Skip to main content

Nanoparticles, Nanorods, and Other Nanostructures Assembled on Inert Substrates

  • Chapter
  • 1294 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 109))

Abstract

The geometric and surface properties of supported nanostructures (nanoparticles, nanorods, and other nanoscale objects) are closely related to many of their important applications. On relatively inert substrates, such as graphite, oxides, and nitrides, many nanostructures can be fabricated in a nearly free-standing state by simple physical vapor deposition, and be characterized using electron microscopy, scanning probe microscopy, and various spectroscopic methods. Their intrinsic properties, including the interaction among them, can be measured. In addition, the nanostructures on an inert support provide us with an arena to examine their interactions with other nanoobjects, such as biomolecules, without the influence of a solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marks, L.D. (1994). Experimental studies of small particle structures, Rep. Prog. Phys. 57, 603–649.

    Article  CAS  Google Scholar 

  2. Alivisatos, A.P. (1996). Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933–937.

    Article  CAS  Google Scholar 

  3. Sugano, S. and Koizumi, H. (1998). Microcluster Physics, 2nd edition, Berlin: Springer.

    Google Scholar 

  4. Meiwes-Broer, K.-H. (ed.) (2000). Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry, New York: Springer.

    Google Scholar 

  5. Moriarty, P. (2001). Nanostructured materials, Rep. Prog. Phys. 64, 297–381.

    Article  CAS  Google Scholar 

  6. Yoffe, A.D. (2002). Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Adv. Phys. 51, 799–890.

    Article  Google Scholar 

  7. Yoffe, A.D. (2001). Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 50, 1–208.

    Article  CAS  Google Scholar 

  8. Henry, C.R. (1998). Surface studies of supported model catalysts, Surf. Sci. Rep. 31, 231–325.

    Article  CAS  Google Scholar 

  9. Chusuei, C.C., Lai, X., Luo, K., and Goodman, D.W. (2001). Modeling heterogeneous catalysts: metal clusters on planar oxide supports, Topics Catal. 14, 71–83.

    Article  Google Scholar 

  10. Freund, H.-J. (2002). Clusters and islands on oxides: From catalysis via electronics and magnetism to optics, Surf. Sci. 500, 271–299.

    Article  CAS  Google Scholar 

  11. Cho, A. (2003). Connecting the dots to custom catalysts, Science 299, 1684–1685.

    Article  CAS  Google Scholar 

  12. Chou, S.Y. (1997). Patterned magnetic nanostructures and quantized magnetic disks, Proc. IEEE 85, 652–671.

    Article  CAS  Google Scholar 

  13. Ross, C.A. (2001). Patterned magnetic recording media, Annu. Rev. Mater. Res. 31, 203–235.

    Article  CAS  Google Scholar 

  14. Meulenberg, R.W., Jennings, T., and Strouse, G.F. (2004). Compressive and tensile stress in colloidal CdSe semiconductor quantum dots, Phys. Rev. B 70, 235311.

    Article  CAS  Google Scholar 

  15. Jarrold, M.F. and Constant, V.A. (1991). Silicon cluster ions: Evidence for a structural transition, Phys. Rev. Lett. 67, 2994–2997.

    Article  CAS  Google Scholar 

  16. Ho, K.-M., Shvartsburg, A.A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J.G., Fye, J.L., and Jerrold M.F. (1998). Structures of medium-sized silicon clusters, Nature 392, 582–585.

    Article  CAS  Google Scholar 

  17. Bachels, T. and Schäfer, R. (2000). Binding energies of neutral silicon clusters, Chem. Phys. Lett. 324, 365–372.

    Article  CAS  Google Scholar 

  18. Pizzagalli, L., Galli, G., Klepeis, J.E., and Gygi, F. (2001). Structure and stability of germanium nanoparticles, Phys. Rev. B 63, 165324.

    Article  CAS  Google Scholar 

  19. Weissker, H.-Ch., Furthmüller, J., and Bechstedt, F. (2003). Structural relaxation in Si and Ge nanocrystallites: Influence on the electronic and optical properties, Phys. Rev. B 67, 245304.

