Skip to main content

Rab Domains on Endosomes

  • Chapter
Book cover Endosomes

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 571 Accesses

Abstract

Small GTPases of the Rab family have been long recognized to be key regulators of membrane trafficking. However, recent studies have uncovered their more fundamental role as determinants of organelle biogenesis and maintenance in all cells. Rab proteins acting in the endocytic pathway were shown to occupy nonoverlapping, morphologically and biochemically distinct domains on membranes of endosomes. Molecular characterization of Rab5 and its effectors revealed basic principles by which this GTPase mediates local changes in membrane structure and function, thus organizing a specific domain on early endosomes. Rab domains on endosomes appear to coordinate multiple functions related to membrane trafficking, organelle motility and signal transduction and are dynamically linked through the activity of bivalent Rab effectors. The concept of Rab proteins acting as membrane organizers provides a framework explaining the biogenesis of endocytic organelles composed of separate but functionally coupled domains which are arranged in a dynamic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMahon HT, Mills IG. COP and clathrin-coated vesicle budding: Different pathways, common approaches. Curr Opin Cell Biol 2004; 16:379–391.

    Article  PubMed  CAS  Google Scholar 

  2. Parker PJ. The ubiquitous phosphoinositides. Biochem Soc Trans 2004; 32:893–898.

    Article  PubMed  CAS  Google Scholar 

  3. Parton RG. Caveolae—from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol 2003; 4:162–167.

    Article  PubMed  CAS  Google Scholar 

  4. Michaux G, Cutler DF. How to roll an endothelial cigar: The biogenesis of Weibel-Palade bodies. Traffic 2004; 5:69–78.

    Article  PubMed  CAS  Google Scholar 

  5. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569–572.

    Article  PubMed  CAS  Google Scholar 

  6. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2:107–117.

    Article  PubMed  CAS  Google Scholar 

  7. Pfeffer SR. Rab GTPases: Specifying and deciphering organelle identity and function. Trends Cell Biol 2001; 11:487–491.

    Article  PubMed  CAS  Google Scholar 

  8. Andres DA, Seabra MC, Brown MS et al. cDNA cloning of component A of rab geranylgeranyl transferase and demonstration of its role as a rab escort protein. Cell 1993; 73:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  9. Alexandrov K, Horiuchi H, Steele-Mortimer O et al. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 1994; 13:5262–5273.

    PubMed  CAS  Google Scholar 

  10. Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol 2004; 16:451–457.

    Article  PubMed  CAS  Google Scholar 

  11. Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5:886–896.

    Article  PubMed  CAS  Google Scholar 

  12. Sasaki T, Kikuchi A, Araki S et al. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras-like GTP-binding protein. J Biol Chem 1990; 265:2333–2337.

    PubMed  CAS  Google Scholar 

  13. Schalk I, Zeng K, Wu S-K et al. Structure and mutational analysis of Rab GDP-disscociation inhibitor. Nature 1996; 381:42–48.

    Article  PubMed  CAS  Google Scholar 

  14. Sivars U, Aivazian D, Pfeffer SR. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 2003; 425:856–859.

    Article  PubMed  CAS  Google Scholar 

  15. Rybin V, Ullrich O, Rubino M et al. GTPase activity of rab5 acts as a timer for endocytic membrane fusion. Nature 1996; 383:266–269.

    Article  PubMed  CAS  Google Scholar 

  16. van der Sluijs P, Hull M, Webster P et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 1992; 70:729–740.

    Article  PubMed  Google Scholar 

  17. Bucci C, Parton RG, Mather IH et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 1992; 70:715–728.

    Article  PubMed  CAS  Google Scholar 

  18. Feng Y, Press B, Wandinger-Ness A. Rab7: An important regulator of late endocytic membrane traffic. J Cell Biol 1995; 131:1435–1452.

