Abstract
Transcriptional repression is essential for patterning gene expression in the early Drosophila embryo. Biochemical and genetic studies on Drosophila C-terminal binding protein (dCtBP) have provided solid evidence that dCtBP acts as a corepressor for several transcriptional repressors. Similarly to mammalian CtBPs, dCtBP interacts with a short peptide motif, PxDLS, or related motifs. It appears that dCtBP is essential for short-range transcriptional repression in the early embryo. In contrast, it has been recendy reported that dCtBP participates in Polycomb-mediated long-range repression. In this chapter, we will review how the dCtBP corepressor functions, from the biochemical, developmental, and genetic point of views.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Mannervik M, Nibu Y, Zhang H et al. Transcriptional coregulators in development. Science 1999;284(5414):606–609.
Jackie H, Hoch M, Pankratz MJ et al. Transcriptional control by Drosophila gap genes. J Cell Sci Suppl 1992;16:39–51.
Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phos-phoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995;92(23):10467–10471.
Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998;280(5360):101–104.
Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 1998;17(7):2067–2078.
Drysdale RA, Crosby MA, Gelbart W et al. FlyBase: Genes and gene models. Nucleic Acids Res 2005;33 (Database Issue):D390–395.
Turner J, Crossley M. The CtBP family: Enigmatic and enzymatic transcriptional corepressors. Bioessays 2001;23(8):683–690.
Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogen-esis. Mol Cell 2002;9(2):213–224.
Nibu Y, Zhang H, Bajor E et al. dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J 1998;17(23):7009–7020.
Sutrias-Grau M, Arnosti DN. CtBP contributes quantitatively to Knirps repression activity in an NAD binding-dependent manner. Mol Cell Biol 2004;24(13):5953–5966.
Kumar V, Carlson JE, Ohgi KA et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002;10(4):857–869.
Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinucleotide stimulates oligo-merization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003;537(1–3):157–160.
Shi Y, Sawada J, Sui G et al. Coordinated histone modifications mediated by a CtBP corepressor complex. Nature 2003;422(6933):735–738.
Manfroid I, Caubit X, Kerridge S et al. Three putative murine Teashirt orthologues specify trunk structures in Drosophila in the same way as the Drosophila teashirt gene. Development 2004;131(5):1065–1073.
Barolo S, Stone T, Bang AG et al. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 2002;16(15):1964–1976.
Hasson P, Muller B, Basler K et al. Brinker requires two corepressors for maximal and versatile repression in Dpp signalling. EMBO J 2001;20(20):5725–5736.
Waltzer L, Bataille L, Peyrefitte S et al. Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO J 2002;21(20):5477–5486.
Postigo AA, Dean DC. ZEB represses transcription through interaction with the compressor CtBP. Proc Natl Acad Sci USA 1999;96(12):6683–6688.
Wen Y, Nguyen D, Li Y et al. The N-terminal BTB/POZ domain and C-terminal sequences are essential for Tramtrack69 to specify cell fate in the developing Drosophila eye. Genetics 2000;156(1):195–203.
Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 2004;7(5):677–685.
Nibu Y, Senger K, Levine M. CtBP-independent repression in the Drosophila embryo. Mol Cell Biol 2003;23(11):3990–3999.
Struffi P, Corado M, Kulkarni M et al. Quantitative contributions of CtBP-dependent and-independent repression activities of Knirps. Development 2004;131(10):2419–2429.
Keller SA, Mao Y, Struffi P et al. dCtBP-dependent and-independent repression activities of the Drosophila Knirps protein. Mol Cell Biol 2000;20(19):7247–7258.
Nibu Y, Zhang H, Levine M. Local action of long-range repressors in the Drosophila embryo. EMBO J 2001;20(9):2246–2253.
Gray S, Levine M. Transcriptional repression in development. Curr Opin Cell Biol 1996;8(3):358–364.
Strunk B, Struffi P, Wright K et al. Role of CtBP in transcriptional repression by the Drosophila giant protein. Dev Biol 2001;239(2):229–240.
Nibu Y, Levine MS. CtBP-dependent activities of the short-range Giant repressor in the Drosophila embryo. Proc Natl Acad Sci USA 2001;98(11):6204–6208.
Small S, Kraut R, Hoey T et al. Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev 1991;5(5):827–839.
Small S, Blair A, Levine M. Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. Dev Biol 1996;175(2):314–324.
Fujioka M, Emi-Sarker Y, Yusibova GL et al. Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development 1999;126(11):2527–2538.
Berman BP, Nibu Y, Pfeiffer BD et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc Natl Acad Sci USA 2002;99(2):757–762.
Clyde DE, Corado MS, Wu X et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 2003;426(6968):849–853.
Small S, Arnosti DN, Levine M. Spacing ensures autonomous expression of different stripe enhancers in the even-skipped promoter. Development 1993;119(3):762–772.