    Article  CAS  Google Scholar 

  20. Ventrice, C.A., Jr. and Geisler, H. (1999). The growth and structure of epitaxial metal-oxide/metal interfaces, in: Thin Films: Heteroepitaxial Systems, ed. W.K. Liu, M.B. Santos, Singapore: World Scientific, pp. 167–210.

    Google Scholar 

  21. Göpel, W. and Reinhardt, G. (1996). Metal oxide sensors: new devices through tailoring interfaces on atomic scale, Sensors Update 1, 47–120.

    Article  Google Scholar 

  22. Baron, T., Martin, F., Mur, P., Wyon, C., Dupuy, M., Busseret, C., Souifi, A., and Guillot, G. (2000). Low pressure chemical vapor deposition growth of silicon quantum dots on insulator for nanoelectronics devices, Appl. Surf. Sci. 164, 29–34.

    Article  CAS  Google Scholar 

  23. Millo, O., Steiner, D., Katz, D., Aharoni, A., Kan, S., Mokari, T., and Banin U. (2005). Transition from zero-dimensional to one-dimensional behavior in InAs and CdSe nanorods, Physica E 26, 1–8.

    Article  CAS  Google Scholar 

  24. O'Handley, R.C. (1999). Modern Magnetic Materials: Principles and Applications. New York: Wiley.

    Google Scholar 

  25. Yu, X., Duxbury, P.M., Jeffers, G., and Dubson, M.A. (1991). Coalescence and percolation in thin metal films, Phys. Rev. B 44, 13163–13166.

    Article  Google Scholar 

  26. Jensen, P. (1999). Growth of nanostructures by cluster deposition: Experiments and simple models, Rev. Mod. Phys. 71, 1695–1735.

    Article  CAS  Google Scholar 

  27. Jung, Y.-C., Miura, H., Ohtani, K., and Ishida M. (1999). High-quality silicon/insulator heteroepitaxial structures formed by molecular beam epitaxy using Al2O3 and Si, J. Cryst. Growth 196, 88–96.

    Article  CAS  Google Scholar 

  28. Heffelfinger, J.R., Medlin, D.L., and McCarty, K.F. (1999). On the initial stages of AlN thin-film growth onto (0001) oriented Al2O3 substrates by molecular beam epitaxy, J. Appl. Phys. 85, 466–472.

    Article  CAS  Google Scholar 

  29. Thompson, C.V. (2000). Structure evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci. 30, 159–190.

    Article  CAS  Google Scholar 

  30. Rost, M.J., Quist, D.A., and Frenken, J.W.M. (2003). Grains, growth, and grooving, Phys. Rev. Lett. 91, 026101.

    Article  CAS  Google Scholar 

  31. Givargizov, E.I. (1991). Oriented Crystallization on Amorphous Substrates. New York: Plenum.

    Google Scholar 

  32. Pimpinelli, A. and Villain, J. (1998). Physics of Crystal Growth. Cambridge: Cambridge University Press.

    Google Scholar 

  33. Zhang, Z. and Lagally, M.G. (Eds.) (1998). Morphological Organization in Epitaxial Growth and Removal. Singapore: World Scientific.

    Google Scholar 

  34. Wang, Z.L. (2000). Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B 104, 1153–1175.

    Article  CAS  Google Scholar 

  35. Eaglesham, D.J., Unterwald, F.C., and Jacobson D.C. (1993). Growth morphology and the equilibrium shape: the role of “surfactants” in Ge/Si island formation, Phys. Rev. Lett. 70, 966–969.

    Article  CAS  Google Scholar 

  36. Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., and Topsøe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science 295, 2053–2055.

    Article  CAS  Google Scholar 

  37. Hu, Y., Wang, X.-S., Cue, N., and Wang X. (2002). Ge islanding growth on nitridized Si and the effect of Sb surfactant, J. Phys.: Condens. Matter 14, 8939–8946.

    Article  CAS  Google Scholar 

  38. Lee, H.N., Hesse, D., Zakharov, N., and Gösele, U. (2002). Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates, Science 296, 2006–2009.