    Article  PubMed  CAS  Google Scholar 

  19. Lombardi D, Soldati T, Riederer MA et al. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J 1993; 12:677–682.

    PubMed  CAS  Google Scholar 

  20. Ullrich O, Reinsch S, Urbé S et al. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996; 135:913–924.

    Article  PubMed  CAS  Google Scholar 

  21. Morimoto S, Nishimura N, Terai T et al. Rab13 mediates the continuous endocytic recycling of occludin to the cell surface. J Biol Chem 2005; 280:2220–2228.

    Article  PubMed  CAS  Google Scholar 

  22. Junutula JR, De Maziere AM, Peden AA et al. Rab14 is involved in membrane trafficking between the Golgi complex and endosomes. Mol Biol Cell 2004; 15:2218–2229.

    Article  PubMed  CAS  Google Scholar 

  23. Zuk PA, Elferink LA. Rab15 mediates an early endocytic event in Chinese hamster ovary cells. J Biol Chem 1999; 274:22303–22312.

    Article  PubMed  CAS  Google Scholar 

  24. Hunziker W, Peters PJ. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J Biol Chem 1998; 273:15734–15741.

    Article  PubMed  CAS  Google Scholar 

  25. Zacchi P, Stenmark H, Parton RG et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J Cell Biol 1998; 140:1039–1053.

    Article  PubMed  CAS  Google Scholar 

  26. Lütcke A, Valencia A, Olkkonen V et al. Cloning and subcellular localization of novel rab proteins reveals polarized and cell-type specific expression. J Cell Sci 1994; 107:3437–3448.

    PubMed  Google Scholar 

  27. Simpson JC, Griffiths G, Wessling-Resnick M et al. A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 2004; 117:6297–6311.

    Article  PubMed  CAS  Google Scholar 

  28. Mesa R, Salomon C, Roggero M et al. Rab22a affects the morphology and function of the endocytic pathway. J Cell Sci 2001; 114:4041–4049.

    PubMed  CAS  Google Scholar 

  29. Evans TM, Ferguson C, Wainwright BJ et al. Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic 2003; 4:869–884.

    Article  PubMed  CAS  Google Scholar 

  30. Casanova JE, Wang X, Kumar R et al. Association of Rab25 and Rab 11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 1999; 10:47–61.

    PubMed  CAS  Google Scholar 

  31. Sun P, Yamamoto H, Suetsugu S et al. Small GTPase Rah/Rab34 is associated with membrane ruffles and macropinosomes and promotes macropinosome formation. J Biol Chem 2003; 278:4063–4071.

    Article  PubMed  CAS  Google Scholar 

  32. Chen T, Han Y, Yang M et al. Rab39, a novel Golgi-associated Rab GTPase from human dendritic cells involved in cellular endocytosis. Biochem Biophys Res Commun 2003; 303:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  33. van der Sluijs P, Hull M, Zahraouri A et al. The small GTP-binding protein rab4 is associated with early endosomes. Proc Natl Acad Sci USA 1991; 88:6313–6317.

    Article  Google Scholar 

  34. Sonnichsen B, De Renzis S, Nielsen E et al. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 2000; 149:901–914.

    Article  PubMed  CAS  Google Scholar 

  35. Zuk PA, Elferink LA. Rab15 differentially regulates early endocytic trafficking. J Biol Chem 2000; 275:26754–26764.

    PubMed  CAS  Google Scholar 

  36. Urbé S, Huber LA, Zerial M et al. Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters 1993; 334:175–182.

    Article  PubMed  Google Scholar 

  37. Kauppi M, Simonsen A, Bremnes B et al. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 2002; 115:899–911.

    PubMed  CAS  Google Scholar 

  38. Stenmark H, Parton RG, Steele-Mortimer O et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 1994; 13:1287–1296.

    PubMed  CAS  Google Scholar 

  39. Barbieri MA, Li G, Colombo M et al. Rab5, and early acting endosomal GTPase, supports in vitro endosome fusion without GTP hydrolysis. J Biol Chem 1994; 269:18720–18722.

    PubMed  CAS  Google Scholar 

  40. Wucherpfennig T, Wilsch-Brauninger M, Gonzalez-Gaitan M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 2003; 161:609–624.