Stathopoulos A, Levine M. Dorsal gradient networks in the Drosophila embryo. Dev Biol 2002;246(1):57–67.
Cowden J, Levine M. Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neuroectoderm in the Drosophila embryo. Dev Biol 2003;262(2):335–349.
Mannervik M, Levine M. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci USA 1999;96(12):6797–6801.
Ryu JR, Arnosti DN. Functional similarity of Knirps CtBP-dependent and CtBP-independent transcriptional repressor activities. Nucleic Acids Res 2003;31(15):4654–4662.
Phippen TM, Sweigart AL, Moniwa M et al. Drosophila C-terminal binding protein functions as a context-dependent transcriptional cofactor and interferes with both mad and groucho transcriptional repression. J Biol Chem 2000;275(48):37628–37637.
Kehle J, Beuchle D, Treuheit S et al. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 1998;282(5395):1897–1900.
Pelegri F, Lehmann R. A role of polycomb group genes in the regulation of gap gene expression in Drosophila. Genetics 1994;136(4):1341–1353.
Yu Y, Pick L. Nonperiodic cues generate seven ftz stripes in the Drosophila embryo. Mech Dev 1995;50(2–3):163–175.
Myat MM, Andrew DJ. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell 2002;111(6):879–891.
Van Doren M, Bailey AM, Esnayra J et al. Negative regulation of proneural gene activity: Hairy is a direct transcriptional repressor of achaete. Genes Dev 1994;8(22):2729–2742.
Paroush Z, Finley Jr RL, Kidd T et al. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 1994;79(5):805–815.
Zhang H, Levine M. Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci USA 1999;96(2):535–540.
Bianchi-Frias D, Orian A, Delrow JJ et al. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol 2004;2(7):E178.
Rosenberg MI, Parkhurst SM. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 2002;109(4):447–458.
Hanna-Rose W, Licht JD, Hansen U. Two evolutionary conserved repression domains in the Drosophila Kruppel protein differ in activator specificity. Mol Cell Biol 1997;17(8):4820–4829.
Sauer F, Jackie H. Concentration-dependent transcriptional activation or repression by Kruppel from a single binding site. Nature 1991;353(6344):563–566.
Licht JD, Hanna-Rose W, Reddy JC et al. Mapping and mutagenesis of the amino-terminal transcriptional repression domain of the Drosophila Kruppel protein. Mol Cell Biol 1994;14(6):4057–4066.
Roose J, Clevers H. TCF transcription factors: Molecular switches in carcinogenesis. Biochim Biophys Acta 1999;1424(2–3):M23–37.
Cavallo RA, Cox RT, Moline MM et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 1998;395(6702):604–608.
Winter SE, Campbell G. Repression of Dpp targets in the Drosophila wing by Brinker. Development 2004;131(24):6071–6081.
Rushlow C, Colosimo PF, Lin MC et al. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev 2001;15(3):340–351.
Zhang H, Levine M, Ashe HL. Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev 2001;15(3):261–266.
Sailer E, Kelley A, Bienz M. The transcriptional repressor Brinker antagonizes Wingless signaling. Genes Dev 2002;16(14):1828–1838.
Sewalt R, Gunster M, van der Vlag J et al. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate polycomb proteins. Mol Cell Biol 1999;19:777–787.
Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell 2003;113(1):127–137.
Lund AH, van Lohuizen M. Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 2004;16(3):239–246.
Tie F, Furuyama T, Prasad-Sinha J et al. The Drosophila polycom group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 2001;128:275–286.
Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002;298(5595):1039–1043.
Czermin B, Melfi R, McCabe D et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 2002;111(2):185–196.
Orlando V, Paro V. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 1993;75:1187–1198.
Orlando V, Paro R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev 1995;5:174–179.
Pirrotta V, Poux S, Melfi R et al. Assembly of Polycomb complexes and silencing mechanisms. Genetica 2003;117(2–3):191–197.
Dellino GI, Schwartz YB, Farkas G et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004;13(6):887–893.
Atchison L, Ghias A, Wilkinson F et al. Transcription factor YY1 functions as a PcG protein in vivo. EMBO J 2003;22(6):1347–1358.
Srinivasan L, Atchison ML. YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev 2004;18(21):2596–2601.
Lin X, Sun B, Liang M et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 2003;11(5):1389–1396.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2007 Landes Bioscience and Springer Science+Business Media
About this chapter
Cite this chapter
Aihara, H., Perrone, L., Nibu, Y. (2007). Transcriptional Repression by the CtBP Corepressor in Drosophila . In: GtBP Family Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39973-7_2
Download citation
DOI: https://doi.org/10.1007/978-0-387-39973-7_2
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-39971-3
Online ISBN: 978-0-387-39973-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
