Skip to main content

Toxins in the Endosomes

  • Chapter
Book cover Endosomes

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Many bacteria owe their virulence to the production of protein toxins. These proteins usually play an important role in permitting the bacteria to successfully spread in the host and cause infection. With the exception of poreforming toxins and lipases, all toxins need to be endocytosed by the host cell to perform their toxin action. In the recent years, the increased knowledge of how toxins enter the cells and reach the cytoplasm have highlighted their ability to exploit, in its finest details, the membrane-trafficking systems of their hosts. In this chapter, based on selected examples we will review how toxins use the host endosomal system to reach their targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta 1999; 1450(3):177–190.

    Article  PubMed  CAS  Google Scholar 

  2. Sandvig K, Grimmer S, Lauvrak SU et al. Pathways followed by ricin and Shiga toxin into cells. Histochem Cell Biol 2002; 117(2):131–141.

    Article  PubMed  CAS  Google Scholar 

  3. Collier RJ. Understanding the mode of action of diphtheria toxin: A perspective on progress during the 20th century. Toxicon 2001; 39(11):1793–1803.

    Article  PubMed  CAS  Google Scholar 

  4. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 2005; 3(4):320–332.

    Article  PubMed  CAS  Google Scholar 

  5. Naglich JG, Metherall JE, Russell DW et al. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell 1992; 69(6):1051–1061.

    Article  PubMed  CAS  Google Scholar 

  6. Bradley KA, Mogridge J, Mourez M et al. Identification of the cellular receptor for anthrax toxin. Nature 2001; 414(6860):225–229.

    Article  PubMed  CAS  Google Scholar 

  7. Scobie HM, Rainey GJ, Bradley KA et al. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 2003; 100(9):5170–5174.

    Article  PubMed  CAS  Google Scholar 

  8. Fujikawa A, Shirasaka D, Yamamoto S et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nat Genet 2003; 33(3):375–381.

    Article  PubMed  CAS  Google Scholar 

  9. Abrami L, Reig N, van der Goot FG. Anthrax toxin: The long and winding road that leads to the kill. Trends Microbiol 2005; 13(2):72–78.

    Article  PubMed  CAS  Google Scholar 

  10. Scobie HM, Young JA. Interactions between anthrax toxin receptors and protective antigen. Curr Opin Microbiol 2005; 8(1):106–112.

    Article  PubMed  CAS  Google Scholar 

  11. Abrami L, Liu S, Cosson P et al. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 2003; 160(3):321–328.

    Article  PubMed  CAS  Google Scholar 

  12. Wolf AA, Jobling MG, Wimer-Mackin S et al. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 1998; 141(4):917–927.

    Article  PubMed  CAS  Google Scholar 

  13. Schraw W, Li Y, McClain MS et al. Association of helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem 2002; 277:34642–34650.

    Article  PubMed  CAS  Google Scholar 

  14. Spilsberg B, Hanada K, Sandvig K. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids. Biochem Biophys Res Commun 2005; 329(2):465–473.

    Article  PubMed  CAS  Google Scholar 

  15. van der Goot FG, Gruenberg J. Oiling the wheels of the endocytic pathway. Trends Cell Biol 2002; 12(7):296–299.

    Article  PubMed  Google Scholar 

  16. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927):37–44.

    Article  PubMed  CAS  Google Scholar 

  17. Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: New insights and common mechanisms. Traffic 2003; 4(11):724–738.

    Article  PubMed  CAS  Google Scholar 

  18. Ricci V, Galmiche A, Doye A et al. High cell sensitivity to helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol Biol Cell 2000; 11(11):3897–3909.

    PubMed  CAS  Google Scholar 

  19. Moya M, Dautry-Varsat A, Goud B et al. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 1985; 101(2):548–559.

    Article  PubMed  CAS  Google Scholar 

  20. Boll W, Ehrlich M, Collier RJ et al. Effects of dynamin inactivation on pathways of anthrax toxin uptake. Eur J Cell Biol 2004; 83(6):281–288.

    Article  PubMed  CAS  Google Scholar 

  21. Sandvig K, van Deurs B. Transport of protein toxins into cells: Pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 2002; 529(1):49–53.

    Article  PubMed  CAS  Google Scholar 

  22. Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: Evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998; 141(4):905–915.

    Article  PubMed  CAS  Google Scholar 

  23. Torgersen ML, Skretting G, van Deurs B et al. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 2001; 114 (Pt 20):3737–3747.

    PubMed  CAS  Google Scholar 

  24. Shogomori H, Futerman AH. Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism. J Biol Chem 2001; 276(12):9182–9188.

    Article  PubMed  CAS  Google Scholar 

  25. Massol RH, Larsen JE, Fujinaga Y et al. Cholera toxin toxicity does not require functional Arf6-and dynamin-dependent endocytic pathways. Mol Biol Cell 2004; 15(8):3631–3641.

    Article  PubMed  CAS  Google Scholar 

  26. Hansen GH, Dalskov SM, Rasmussen CR et al. Cholera toxin entry into pig enterocytes occurs via a lipid raft-and clathrin-dependent mechanism. Biochemistry 2005; 44(3):873–882.

    Article  PubMed  CAS  Google Scholar 

  27. Katagiri YU, Mori T, Nakajima H et al. Activation of Src family kinase yes induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J Biol Chem 1999; 274(49):35278–35282.

    Article  PubMed  CAS  Google Scholar 

  28. Mori T, Kiyokawa N, Katagiri YU et al. Globotriaosyl ceramide (CD77/Gb3) in the glycolipid-enriched membrane domain participates in B-cell receptor-mediated apoptosis by regulating lyn kinase activity in human B cells. Exp Hematol 2000; 28(11):1260–1268.

