Skip to main content

The Significance of the CtBP — AdE1A Interaction during Viral Infection and Transformation

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

C-terminal binding protein (CtBP) associates with adenovirus early region 1A (AdE1A) proteins through a highly conserved PXDLS motif located very close to its C-terminus in conserved region 4. To try to understand the importance of this interaction for the virus a point mutation in the CtBP binding site of Adl2ElA (P→S at amino acid 255) was engineered. The mutant Ad12E1A DNA (Ad12E1A6f) encoded a protein temperature sensitive (ts) for transformation of baby rat kidney cells when in combination with Ad12ElB. At 33°C transformation frequency was comparable to wt. At 37° and 38.5° transformants appeared as larger epithelioid cells and colonies senesced relatively rapidly. When the Ad12 6f AdE1A was incorporated into a mutant virus it caused a marked reduction in its ability to replicate with only Ad12E1A and Ad12ElB19K being expressed at early times. It was observed that 6fElA bound to CtBP very inefficiently. Ad12E1 transformed rat cell lines, carrying the 6f mutation were established from the 33°C transformants but failed to express the Ad12E1B54K protein. After a number of weeks in culture the cells developed a mesenchymal character; expression of proteins such as E-cadherin, P-cadherin and γ catenin was much reduced and expression of fibronection increased. These observations are consistent with inhibition of CtBP activity in wt Ad12E1 transformants but not in the 6f transformed cells. In a complementary study the effect of down-regulation of CtBP expression (using siRNA protocols) was examined. Consistent with results obtained with the 6f virus it was observed that reduction in expression of CtBP1 and CtBP2 facilitated viral infection and this effect was enhanced when expression of C-terminal interacting protein (CTIP) was also reduced.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallimore PH, Turnell AS. Adenovirus E1A: Remodelling the host cell, a life or death experience. Oncogene 2001; 20(54):7824–7835.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Endter C, Dobner T. Cell transformation by human adenoviruses. Curr Top Microbiol Immunol 2004; 273:163–214.

    PubMed  CAS  Google Scholar 

  3. Shenk T. Adenoviridae: The viruses and their replication Fields Virology. 3rd ed. Philidelphia, New York: Lippincott-Raven, 1996:2111–2148.

    Google Scholar 

  4. Bayley ST, Mymryk JS. Adenovirus E1a proteins and transformation. International journal of oncology 1994; 5:425–444.

    CAS  Google Scholar 

  5. Grand RJA. Adenovirus early region 1 proteins: Action through interaction. In: Grand RJA, ed. Viruses, cell transformation and cancer. Perspectives in medical virology. Elsevier, 2001:43–83.

    Google Scholar 

  6. Brockmann D, Esche H. The multifunctional role of E1A in the transcriptional regulation of CREB/CBP-dependent target genes. Curr Top Microbiol Immunol 2003; 272:97–129.

    PubMed  CAS  Google Scholar 

  7. Kimelman D. A novel general approach to eucaryotic mutagenesis functionally identifies conserved regions within the adenovirus 13S E1A polypeptide. Mol Cell Biol 1986; 6(5):1487–1496.

    PubMed  CAS  Google Scholar 

  8. Avvakumov N, Wheeler R, D’Halluin JC et al. Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. J Virol 2002; 76(16):7968–7975.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Avvakumov N, Kajon AE, Hoeben RC et al. Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. Virology 2004; 329(2):477–492.

    PubMed  CAS  Google Scholar 

  10. Dyson N, Guida P, McCall C et al. Adenovirus ElA makes two distinct contacts with the retinoblastoma protein. J Virol 1992; 66(7):4606–4611.

    PubMed  CAS  Google Scholar 

  11. Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell 1989; 56(1):67–75.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Eckner R, Ewen ME, Newsome D et al. Molecular cloning and functional analysis of the adenovirus ElA-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 1994; 8(8):869–884.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Jones N. Transcriptional modulation by the adenovirus E1A gene. Curr Top Microbiol Immunol 1995; 199 (Pt 3):59–80.