    Article  PubMed  CAS  Google Scholar 

  41. Ganley IG, Carroll K, Bittova L et al. Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell 2004; 15:5420–5430.

    Article  PubMed  CAS  Google Scholar 

  42. McBride HM, Rybin V, Murphy C et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 1999; 98:377–386.

    Article  PubMed  CAS  Google Scholar 

  43. Roberts RL, Barbieri MA, Pryse KM et al. Endosome fusion in living cells overexpressing GFP-rab5. J Cell Sci 1999; 112:3667–3675.

    PubMed  CAS  Google Scholar 

  44. Fratti RA, Jun Y, Merz AJ et al. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 2004; 167:1087–1098.

    Article  PubMed  CAS  Google Scholar 

  45. Choudhury A, Sharma DK, Marks DL et al. Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Mol Biol Cell 2004; 15:4500–4511.

    Article  PubMed  CAS  Google Scholar 

  46. Barbero P, Bittova L, Pfeffer SR. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511–518.

    Article  PubMed  CAS  Google Scholar 

  47. Horiuchi H, Lippé R, McBride HM et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 1997; 90:1149–1159.

    Article  PubMed  CAS  Google Scholar 

  48. Tall GG, Barbieri MA, Stahl PD et al. Ras-Activated Endocytosis Is Mediated by the Rab5 Guanine Nucleotide Exchange Activity of RIN1. Dev Cell 2001; 1:73–82.

    Article  PubMed  CAS  Google Scholar 

  49. Saito K, Murai J, Kajiho H et al. A novel binding protein composed of homophilic tetramer exhibits unique properties for the small GTPase Rab5. J Biol Chem 2002; 277:3412–3418.

    Article  PubMed  CAS  Google Scholar 

  50. Kajiho H, Saito K, Tsujita K et al. RIN3: A novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci 2003; 116:4159–4168.

    Article  PubMed  CAS  Google Scholar 

  51. Lippe R, Miaczynska M, Rybin V et al. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 2001; 12:2219–2228.

    PubMed  CAS  Google Scholar 

  52. Lanzetti L, Rybin V, Malabarba MG et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 2000; 408:374–377.

    Article  PubMed  CAS  Google Scholar 

  53. Haas AK, Fuchs E, Kopajtich R et al. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 2005; 7:887–893.

    Article  PubMed  CAS  Google Scholar 

  54. Christoforidis S, Miaczynska M, Ashman K et al. Phosphoinositide-3-Kinases are Rab5 effectors. Nat Cell Biol 1999; 1:249–252.

    Article  PubMed  CAS  Google Scholar 

  55. Murray JT, Panaretou C, Stenmark H et al. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 2002; 3:416–427.

    Article  PubMed  CAS  Google Scholar 

  56. Panaretou C, Domin J, Cockcroft S et al. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem 1997; 272:2477–2485.

    Article  PubMed  CAS  Google Scholar 

  57. Simonsen A, Lippé R, Christoforidis S et al. EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 1998; 394:494–498.

    Article  PubMed  CAS  Google Scholar 

  58. Nielsen E, Christoforidis S, Uttenweiler-Joseph S et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 2000; 151:601–612.

    Article  PubMed  CAS  Google Scholar 

  59. Schnatwinkel C, Christoforidis S, Lindsay MR et al. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol 2004; 2:E261.

    Article  PubMed  CAS  Google Scholar 

  60. Stenmark H, Aasland R, Toh BH et al. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 1996; 271:24048–24054.

    Article  PubMed  CAS  Google Scholar 

  61. Pelkmans L, Burli T, Zerial M et al. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004; 118:767–780.

    Article  PubMed  CAS  Google Scholar 

  62. Hoepfner S, Severin F, Cabezas A et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 2005; 121:437–450.

    Article  PubMed  CAS  Google Scholar 

  63. Vanhaesebroeck B, Leevers SJ, Ahmadi K et al. Synthesis and function of 3-Phosphorylated inositol lipids. Annu Rev Biochem 2001; 70:535–602.