    Article  CAS  Google Scholar 

  39. Koch, R. and Poppa, H. (1987). The influence of the mica surface composition on the growth morphology of discontinuous epitaxial palladium vapor deposits, J. Vac. Sci. Technol. A 5, 1845–1848.

    Article  CAS  Google Scholar 

  40. Polli, A.D., Wagner, T., Gemming, T., and Rühle M. (2000). Growth of platinum on TiO2- and SrO-terminated SrTiO3(100), Surf. Sci. 448, 279–289.

    Article  CAS  Google Scholar 

  41. Lerme, J., Pellarin, M., Baguenard, B., Bordas, C., Cottancin, E., Vialle, J.L., and Broyer, M. (1996). Electronic shells and supershells in gallium and aluminum clusters, in: T.P. Martin (ed.) Large Clusters of Atoms and molecules. Dordrecht: Kluwer, pp. 71–88.

    Google Scholar 

  42. Bäumer, M., and Freund, H.-J. (1999). Metal deposits on well-ordered oxide films, Prog. Surf. Sci. 61, 127–198.

    Article  Google Scholar 

  43. Gan, Y., Chu, W., and Qiao, L. (2003). STM investigation on interaction between superstructure and grain boundary in graphite, Surf. Sci. 539, 120–128.

    Article  CAS  Google Scholar 

  44. Sun, H.-L., Shen, Q.-T., Jia, J.-F., Zhang, Q.-Z., and Xue, Q.-K. (2003). Scanning tunneling microscopy study of superlattice domain boundaries on graphite surface, Surf. Sci. 542, 94–100.

    Article  CAS  Google Scholar 

  45. Wang, X.-S., Zhai, G., Yang, J., and Cue, N. (1999). Crystalline Si3N4 thin films on Si(111) and the 4 × 4 reconstruction on Si3N4(0001), Phys. Rev. B 60, R2146–R2149.

    Article  CAS  Google Scholar 

  46. Wang, X.-S., Zhai, G., Yang, J., Wang, L., Hu, Y., Li, Z., Tang, J.C., Wang, X., Fung, K.K., and Cue N. (2001). Nitridation of Si(111), Surf. Sci. 494, 83–94.

    Article  CAS  Google Scholar 

  47. Ahn, H., Wu, C.-L., Gwo, S., Wei, C.M., and Chou, Y.C. (2001). Structure determination of the Si3N4/Si(111)–(8 × 8) surface: a combined study of Kikuchi electron holography, scanning tunneling microscopy, and ab initio calculations, Phys. Rev. Lett. 86, 2818–2821.

    Article  CAS  Google Scholar 

  48. Renaud, G. (1998). Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering, Surf. Sci. Rep. 32, 1–90.

    Article  CAS  Google Scholar 

  49. Scheier, P., Marsen, B., Lonfat, M., Schneider, W.-D., and Sattler, K. (2000). Growth of silicon nanostructures on graphite, Surf. Sci. 458, 113–122.

    Article  CAS  Google Scholar 

  50. Ganz, E., Sattler, K., and Clarke, J. (1988). Scanning tunneling microscopy of the local atomic structure of two-dimensional gold and silver islands on graphite, Phys. Rev. Lett. 60, 1856–1859.

    Article  CAS  Google Scholar 

  51. Nishitani, R., Kasuya, A., Kubota, S., and Nishina, Y. (1991). Dendritic aggregation of gold particles on graphite surface, J. Vac. Sci. Technol. B 9, 806–809.

    Article  CAS  Google Scholar 

  52. Binns, C., Baker, S.H., Demangeat, C., and Parlebas, J.C. (1999). Growth, electronic, magnetic and spectroscopic properties of transition metals on graphite, Surf. Sci. Rep. 34, 105–170.

    Article  CAS  Google Scholar 

  53. Marsen, B. and Sattler, K. (1999). Fullerene-structured nanowires of silicon, Phys. Rev. B 60, 11593–11600.

    Article  CAS  Google Scholar 

  54. McBride, J.D., Van Tassell, B., Jachmann, R.C., and Beebe, T.P., Jr. (2001). Molecule corrals as templates for the formation of metal and silicon nanostructures, J. Phys. Chem. B 105, 3972–3980.

