Skip to main content

Transcriptional Repression by the CtBP Corepressor in Drosophila

  • Chapter
  • 440 Accesses

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Transcriptional repression is essential for patterning gene expression in the early Drosophila embryo. Biochemical and genetic studies on Drosophila C-terminal binding protein (dCtBP) have provided solid evidence that dCtBP acts as a corepressor for several transcriptional repressors. Similarly to mammalian CtBPs, dCtBP interacts with a short peptide motif, PxDLS, or related motifs. It appears that dCtBP is essential for short-range transcriptional repression in the early embryo. In contrast, it has been recendy reported that dCtBP participates in Polycomb-mediated long-range repression. In this chapter, we will review how the dCtBP corepressor functions, from the biochemical, developmental, and genetic point of views.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mannervik M, Nibu Y, Zhang H et al. Transcriptional coregulators in development. Science 1999;284(5414):606–609.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Jackie H, Hoch M, Pankratz MJ et al. Transcriptional control by Drosophila gap genes. J Cell Sci Suppl 1992;16:39–51.

    Google Scholar 

  3. Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phos-phoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995;92(23):10467–10471.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998;280(5360):101–104.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 1998;17(7):2067–2078.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Drysdale RA, Crosby MA, Gelbart W et al. FlyBase: Genes and gene models. Nucleic Acids Res 2005;33 (Database Issue):D390–395.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Turner J, Crossley M. The CtBP family: Enigmatic and enzymatic transcriptional corepressors. Bioessays 2001;23(8):683–690.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogen-esis. Mol Cell 2002;9(2):213–224.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Nibu Y, Zhang H, Bajor E et al. dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J 1998;17(23):7009–7020.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Sutrias-Grau M, Arnosti DN. CtBP contributes quantitatively to Knirps repression activity in an NAD binding-dependent manner. Mol Cell Biol 2004;24(13):5953–5966.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Kumar V, Carlson JE, Ohgi KA et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002;10(4):857–869.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinucleotide stimulates oligo-merization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003;537(1–3):157–160.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Shi Y, Sawada J, Sui G et al. Coordinated histone modifications mediated by a CtBP corepressor complex. Nature 2003;422(6933):735–738.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Manfroid I, Caubit X, Kerridge S et al. Three putative murine Teashirt orthologues specify trunk structures in Drosophila in the same way as the Drosophila teashirt gene. Development 2004;131(5):1065–1073.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Barolo S, Stone T, Bang AG et al. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 2002;16(15):1964–1976.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Hasson P, Muller B, Basler K et al. Brinker requires two corepressors for maximal and versatile repression in Dpp signalling. EMBO J 2001;20(20):5725–5736.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Waltzer L, Bataille L, Peyrefitte S et al. Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO J 2002;21(20):5477–5486.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Postigo AA, Dean DC. ZEB represses transcription through interaction with the compressor CtBP. Proc Natl Acad Sci USA 1999;96(12):6683–6688.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Wen Y, Nguyen D, Li Y et al. The N-terminal BTB/POZ domain and C-terminal sequences are essential for Tramtrack69 to specify cell fate in the developing Drosophila eye. Genetics 2000;156(1):195–203.

    PubMed  CAS  Google Scholar 

  20. Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 2004;7(5):677–685.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Nibu Y, Senger K, Levine M. CtBP-independent repression in the Drosophila embryo. Mol Cell Biol 2003;23(11):3990–3999.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Struffi P, Corado M, Kulkarni M et al. Quantitative contributions of CtBP-dependent and-independent repression activities of Knirps. Development 2004;131(10):2419–2429.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Keller SA, Mao Y, Struffi P et al. dCtBP-dependent and-independent repression activities of the Drosophila Knirps protein. Mol Cell Biol 2000;20(19):7247–7258.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Nibu Y, Zhang H, Levine M. Local action of long-range repressors in the Drosophila embryo. EMBO J 2001;20(9):2246–2253.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Gray S, Levine M. Transcriptional repression in development. Curr Opin Cell Biol 1996;8(3):358–364.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Strunk B, Struffi P, Wright K et al. Role of CtBP in transcriptional repression by the Drosophila giant protein. Dev Biol 2001;239(2):229–240.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Nibu Y, Levine MS. CtBP-dependent activities of the short-range Giant repressor in the Drosophila embryo. Proc Natl Acad Sci USA 2001;98(11):6204–6208.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Small S, Kraut R, Hoey T et al. Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev 1991;5(5):827–839.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Small S, Blair A, Levine M. Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. Dev Biol 1996;175(2):314–324.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Fujioka M, Emi-Sarker Y, Yusibova GL et al. Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development 1999;126(11):2527–2538.

    PubMed  CAS  Google Scholar 

  31. Berman BP, Nibu Y, Pfeiffer BD et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc Natl Acad Sci USA 2002;99(2):757–762.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Clyde DE, Corado MS, Wu X et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 2003;426(6968):849–853.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Small S, Arnosti DN, Levine M. Spacing ensures autonomous expression of different stripe enhancers in the even-skipped promoter. Development 1993;119(3):762–772.