    Article  PubMed  CAS  Google Scholar 

  64. Shin HW, Hayashi M, Christoforidis S et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 2005; 170:607–618.

    Article  PubMed  CAS  Google Scholar 

  65. Spaargaren M, Bos JL. Rab5 induces Rac-independent lamellipodia formation and cell migration. Mol Biol Cell 1999; 10:3239–3250.

    PubMed  CAS  Google Scholar 

  66. Alvarez-Dominguez C, Barbieri AM, Beron W et al. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J Biol Chem 1996; 271:13834–13843.

    Article  PubMed  CAS  Google Scholar 

  67. Perskvist N, Roberg K, Kulyte A et al. Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils. J Cell Sci 2002; 115:1321–1330.

    PubMed  CAS  Google Scholar 

  68. Fratti RA, Backer JM, Gruenberg J et al. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001; 154:631–644.

    Article  PubMed  CAS  Google Scholar 

  69. Barbieri MA, Roberts RL, Gumusboga A et al. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J Cell Biol 2000; 151:539–550.

    Article  PubMed  CAS  Google Scholar 

  70. Barbieri MA, Fernandez-Pol S, Hunker C et al. Role of rab5 in EGF receptor-mediated signal transduction. Eur J Cell Biol 2004; 83:305–314.

    Article  PubMed  CAS  Google Scholar 

  71. Miaczynska M, Christoforidis S, Giner A et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 2004; 116:445–456.

    Article  PubMed  CAS  Google Scholar 

  72. Ikonomov OC, Sbrissa D, Shisheva A. Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase pikfyve. J Biol Chem 2001; 276:26141–26147.

    Article  PubMed  CAS  Google Scholar 

  73. Ikonomov OC, Sbrissa D, Mlak K et al. Active PIKfyve associates with and promotes the membrane attachment of the late endosome-to-trans-Golgi network transport factor Rab9 effector p40. J Biol Chem 2003; 278:50863–50871.

    Article  PubMed  CAS  Google Scholar 

  74. de Graaf P, Zwart WT, van Dijken RA et al. Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 2004; 15:2038–2047.

    Article  PubMed  CAS  Google Scholar 

  75. Sciorra VA, Audhya A, Parsons AB et al. Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 2005; 16:776–793.

    Article  PubMed  CAS  Google Scholar 

  76. Rodriguez-Viciana P, Warne PH, Dhand R et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370:527–532.

    Article  PubMed  CAS  Google Scholar 

  77. Snyder JT, Singer AU, Wing MR et al. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. J Biol Chem 2003; 278:21099–21104.

    Article  PubMed  CAS  Google Scholar 

  78. Honda A, Nogami M, Yokozeki T et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 1999; 99:521–532.

    Article  PubMed  CAS  Google Scholar 

  79. Jones DH, Morris JB, Morgan CP et al. Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem 2000; 275:13962–13966.

    Article  PubMed  CAS  Google Scholar 

  80. Christoforidis S, McBride HM, Burgoyne RD et al. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999; 397:621–625.

    Article  PubMed  CAS  Google Scholar 

  81. Christoforidis S, Zerial M. An affinity chromatography approach leading to the purification and identification of novel Rab effectors. Methods 2000; 20:403–410.

    Article  PubMed  CAS  Google Scholar 

  82. Gorvel J-P, Chavrier P, Zerial M et al. Rab5 controls early endosome fusion in vitro. Cell 1991; 64:915–925.

    Article  PubMed  CAS  Google Scholar 

  83. Rubino M, Miaczynska M, Lippe R et al. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J Biol Chem 2000; 275:3745–3748.

    Article  PubMed  CAS  Google Scholar 

  84. Nielsen E, Severin F, Backer JM et al. Rab5 regulates motility of early endosomes on microtu-bules. Nat Cell Biol 1999; 1:376–382.

    Article  PubMed  CAS  Google Scholar 

  85. Tsukazaki T, Chiang TA, Davison AF et al. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 1998; 95:779–791.

    Article  PubMed  CAS  Google Scholar 

  86. Itoh F, Divecha N, Brocks L et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells 2002; 7:321–331.

    Article  PubMed  CAS  Google Scholar 

  87. Hayes S, Chawla A, Corvera S. TGF beta receptor internalization into EEA1-enriched early endosomes: Role in signaling to Smad2. J Cell Biol 2002; 158:1239–1249.