    Article  PubMed  CAS  Google Scholar 

  29. Geisse NA, Cover TL, Henderson RM et al. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Biochem J 2004; 381 (Pt 3):911–917.

    Article  PubMed  CAS  Google Scholar 

  30. Gauthier NC, Ricci V, Gounon P et al. Glycosylphosphatidylinositol-anchored proteins and actin cytoskeleton modulate chloride transport by channels formed by the Helicobacter pylori vacuolating cytotoxin VacA in HeLa cells. J Biol Chem 2004; 279(10):9481–9489.

    Article  PubMed  CAS  Google Scholar 

  31. Parton RG. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 1994; 42(2):155–166.

    PubMed  CAS  Google Scholar 

  32. Nichols BJ. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nat Cell Biol 2002; 4(5):374–378.

    PubMed  CAS  Google Scholar 

  33. Pelkmans L, Burli T, Zerial M et al. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004; 118(6):767–780.

    Article  PubMed  CAS  Google Scholar 

  34. Kirkham M, Fujita A, Chadda R et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 2005; 168(3):465–476.

    Article  PubMed  CAS  Google Scholar 

  35. Sabhararanjak S, Sharma P, Parton RG et al. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002; 2:411–423.

    Article  Google Scholar 

  36. Saint-Pol A, Yelamos B, Amessou M et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 2004; 6(4):525–538.

    Article  PubMed  CAS  Google Scholar 

  37. Lauvrak SU, Torgersen ML, Sandvig K. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 2004; 117 (Pt 11):2321–2331.

    Article  PubMed  CAS  Google Scholar 

  38. Gruenberg J. The endocytic pathway: A mosaic of domains. Nat Rev Mol Cell Biol 2001; 2(10):721–730.

    Article  PubMed  CAS  Google Scholar 

  39. Miaczynska M, Zerial M. Mosaic organization of the endocytic pathway. Exp Cell Res 2002; 272(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  40. Lemichez E, Bomsel M, Devilliers G et al. Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol 1997; 23(3):445–457.

    PubMed  CAS  Google Scholar 

  41. Abrami L, Lindsay M, Parton RG et al. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 2004; 166:645–651.

    Article  PubMed  CAS  Google Scholar 

  42. Ratts R, Zeng H, Berg EA et al. The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 2003; 160(7):1139–1150.

    Article  PubMed  CAS  Google Scholar 

  43. Fujinaga Y, Wolf AA, Rodighiero C et al. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to ER. Mol Biol Cell 2003.

    Google Scholar 

  44. Falguieres T, Mallard F, Baron C et al. Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 2001; 12(8):2453–2468.

    PubMed  CAS  Google Scholar 

  45. Wilcke M, Johannes L, Galli T et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 2000; 151(6):1207–1220.

    Article  PubMed  CAS  Google Scholar 

  46. Tai G, Lu L, Wang TL et al. Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol Biol Cell 2004; 15(9):4011–4022.

    Article  PubMed  CAS  Google Scholar 

  47. Mallard F, Antony C, Tenza D et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J Cell Biol 1998; 143(4):973–990.

    Article  PubMed  CAS  Google Scholar 

  48. Lencer WI, Tsai B. The intracellular voyage of cholera toxin: Going retro. Trends Biochem Sci 2003; 28(12):639–645.

    Article  PubMed  CAS  Google Scholar 

  49. Papini E, Satin B, Bucci C et al. The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J 1997; 16(1):15–24.

    Article  PubMed  CAS  Google Scholar 

  50. Morbiato L, Tombola F, Campello S et al. Vacuolation induced by VacA toxin of Helicobacter pylori requires the intracellular accumulation of membrane permeant bases, Cl(-) and water. FEBS Lett 2001; 508(3):479–483.

    Article  PubMed  CAS  Google Scholar 

  51. Li Y, Wandinger-Ness A, Goldenring JR et al. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol Biol Cell 2004; 15(4):1946–1959.

    Article  PubMed  CAS  Google Scholar 

  52. Czajkowsky DM, Iwamoto H, Cover TL et al. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci USA 1999; 96(5):2001–2006.

    Article  PubMed  CAS  Google Scholar 

  53. Tombola F, Carlesso C, Szabo I et al. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: Possible implications for the mechanism of cellular vacuolation. Biophys J 1999; 76(3):1401–1409.

    Article  PubMed  CAS  Google Scholar 

  54. Szabo I, Brutsche S, Tombola F et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J 1999; 18(20):5517–5527.

    Article  PubMed  CAS  Google Scholar 

  55. Satin B, Norais N, Telford J et al. Effect of helicobacter pylori vacuolating toxin on maturation and extracellular release of procathepsin D and on epidermal growth factor degradation. J Biol Chem 1997; 272(40):25022–25028.

    Article  PubMed  CAS  Google Scholar 

  56. Kobayashi T, Vischer UM, Rosnoblet C et al. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 2000; 11(5):1829–1843.

    PubMed  CAS  Google Scholar 

  57. Chow A, Toomre D, Garrett W et al. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002; 418(6901):988–994.

    Article  PubMed  CAS  Google Scholar 

  58. Odorizzi G, Katzmann DJ, Babst M et al. Brol is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 2003; 116 (Pt 10):1893–1903.

    Article  PubMed  CAS  Google Scholar 

  59. Strack B, Calistri A, Craig S et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003; 114(6):689–699.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Reig, N., van der Goot, F.G. (2006). Toxins in the Endosomes. In: Endosomes. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39951-5_12

Download citation

Publish with us

Policies and ethics