Skip to main content

CtBP as a Redox Sensor in Transcriptional Repression

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The corepressor CtBP (carboxyl-terminal binding protein) is involved in transcriptional pathways important for development, cell cycle regulation, and transformation. We demonstrate that CtBP binding to transcription repressors is stimulated by NAD+ and NADH, with NADH being two to three orders of magnitude more effective. Fluorescence resonance energy transfer studies of CtBP show a > 100-fold higher affinity for NADH than NAD+, in agreement with the tighter interaction observed in the crystal structure of NADH-bound CtBP. Levels of free nuclear nicotinamide adenine dinucleotides, determined using two-photon microscopy, correspond to the concentrations required for half-maximal CtBP binding. Free cellular NAD+ concentration greatly exceeds that of NADH and the redox changes are mainly reflected by NADH levels. Agents increasing NADH levels stimulate CtBP binding to its partners in vivo and potentiate CtBP-mediated repression. These findings suggest that the transcriptional corepressor CtBP may serve as a redox sensor to provide a link between gene expression and metabolism.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002; 9(2):213–224.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Boyd JM, Subramanian T, Schaeper U et al. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 1993; 12(2):469–478.

    PubMed  CAS  Google Scholar 

  3. Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995; 92(23):10467–10471.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Kumar V, Carlson JE, Ohgi KA et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10(4):857–869.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003; 537(1–3):157–160.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Shi Y, Sawada J, Sui G et al. Coordinated histone modifications mediated by a CtBP corepressor complex. Nature 2003; 422(6933):735–738.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Holbrook JJ, Gutfreund H, Sudi J. Kinetic analysis of experiments involving the single turnover of an enzyme. Biochem J 1976; 157(1):287–288.

    PubMed  CAS  Google Scholar 

  8. Grooteclaes M, Deveraux Q, Hildebrand J et al. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 2003; 100(8):4568–4573.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Turner J, Crossley M. Cloning and characterization of mCtBP2, a corepressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 1998; 17(17):5129–5140.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Phippen TM, Sweigart AL, Moniwa M et al. Drosophila C-terminal binding protein functions as a context-dependent transcriptional cofactor and interferes with both mad and groucho transcriptional repression. J Biol Chem 2000; 275(48):37628–37637.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002; 295(5561):1895–1897.

    PubMed  CAS  Google Scholar 

  12. Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100(16):9202–9207.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Sugimoto E, Pizer LI. The mechanism of end product inhibition of serine biosynthesis. II. Optical studies of phosphoglycerate dehydrogenase. J Biol Chem 1968; 243(9):2090–2098.

    PubMed  CAS  Google Scholar 

  14. Nardini M, Spano S, Cericola C et al. CtBP/BARS: A dual-function protein involved in transcription compression and Golgi membrane fission. EMBO J 2003; 22(12):3122–3130.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Patterson GH, Knobel SM, Arkhammar P et al. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci USA 2000; 97(10):5203–5207.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 1967; 103(2):514–527.

    PubMed  CAS  Google Scholar 

  17. Canepa L, Ferraris AM, Miglino M et al. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim Biophys Acta 1991; 1074(1):101–104.

    PubMed  CAS  Google Scholar 

  18. Kim GT, Shoda K, Tsuge T et al. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 2002; 21(6):1267–1279.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Folkers U, Kirik V, Schobinger U et al. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO J 2002; 21(6):1280–1288.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Barnes CJ, Vadlamudi RK, Mishra SK et al. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol 2003; 10(8):622–628.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Mirnezami AH, Campbell SJ, Darley M et al. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 2003; 13(14):1234–1239.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Veech RL, Guynn R, Veloso D. The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem J 1972; 127(2):387–397.

    PubMed  CAS  Google Scholar 

  23. Noda M, Yamashita S, Takahashi N et al. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 2002; 277(44):41817–41826.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19(33):3823–3828.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Comijn J, Berx G, Vermassen P et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7(6):1267–1278.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Meiners S, Brinkmann V, Naundorf H et al. Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 1998; 16(1):9–20.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Perl AK, Wilgenbus P, Dahl U et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392(6672):190–193.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Philippidis H, Ballard FJ. The development of gluconeogenesis in rat liver: Experiments in vivo. Biochem J 1969; 113(4):651–657.

    PubMed  CAS  Google Scholar 

  29. Rutter J, Reick M, Wu LC et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293(5529):510–514.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Bergmeyer HU. Methods of Enzymatic Analysis. New York: Academic Press, 1974; 4.

    Google Scholar 

  31. Zheng L, Roeder RG, Luo Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 2003; 114(2):255–266.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Schmidt MT, Smith BC, Jackson MD et al. Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation. J Biol Chem 2004; 279(38):40122–40129.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Fulco M, Schiltz RL, Iezzi S et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12(1):51–62.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Zhang, Q., Fjeld, C.C., Nottke, A.C., Goodman, R.H. (2007). CtBP as a Redox Sensor in Transcriptional Repression. In: GtBP Family Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39973-7_7

Download citation

Publish with us

Policies and ethics