    PubMed  CAS  Google Scholar 

  14. Boyd JM, Subramanian T, Schaeper U et al. A region in the C-terminus of adenovirus 2/5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 1993; 12(2):469–478.

    PubMed  CAS  Google Scholar 

  15. Zhang CL, McKinsey TA, Lu JR et al. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 2001; 276(1):35–39.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Turnell AS, Grand RJ, Gorbea C et al. Regulation of the 26S proteasome by adenovirus E1A. EMBO J 2000; 19(17):4759–4773.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Fuchs M, Gerber J, Drapkin R et al. The p400 complex is an essential ElA transformation target. Cell 2001; 106(3):297–307.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Deleu L, Shellard S, Alevizopoulos K et al. Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 2001; 20(57):8270–8275.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Song CZ, Loewenstein PM, Toth K et al. Transcription factor TFIID is a direct functional target of the adenovirus ElA transcription-repression domain. Proc Natl Acad Sci USA 1995; 92(22):10330–10333.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Howe JA, Mymryk JS, Egan C et al. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc Natl Acad Sci USA 1990; 87(15):5883–5887.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Howe JA, Bayley ST. Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology 1992; 186(1):15–24.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Stein RW, Corrigan M, Yaciuk P et al. Analysis of E1A-mediated growth regulation functions: Binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 1990; 64(9):4421–4427.

    PubMed  CAS  Google Scholar 

  23. Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995; 92(23):10467–10471.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002; 9(2):213–224.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Chinnadurai G. Modulation of oncogenic transformation by the human adenovirus E1A C-terminal region. Curr Top Microbiol Immunol 2004; 273:139–161.

    PubMed  CAS  Google Scholar 

  26. Turner J, Crossley M. The CtBP family: Enigmatic and enzymatic transcriptional compressors. Bioessays 2001; 23(8):683–690.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Molloy DP, Milner AE, Yakub IK et al. Structural determinants present in the C-terminal binding protein binding site of adenovirus early region 1A proteins. J Biol Chem 1998; 273(33):20867–20876.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Molloy DP, Barral PM, Bremner KH et al. Structural determinants outside the PXDLS sequence affect the interaction of adenovirus E1A, C-terminal interacting protein and Drosophila repressors with C-terminal binding protein. Biochim Biophys Acta 2001; 1546(1):55–70.

    PubMed  CAS  Google Scholar 

  29. Molloy DP, Barral PM, Bremner KH et al. Structural determinants in adenovirus 12 E1A involved in the interaction with C-terminal binding protein 1. Virology 2000; 277(1):156–166.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Subramanian T, La Regina M, Chinnadurai G. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of Ela protein. Oncogene 1989; 4(4):415–420.

    PubMed  CAS  Google Scholar 

  31. Douglas JL, Gopalakrishnan S, Quinlan MP. Modulation of transformation of primary epithelial cells by the second exon of the Ad5 E1A12S gene. Oncogene 1991; 6(11):2093–2103.

