Skip to main content

CtBP Family Proteins

Unique Transcriptional Regulators in the Nucleus with Diverse Cytosolic Functions

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

CtBP family proteins are unique in animals and in plants. The invertebrates and plants contain a single CtBP family gene while vertebrates have two genes. Genetic studies in Drosophila and in mice indicate that CtBPs play pivotal roles in animal development. The vertebrate CtBPs (CtBPl and CtBP2) are highly related and are functionally redundant for certain developmental processes and non redundant for others. The vertebrates code two isoforms of each CtBPl and CtBP2. The animal CtBPs exhibit a highly conserved sequence and structural similarity to D-isomer specific 2-hydroxy acid dehydrogenases (D2-HDH). Structural and molecular modeling studies indicate that CtBPl is a dehydrogenase and could also bind with acyl-CoA under a different configuration. The CtBP family members function predominantly as transcriptional corepressors in the nucleus in conjunction with a number of different DNA binding repressors. The transcriptional regulatory activity of CtBPs appears to be regulated by NAD(H)-binding and the metabolic status of the cell. The compressor complex of CtBPl contains enzymatic constituents that mediate coordinated histone modification by deacetylation and methylation of histone H3-K9 and demethylation of histone H3-K4. In the cytosol, they perform diverse functions associated with membrane trafficking, central nervous system synapses and in regulation of the microtubule cytoskeleton. The mammalian CtBPs modulate oncogenesis by regulating the activities of tumor suppressor genes and cellular and viral oncogenes, consistent with a role in tumor suppression as well as in tumor promotion. The CtBPs promote tumorigenesis by repressing transcription of several critical pro-apoptotic genes and by inhibiting genes involved in the regulation of epithelial to mesen-chymal transition. This Chapter presents a comprehensive general review of the CtBP field and highlights contents of the individual Chapters of this book which contain detailed discussions on structure and functions of animal and plant CtBP family proteins.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd JM, Subramanian T, Schaeper U et al. A region in the C-terminus of adenovirus 2/5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 1993; 12(2):469–478.

    PubMed  CAS  Google Scholar 

  2. Schaeper U, Boyd JM, Verma S et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 1995; 92(23):10467–10471.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Katsanis N, Fisher EM. A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics 1998; 47(2):294–299.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Turner J, Crossley M. Cloning and characterization of mCtBP2, a corepressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 1998; 17(17):5129–5140.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Gallimore PH, Turnell AS. Adenovirus E1A: Remodelling the host cell, a life or death experience. Oncogene 2001; 20(54):7824–7835.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Sollerbrant K, Chinnadurai G, Svensson C. The CtBP binding domain in the adenovirus E1A protein controls CR1-dependent transactivation. Nucleic Acids Res 1996; 24(13):2578–2584.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Fuchs M, Gerber J, Drapkin R et al. The p400 complex is an essential E1A transformation target. Cell 2001; 106(3):297–307.

    CrossRef  PubMed  CAS  Google Scholar 

  8. McMahon SB, Van Buskirk HA, Dugan KA et al. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94(3):363–374.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Deleu L, Shellard S, Alevizopoulos K et al. Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 2001; 20(57):8270–8275.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Reid JL, Bannister AJ, Zegerman P et al. E1A directly binds and regulates the P/CAF acetyltransferase. Embo J 1998; 17(15):4469–4477.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998; 280(5360):101–104.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 1998; 17(7):2067–2078.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogen-esis. Mol Cell 2002; 9(2):213–224.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Turner J, Crossley M. The CtBP family: Enigmatic and enzymatic transcriptional corepressors. Bioessays 2001; 23(8):683–690.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Sutrias-Grau M, Arnosti DN. CtBP contributes quantitatively to Knirps repression activity in an NAD binding-dependent manner. Mol Cell Biol 2004; 24(13):5953–5966.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Spano S, Silletta MG, Colanzi A et al. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem 1999; 274(25):17705–17710.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Schmitz F, Konigstorfer A, Sudhof TC. RIBEYE, a component of synaptic ribbons: A protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 2000; 28(3):857–872.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Zenisek D, Horst NK, Merrifield C et al. Visualizing synaptic ribbons in the living cell. J Neurosci 2004; 24(44):9752–9759.