    Article  PubMed  CAS  Google Scholar 

  88. Hu Y, Chuang JZ, Xu K et al. SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. J Cell Sci 2002; 115:4755–4763.

    Article  PubMed  CAS  Google Scholar 

  89. Le Roy C, Wrana JL. Clathrin-and nonclathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005; 6:112–126.

    Article  PubMed  CAS  Google Scholar 

  90. Hoeller D, Volarevic S, Dikic I. Compartmentalization of growth factor receptor signalling. Curr Opin Cell Biol 2005; 17:107–111.

    Article  PubMed  CAS  Google Scholar 

  91. Miaczynska M, Pelkmans L, Zerial M. Not just a sink: Endosomes in control of signal transduction. Curr Op Cell Biol 2004; 16:400–406.

    Article  PubMed  CAS  Google Scholar 

  92. Lanzetti L, Palamidessi A, Areces L et al. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 2004; 429:309–314.

    Article  PubMed  CAS  Google Scholar 

  93. Vitale G, Rybin V, Christoforidis S et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J 1998; 17:1941–1951.

    Article  PubMed  CAS  Google Scholar 

  94. de Renzis S, Sonnichsen B, Zerial M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 2002; 4:124–133.

    Article  PubMed  CAS  Google Scholar 

  95. Fouraux MA, Deneka M, Ivan V et al. Rabip4′ is an effector of rab5 and rab4 and regulates transport through early endosomes. Mol Biol Cell 2004; 15:611–624.

    Article  PubMed  CAS  Google Scholar 

  96. Lindsay AJ, Hendrick AG, Cantalupo G et al. Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein. J Biol Chem 2002; 277:12190–12199.

    Article  PubMed  CAS  Google Scholar 

  97. Stein MP, Feng Y, Cooper KL et al. Human VPS34 and p150 are Rab7 interacting partners. Traffic 2003; 4:754–771.

    Article  PubMed  CAS  Google Scholar 

  98. Ortiz D, Medkova M, Walch-Solimena C et al. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 2002; 157:1005–1015.

    Article  PubMed  CAS  Google Scholar 

  99. Walch-Solimena C, Collins RN, Novick P. Sec2 mediates nucleotide exchange on Sec4 and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 1997; 137:1495–1509.

    Article  PubMed  CAS  Google Scholar 

  100. Jedd G, Mulholland J, Segev N. Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 1997; 137:563–580.

    Article  PubMed  CAS  Google Scholar 

  101. Benli M, Doring F, Robinson DG et al. Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 1996; 15:6460–6475.

    PubMed  CAS  Google Scholar 

  102. Salminen A, Novick PJ. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 1987; 49:527–538.

    Article  PubMed  CAS  Google Scholar 

  103. Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 2005; 3:e233.

    Article  PubMed  CAS  Google Scholar 

  104. Rink J, Ghigo E, Kalaidzidis Y et al. Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122:735–749.

    Article  PubMed  CAS  Google Scholar 

  105. Hickson GR, Matheson J, Riggs B et al. Arfophilins are dual Arf/Rab 11 binding proteins that regulate recycling endosome distribution and are related to Drosophila nuclear fallout. Mol Biol Cell 2003; 14:2908–2920.

    Article  PubMed  CAS  Google Scholar 

  106. Novick P, Guo W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol 2002; 12:247–249.

    Article  PubMed  CAS  Google Scholar 

  107. Prigent M, Dubois T, Raposo G et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 2003; 163:1111–1121.

    Article  PubMed  CAS  Google Scholar 

  108. Zhang XM, Ellis S, Sriratana A et al. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 2004; 279:43027–43034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Miaczynska, M., Zerial, M. (2006). Rab Domains on Endosomes. In: Endosomes. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39951-5_3

Download citation

Publish with us

Policies and ethics