    PubMed  CAS  Google Scholar 

  32. Sewalt RG Gunster MJ van der Vlag et al. C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 1999; 191777–787.

    PubMed  CAS  Google Scholar 

  33. Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998; 280(5360):101–104.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 1998; 17(7):2067–2078.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Sundqvist A, Sollerbrant K, Svensson C. The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex. FEBS Lett 1998; 429(2):183–188.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 2002; 22(15):5296–5307.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Weigert R, Silletta MG, Spano S et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 1999; 402(6760):429–433.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Frisch SM. Ela induces the expression of epithelial characteristics. J Cell Biol 1994; 127(4):1085–1096.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Fischer RS, Quinlan MP. The C terminus of E1A regulates tumor progression and epithelial cell differentiation. Virology 1998; 249(2):427–439.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19(33):3823–3828.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Sollerbrant K, Chinnadurai G, Svensson C. The CtBP binding domain in the adenovirus E1A protein controls CR1-dependent transactivation. Nucleic Acids Res 1996; 24(13):2578–2584.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Zhang Q, Yao H, Vo N et al. Acetylation of adenovirus E1A regulates binding of the transcriptional compressor CtBP. Proc Natl Acad Sci USA 2000; 97(26):14323–14328.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Kim JH, Cho EJ, Kim ST et al. CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 2005; 12(5):423–428.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Douglas JL, Quinlan MP. Efficient nuclear localization and immortalizing ability, two functions dependent on the adenovirus type 5 (Ad5) E1A second exon, are necessary for cotransformation with Ad5 E1B but not with T24ras. J Virol 1995; 69(12):8061–8065.

    PubMed  CAS  Google Scholar 

  45. Subramanian T, Malstrom SE, Chinnadurai G. Requirement of the C-terminal region of adenovirus E1a for cell transformation in cooperation with E1b. Oncogene 1991; 6(7):1171–1173.

    PubMed  CAS  Google Scholar 

  46. Quinlan MP, Douglas JL. Immortalization of primary epithelial cells requires first-and second-exon functions of adenovirus type 5 12S. J Virol 1992; 66(4):2020–2030.

    PubMed  CAS  Google Scholar 

  47. Gopalakrishnan S, Douglas JL, Quinlan MP. Immortalization of primary epithelial cells by ElA 12S requires late, second exon-encoded functions in addition to complex formation with pRB and p300. Cell Growth Differ 1997; 8(5):541–551.

    PubMed  CAS  Google Scholar 

  48. Gallimore PH, Byrd PJ, Whittaker JL et al. Properties of rat cells transformed by DNA plasmids containing adenovirus type 12 E1 DNA or specific fragments of the E1 region: Comparison of transforming frequencies. Cancer Res 1985; 45(6):2670–2680.

    PubMed  CAS  Google Scholar 

  49. Grand RJ, Owen D, Rookes SM et al. Control of p53 expression by adenovirus 12 early region 1A and early region 1B 54K proteins. Virology 1996; 218(1):23–34.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Byrd PJ, Chia W, Rigby PW et al. Cloning of DNA fragments from the left end of the adenovirus type 12 genome: Transformation by cloned early region 1. J Gen Virol 1982; 60 (Pt 2):279–293.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Grand RJ, Gallimore PH. Modulation of the level of expression of cellular genes in adenovirus 12-infected and transformed human cells. EMBO J 1986; 5(6):1253–1260.

    PubMed  CAS  Google Scholar 

  52. Grooteclaes M, Deveraux Q, Hildebrand J et al. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 2003; 100(8):4568–4573.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Furusawa T, Moribe H, Kondoh H et al. Identification of CtBP1 and CtBP2 as compressors of zinc finger-homeodomain factor deltaEF1. Mol Cell Biol 1999; 19(12):8581–8590.

    PubMed  CAS  Google Scholar 

  54. Postigo AA, Dean DC. ZEB represses transcription through interaction with the compressor CtBP. Proc Natl Acad Sci USA 1999; 96(12):6683–6688.

    CrossRef  PubMed  CAS  Google Scholar 

  55. Shaw G, Morse S, Ararat M et al. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 2002; 16(8):869–871.

    PubMed  CAS  Google Scholar 

  56. Sundqvist A, Bajak E, Kurup SD et al. Functional knockout of the compressor CtBP by the second exon of adenovirus Ela relieves repression of transcription. Exp Cell Res 2001; 268(2):284–293.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. A. Grand .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Grand, R.J.A. et al. (2007). The Significance of the CtBP — AdE1A Interaction during Viral Infection and Transformation. In: GtBP Family Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39973-7_5

Download citation

Publish with us

Policies and ethics