    CrossRef  PubMed  CAS  Google Scholar 

  19. tom Dieck S, Altrock WD, Kessels MM et al. Molecular dissection of the photoreceptor ribbon synapse: Physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 2005; 168(5):825–836.

    CrossRef  CAS  Google Scholar 

  20. Zhao LJ, Subramanian T, Zhou Y et al. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J Biol Chem 2006; 281:4183–4189.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Wan L, Aimers W, Chen W. Two ribeye genes in teleosts: The role of Ribeye in ribbon formation and bipolar cell development. J Neurosci 2005; 25(4):941–949.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Folkers U, Kirik V, Schobinger U et al. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO J 2002; 21(6):1280–1288.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Kim GT, Shoda K, Tsuge T et al. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 2002; 21(6):1267–1279.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Criqui-Filipe P, Ducret C, Maira SM et al. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 1999; 18(12):3392–3403.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Brannon M, Brown JD, Bates R et al. XCtBP is a XTcf-3 corepressor with roles throughout Xeno-pus development. Development 1999; 126(14):3159–3170.

    PubMed  CAS  Google Scholar 

  26. Sewalt RG, Gunster MJ, van der Vlag J et al. C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 1999; 19(1):777–787.

    PubMed  CAS  Google Scholar 

  27. Zhang H, Levine M. Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci USA 1999; 96(2):535–540.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Nibu Y, Zhang H, Bajor E et al. dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J 1998; 17(23):7009–7020.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Struffi P, Corado M, Kulkarni M et al. Quantitative contributions of CtBP-dependent and-independent repression activities of Knirps. Development 2004; 131(10):2419–2429.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Shi Y, Sawada J, Sui G et al. Coordinated histone modifications mediated by a CtBP corepressor complex. Nature 2003; 422(6933):735–738.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett 2003; 540(1–3):255–258.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Sundqvist A, Sollerbrant K, Svensson C. The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex. FEBS Lett 1998; 429(2):183–188.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Mannervik M, Levine M. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci USA 1999; 96(12):6797–6801.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Ryu JR, Arnosti DN. Functional similarity of Knirps CtBP-dependent and CtBP-independent transcriptional repressor activities. Nucleic Acids Res 2003; 31(15):4654–4662.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Struffi P, Arnosti DN. Functional interaction between the Drosophila Knirps short-range transcriptional repressor and Rpd3 histone deacetylase. J Biol Chem 2005, (in press).

    Google Scholar 

  36. Srinivasan L, Atchison ML. YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev 2004; 18(21):2596–2601.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Atchison L, Ghias A, Wilkinson F et al. Transcription factor YY1 functions as a PcG protein in vivo. Embo J 2003; 22(6):1347–1358.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 2002; 22(15):5296–5307.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Kumar V, Carlson JE, Ohgi KA et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10(4):857–869.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Nardini M, Spano S, Cericola C et al. CtBP/BARS: A dual-function protein involved in transcription corepression and Golgi membrane fission. EMBO J 2003; 22(12):3122–3130.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinudeotide stimulates oligomerization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003; 537(1–3):157–160.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Grooteclaes M, Deveraux Q, Hildebrand J et al. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 2003; 100(8):4568–4573.

    CrossRef  PubMed  CAS  Google Scholar 

  43. You A, Tong JK, Grozinger CM et al. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci USA 2001; 98(4):1454–1458.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Ballas N, Battaglioli E, Atouf F et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 2001; 31(3):353–365.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Hakimi MA, Bochar DA, Chenoweth J et al. A coreBRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci USA 2002; 99(11):7420–7425.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Shi YJ, Matson C, Lan F et al. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005.

    Google Scholar 

  47. Lee MG, Wynder C, Cooch N et al. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005.

    Google Scholar 

  48. Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell 2003; 113(1):127–137.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Lin X, Sun B, Liang M et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 2003; 11(5):1389–1396.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Yang SH, Sharrocks AD. SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 2004; 13(4):611–617.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Girdwood D, Bumpass D, Vaughan OA et al. P300 transcriptional repression is mediated by SUMO modification. Mol Cell 2003; 11(4):1043–1054.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Ross S, Best JL, Zon LI et al. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 2002; 10(4):831–842.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Muller S, Berger M, Lehembre F et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 2000; 275(18):13321–13329.