    PubMed  CAS  Google Scholar 

  34. Stathopoulos A, Levine M. Dorsal gradient networks in the Drosophila embryo. Dev Biol 2002;246(1):57–67.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Cowden J, Levine M. Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neuroectoderm in the Drosophila embryo. Dev Biol 2003;262(2):335–349.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Mannervik M, Levine M. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci USA 1999;96(12):6797–6801.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Ryu JR, Arnosti DN. Functional similarity of Knirps CtBP-dependent and CtBP-independent transcriptional repressor activities. Nucleic Acids Res 2003;31(15):4654–4662.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Phippen TM, Sweigart AL, Moniwa M et al. Drosophila C-terminal binding protein functions as a context-dependent transcriptional cofactor and interferes with both mad and groucho transcriptional repression. J Biol Chem 2000;275(48):37628–37637.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Kehle J, Beuchle D, Treuheit S et al. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 1998;282(5395):1897–1900.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Pelegri F, Lehmann R. A role of polycomb group genes in the regulation of gap gene expression in Drosophila. Genetics 1994;136(4):1341–1353.

    PubMed  CAS  Google Scholar 

  41. Yu Y, Pick L. Nonperiodic cues generate seven ftz stripes in the Drosophila embryo. Mech Dev 1995;50(2–3):163–175.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Myat MM, Andrew DJ. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell 2002;111(6):879–891.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Van Doren M, Bailey AM, Esnayra J et al. Negative regulation of proneural gene activity: Hairy is a direct transcriptional repressor of achaete. Genes Dev 1994;8(22):2729–2742.

    CrossRef  PubMed  Google Scholar 

  44. Paroush Z, Finley Jr RL, Kidd T et al. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 1994;79(5):805–815.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Zhang H, Levine M. Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci USA 1999;96(2):535–540.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Bianchi-Frias D, Orian A, Delrow JJ et al. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol 2004;2(7):E178.

    CrossRef  PubMed  Google Scholar 

  47. Rosenberg MI, Parkhurst SM. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 2002;109(4):447–458.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Hanna-Rose W, Licht JD, Hansen U. Two evolutionary conserved repression domains in the Drosophila Kruppel protein differ in activator specificity. Mol Cell Biol 1997;17(8):4820–4829.

    PubMed  CAS  Google Scholar 

  49. Sauer F, Jackie H. Concentration-dependent transcriptional activation or repression by Kruppel from a single binding site. Nature 1991;353(6344):563–566.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Licht JD, Hanna-Rose W, Reddy JC et al. Mapping and mutagenesis of the amino-terminal transcriptional repression domain of the Drosophila Kruppel protein. Mol Cell Biol 1994;14(6):4057–4066.

    PubMed  CAS  Google Scholar 

  51. Roose J, Clevers H. TCF transcription factors: Molecular switches in carcinogenesis. Biochim Biophys Acta 1999;1424(2–3):M23–37.

    PubMed  CAS  Google Scholar 

  52. Cavallo RA, Cox RT, Moline MM et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 1998;395(6702):604–608.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Winter SE, Campbell G. Repression of Dpp targets in the Drosophila wing by Brinker. Development 2004;131(24):6071–6081.

    CrossRef  PubMed  CAS  Google Scholar 

  54. Rushlow C, Colosimo PF, Lin MC et al. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev 2001;15(3):340–351.

    CrossRef  PubMed  CAS  Google Scholar 

  55. Zhang H, Levine M, Ashe HL. Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev 2001;15(3):261–266.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Sailer E, Kelley A, Bienz M. The transcriptional repressor Brinker antagonizes Wingless signaling. Genes Dev 2002;16(14):1828–1838.

    CrossRef  Google Scholar 

  57. Sewalt R, Gunster M, van der Vlag J et al. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate polycomb proteins. Mol Cell Biol 1999;19:777–787.

    PubMed  CAS  Google Scholar 

  58. Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell 2003;113(1):127–137.

    CrossRef  PubMed  CAS  Google Scholar 

  59. Lund AH, van Lohuizen M. Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 2004;16(3):239–246.

    CrossRef  PubMed  CAS  Google Scholar 

  60. Tie F, Furuyama T, Prasad-Sinha J et al. The Drosophila polycom group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 2001;128:275–286.

    PubMed  CAS  Google Scholar 

  61. Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002;298(5595):1039–1043.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Czermin B, Melfi R, McCabe D et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 2002;111(2):185–196.

    CrossRef  PubMed  CAS  Google Scholar 

  63. Orlando V, Paro V. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 1993;75:1187–1198.

    CrossRef  PubMed  CAS  Google Scholar 

  64. Orlando V, Paro R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev 1995;5:174–179.

    CrossRef  PubMed  CAS  Google Scholar 

  65. Pirrotta V, Poux S, Melfi R et al. Assembly of Polycomb complexes and silencing mechanisms. Genetica 2003;117(2–3):191–197.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Dellino GI, Schwartz YB, Farkas G et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004;13(6):887–893.

    CrossRef  PubMed  CAS  Google Scholar 

  67. Atchison L, Ghias A, Wilkinson F et al. Transcription factor YY1 functions as a PcG protein in vivo. EMBO J 2003;22(6):1347–1358.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Srinivasan L, Atchison ML. YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev 2004;18(21):2596–2601.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Lin X, Sun B, Liang M et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 2003;11(5):1389–1396.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Nibu .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Aihara, H., Perrone, L., Nibu, Y. (2007). Transcriptional Repression by the CtBP Corepressor in Drosophila . In: GtBP Family Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39973-7_2

Download citation

Publish with us

Policies and ethics