385–2387.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Rutter J, Reick M, Wu LC et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293:510–514.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays 2004; 26:882–893.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Denu JM. Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 2003; 28:41–48.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus El A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995; 92:10467–10471.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Chinnadurai G. CtBP family proteins: More than transcriptional corepressors. Bioessays 2003; 25:9–12.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Chinnadurai G. CtBP, an unconventional transcriptional compressor in development and oncogenesis. Mol Cell 2002; 9:213–224.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Spano S, Silletta MG, Colanzi A et al. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem 1999; 274:17705–17710.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Schmitz F, Konigstorfer A, Sudhof TC. RIBEYE, a component of synaptic ribbons: A protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 2000; 28:857–872.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Shi Y, Sawada J, Sui G et al. Coordinated histone modifications mediated by a CtBP compressor complex. Nature 2003; 422:735–738.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Zhang Q, Piston DW, Goodman RH. Regulation of compressor function by nuclear NADH. Science 2002; 295:1895–1897.

    PubMed  CAS  Google Scholar 

  13. Kumar V, Carlson JE, Ohgi KA et al. Transcription compressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10:857–869.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Nardini M, Spano S, Cericola C et al. CtBP/BARS: A dual-function protein involved in transcription compression and Golgi membrane fission. EMBO J 2003; 22:3122–3130.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Thio SS, Bonventre JV, Hsu SI. The CtBP2 compressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain. Nucleic Acids Res 2004; 32:1836–1847.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus El A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003; 537:157–160.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Weigert R, Silletta MG, Spano S et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 1999; 402:429–433.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Kochhar S, Hunziker PE, Leong-Morgenthaler P et al. Evolutionary relationship of NAD(+)-dependent D-lactate dehydrogenase: Comparison of primary structure of 2-hydroxy acid dehydrogenases. Biochem Biophys Res Commun 1992; 184:60–66.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Sewalt RG, Gunster MJ, van DV et al. C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 1999; 19:777–787.

    PubMed  CAS  Google Scholar 

  20. Thompson JR, Bell JK, Bratt J et al. Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Biochemistry 2005; 44:5763–5773.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Riefler GM, Firestein BL. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: A novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276:48262–48268.

    PubMed  CAS  Google Scholar 

  22. Lin X Sun B, Liang M et al. Opposed regulation of compressor CtBP by SUMOylation and PDZ binding. Mol Cell 2003; 11:1389–1396.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Criqui-Filipe P, Ducret C, Maira SM et al. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 1999; 18:3392–3403.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Furusawa T, Moribe H, Kondoh H et al. Identification of CtBPl and CtBP2 as compressors of zinc finger-homeodomain factor deltaEFl. Mol Cell Biol 1999; 19:8581–8590.

    PubMed  CAS  Google Scholar 

  25. Koipally J, Georgopoulos K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 2000; 275:19594–19602.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Schuller DJ, Grant GA, Banaszak LJ. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol 1995; 2:69–76.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Birktoft JJ, Banaszak LJ. The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J Biol Chem 1983; 258:472–482.

    PubMed  CAS  Google Scholar 

  28. Turner J, Crossley M. Cloning and characterization of mCtBP2, a corepressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 1998; 17:5129–5140.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Phippen TM, Sweigart AL, Moniwa M et al. Drosophila C-terminal binding protein functions as a context-dependent transcriptional cofactor and interferes with both mad and groucho transcriptional repression. J Biol Chem 2000; 275:37628–37637.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Sutrias-Grau M, Arnosti DN. CtBP contributes quantitatively to Knirps repression activity in an NAD binding-dependent manner. Mol Cell Biol 2004; 24:5953–5966.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Grooteclaes M, Deveraux Q, Hildebrand J et al. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 2003; 100:4568–4573.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Barnes CJ, Vadlamudi RK, Mishra SK et al. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol 2003; 10:622–628.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Bellamacina CR. The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins. FASEB J 1996; 10:1257–1269.

    PubMed  CAS  Google Scholar 

  34. Lesk AM. NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 1995; 5:775–783.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Bottoms CA, Smith PE, Tanner JJ. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein Sci 2002; 11:2125–2137.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100:9202–9207.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Grant GA, Hu Z, Xu XL. Cofactor binding to Escherichia coli D-3-phosphoglycerate dehydrogenase induces multiple conformations which alter effector binding. J Biol Chem 2002; 277:39548–39553.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Kim JH, Cho EJ, Kim ST et al. CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 2005; 12:423–428.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Zeng L, Zhou MM. Bromodomain: An acetyl-lysine binding domain. FEBS Lett 2002; 513:124–128.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Owen DJ, Ornaghi P, Yang JC et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000; 19:6141–6149.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Mirnezami AH, Campbell SJ, Darley M et al. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 2003; 13:1234–1239.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Molloy DP, Barral PM, Bremner KH et al. Structural determinants in adenovirus 12 E1A involved in the interaction with C-terminal binding protein 1. Virology 2000; 277:156–166.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Molloy DP, Milner AE, Yakub IK et al. Structural determinants present in the C-terminal binding protein binding site of adenovirus early region 1A proteins. J Biol Chem 1998; 273:20867–20876.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Molloy DP, Barral PM, Bremner KH et al. Structural determinants outside the PXDLS sequence affect the interaction of adenovirus El A, C-terminal interacting protein and Drosophila repressors with C-terminal binding protein. Biochim Biophys Acta 2001; 1546:55–70.

    PubMed  CAS  Google Scholar 

  45. Zhang Q, Yao H, Vo N et al. Acetylation of adenovirus El A regulates binding of the transcriptional corepressor CtBP. Proc Natl Acad Sci USA 2000; 97:14323–14328.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Madison DL, Yaciuk P, Kwok RP et al. Acetylation of the adenovirus-transforming protein El A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem 2002; 277:38755–38763.

    CrossRef  PubMed  CAS  Google Scholar 

  47. Vo N, Fjeld C, Goodman RH. Acetylation of nuclear hormone receptor-interacting protein RIP 140 regulates binding of the transcriptional corepressor CtBP. Mol Cell Biol 2001; 21:6181–6188.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lundblad .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lundblad, J.R. (2007). Structural Determinants of CtBP Function. In: GtBP Family Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39973-7_9

Download citation

Publish with us

Policies and ethics