    CrossRef  PubMed  CAS  Google Scholar 

  54. Holmstrom S, Van Antwerp ME, Iniguez-Lluhi JA. Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc Natl Acad Sci USA 2003; 100(26):15758–15763.

    CrossRef  PubMed  CAS  Google Scholar 

  55. Gill G. SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? Genes Dev 2004; 18(17):2046–2059.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Kim JH, Cho EJ, Kim ST et al. CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 2005; 12(5):423–428.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Metoni AR, Lai CH, Nevins JR et al. A Mechanism of COOH-Terminal Binding Protein-Mediated Repression. Mol Cancer Res. Oct 2005;3(10):575–583.

    Google Scholar 

  58. Senyuk V, Sinha KK, Nucifora G. Corepressor CtBPl interacts with and specifically inhibits CBP activity. Arch Biochem Biophys 2005.

    Google Scholar 

  59. Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002; 295(5561):1895–1897.

    PubMed  CAS  Google Scholar 

  60. Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003;100(16):9202–9207.

    CrossRef  PubMed  CAS  Google Scholar 

  61. Bianchi-Frias D, Orian A, Delrow JJ et al. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. Jul 2004;2(7):E178.

    CrossRef  PubMed  Google Scholar 

  62. Phippen TM, Sweigart AL, Moniwa M et al. Drosophila C-terminal binding protein functions as a context-dependent transcriptional cofactor and interferes with both mad and groucho transcriptional repression. J Biol Chem 2000;275(48):37628–37637.

    CrossRef  PubMed  CAS  Google Scholar 

  63. Nibu Y, Zhang H, Levine M. Local action of long-range repressors in the Drosophila embryo. Embo J 2001;20(9):2246–2253.

    CrossRef  PubMed  CAS  Google Scholar 

  64. Di Girolamo M, Silletta MG, De Matteis MA et al. Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma sub-unit complex. Proc Natl Acad Sci USA 1995;92(15):7065–7069.

    CrossRef  PubMed  Google Scholar 

  65. Weigert R, Silletta MG, Spano S et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 1999;402(6760):429–433.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Hidalgo Carcedo C, Bonazzi M, Spano S et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 2004;305(5680):93–96.

    CrossRef  PubMed  CAS  Google Scholar 

  67. Bonazzi M, Spano S, Turacchio G et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 2005;7(6):570–580.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Song H, Golovkin M, Reddy AS et al. In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Nad Acad Sci USA 1997;94(1):322–327.

    CrossRef  CAS  Google Scholar 

  69. Folkers U, Berger J, Hulskamp M. Cell morphogenesis of trichomes in Arabidopsis: Differential control of primary and secondary branching by branch initiation regulators and cell growth. Development 1997;124(19):3779–3786.

    PubMed  CAS  Google Scholar 

  70. Deconinck AE, Mead PE, Tevosian SG et al. FOG acts as a repressor of red blood cell development in Xenopus. Development 2000;127(10):2031–2040.

    PubMed  CAS  Google Scholar 

  71. Lerchner W, Latinkic BV, Remacle JE et al. Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: A study using transgenic frog embryos. Development 2000;127(12):2729–2739.

    PubMed  CAS  Google Scholar 

  72. Postigo AA, Depp JL, Taylor JJ et al. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. Embo J 2003;22(10):2453–2462.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 2004;7(5):677–685.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Van Hateren N, Shenton T, Borycki AG. Expression of avian C-terminal binding proteins (Ctbp1 and Ctbp2) during embryonic development. Dev Dyn. Oct 28 2005.

    Google Scholar 

  75. Subramanian T, La Regina M, Chinnadurai G. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of Ela protein. Oncogene 1989;4(4):415–420.

    PubMed  CAS  Google Scholar 

  76. Subramanian T, Malstrom SE, Chinnadurai G. Requirement of the C-terminal region of adenovi-rus Ela for cell transformation in cooperation with E1b. Oncogene 1991;6(7):1171–1173.

    PubMed  CAS  Google Scholar 

  77. Quinlan MP, Douglas JL. Immortalization of primary epithelial cells requires first-and second-exon functions of adenovirus type 5 12S. J Virol 1992;66(4):2020–2030.

    PubMed  CAS  Google Scholar 

  78. Gopalakrishnan S, Douglas JL, Quinlan MP. Immortalization of primary epithelial cells by E1A 12S requires late, second exon-encoded functions in addition to complex formation with pRB and p300. Cell Growth Differ 1997;8(5):541–551.

    PubMed  CAS  Google Scholar 

  79. Glasspool RM, Burns S, Hoare SF et al. The hTERT and hTERC telomerase gene promoters are activated by the second exon of the adenoviral protein, E1A, identifying the transcriptional corepressor CtBP as a potential repressor of both genes. Neoplasia 2005;7(6):614–622.

    CrossRef  PubMed  CAS  Google Scholar 

  80. Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000;19(33):3823–3828.

    CrossRef  PubMed  CAS  Google Scholar 

  81. Johansson C, Zhao H, Bajak E et al. Impact of the interaction between adenovirus E1A and CtBP on host cell gene expression. Virus Res 2005.

    Google Scholar 

  82. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005.

    Google Scholar 

  83. Alpatov R, Munguba GC, Caton P et al. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol 2004;24(23):10223–10235.

    CrossRef  PubMed  CAS  Google Scholar 

  84. Zhang Q, Yoshimatsu Y, Hildebrand J et al. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 2003;115(2):177–186.

    CrossRef  PubMed  CAS  Google Scholar 

  85. Zhang Q, Nottke A, Goodman RH. Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA 2005;102(8):2802–2807.

    CrossRef  PubMed  CAS  Google Scholar 

  86. Takahashi S, Licht JD. The human promyelocytic leukemia zinc finger gene is regulated by the Evi-1 oncoprotein and a novel guanine-rich site binding protein. Leukemia 2002;16(9):1755–1762.

    CrossRef  PubMed  CAS  Google Scholar 

  87. Izutsu K, Kurokawa M, Imai Y et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP. Oncogene 2002;21(17):2695–2703.

    CrossRef  PubMed  CAS  Google Scholar 

  88. Kurokawa M, Mitani K, Irie K et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998;394(6688):92–96.

    CrossRef  PubMed  CAS  Google Scholar 

  89. Izutsu K, Kurokawa M, Imai Y et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001;97(9):2815–2822.

    CrossRef  PubMed  CAS  Google Scholar 

  90. Palmer S, Brouillet JP, Kilbey A et al. Evi-1 transforming and repressor activities are mediated by CtBP corepressor proteins. J Biol Chem 2001;276(28):25834–25840.

    CrossRef  PubMed  CAS  Google Scholar 

  91. Alliston T, Ko TC, Cao Y et al. Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J Biol Chem 2005;280(25):24227–24237.

    CrossRef  PubMed  CAS  Google Scholar 

  92. Hickabottom M, Parker GA, Freemont P et al. Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the corepressor CtBP. J Biol Chem 2002;7:7.

    Google Scholar 

  93. Touitou R, Hickabottom M, Parker G et al. Physical and functional interactions between the corepressor CtBP and the Epstein-barr virus nuclear antigen EBNA3C. J Virol 2001;75(16):7749–7755.

    CrossRef  PubMed  CAS  Google Scholar 

  94. Mirnezami AH, Campbell SJ, Darley M et al. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 2003;13(14):1234–1239.

    CrossRef  PubMed  CAS  Google Scholar 

  95. Thut CJ, Goodrich JA, Tjian R. Repression of p53-mediated transcription by MDM2: A dual mechanism. Genes Dev 1997;11(15):1974–1986.

    CrossRef  PubMed  CAS  Google Scholar 

  96. Bannister AJ, Kouzarides T. Histone methylation: Recognizing the methyl mark. Methods Enzymol 2004;376:269–288.

    CrossRef  PubMed  CAS  Google Scholar 

  97. Kuzmichev A, Nishioka K, Erdjument-Bromage H et al. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 2002;16(22):2893–2905.

    CrossRef  PubMed  CAS  Google Scholar 

  98. Min J, Zhang Y, Xu RM. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 2003;17(15):1823–1828.

    CrossRef  PubMed  CAS  Google Scholar 

  99. Fischle W, Wang Y, Jacobs SA et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 2003;17(15):1870–1881.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chinnadurai, G. (2007). CtBP Family Proteins. In: GtBP Family Proteins. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39973-7_1

Download citation

Publish with us

Policies and ethics