    Article  CAS  Google Scholar 

  55. Ma, T.P. (1998). Making silicon nitride film a viable gate dielectric, IEEE Trans. Electron Devices 45, 680–690.

    Article  CAS  Google Scholar 

  56. Narula, C.K. (1995). Ceramic Precursor Technology and its Applications. New York: Marcel Dekker.

    Google Scholar 

  57. Wang, X.-S., Li, Z., Wang, L., Hu, Y., Zhai, G., Yang, J., Wang, Y., Fung, K.-K., Tang, T.C., Wang, X., and Cue, N. (2001). Characterization of silicon nitride thin films on Si and overlayer growth of Si and Ge, Jpn. J. Appl. Phys. 40, 4292–4298.

    Article  CAS  Google Scholar 

  58. Wang, L., Hu, Y., Li, Z., Tang, J.-C., and Wang, X.-S. (2002). Shape, orientation and surface structure of Si and Ge nano-particles grown on SiN, Nanotechnology 13, 714–719.

    Article  CAS  Google Scholar 

  59. Gwo, S., Chou, C.-P., Wu, C.-L., Ye, Y.-J., Tsai, S.-J., Lin, W.-C., and Lin, M.-T. (2003). Self-limiting size distribution of supported cobalt nanoclusters at room temperature, Phys. Rev. Lett. 90, 185506.

    Article  CAS  Google Scholar 

  60. Liu X., Jia J.-F., Wang, J.-Z., and Xue Q.-K. (2003). Growth of Co nanoclusters on Si3N4 surface formed on Si(111), Chin. Phys. Lett. 20, 1871–1874.

    Article  Google Scholar 

  61. Murray, C.B., Kagan, C.R., and Bawendi, M.G. (2000). Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci. 30, 545–610.

    Article  CAS  Google Scholar 

  62. Kovalev, D., Heckler, H., Ben-Chorin, M., Polisski, G., Schwartzkopff, M., and Koch, F. (1998). Breakdown of the k-conservation rule in Si nanocrystals, Phys. Rev. Lett. 81, 2803–2806.

    Article  CAS  Google Scholar 

  63. Koshida, N. and Matsumoto, N.: (2003). Fabrication and quantum properties of nanostructured silicon, Mater. Sci. Eng. R 40, 169–205.

    Article  CAS  Google Scholar 

  64. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G. (1990). Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001), Phys. Rev. Lett. 65, 1020–1023.

    Article  CAS  Google Scholar 

  65. Brunner, K. (2002). Si/Ge nanostructures, Rep. Prog. Phys. 65, 27–72.

    Article  CAS  Google Scholar 

  66. McComb, D.W., Collings, B.A., Wolkow, R.A., Moffatt, D.J., MacPherson, C.D., Rayner, D.M., Hackett, P.A., and Hulse, J.E. (1996). An atom-resolved view of silicon nanoclusters, Chem. Phys. Lett. 251, 8–12.

    Article  CAS  Google Scholar 

  67. Dinh, L.N., Chase, L.L., Balooch, M., Siekhaus, W.J., and Wooten F. (1996). Optical properties of passivated Si nanocrystals and SiOx nanostructures, Phys. Rev. B 54, 5029–5037.

    Article  CAS  Google Scholar 

  68. Wu, Y., Takeguchi, M., and Furuya, K. (1999). High resolution transmission electron microscopy study on the structure of Ge nanoparticles by using an ultrahigh vacuum-molecular beam epitaxy-transmission electron microscope system, Jpn. J. Appl. Phys. 38, 7241–7246.

    Article  CAS  Google Scholar 

  69. Andersson, M., Iline, A., Stietz, F., and Träger F. (2000). Silicon nanoclusters formed through self-assembly on CaF2 substrates: morphology and optical properties, Appl. Phys. A 70, 625–632.

    CAS  Google Scholar 

  70. Messerli, S., Schintke, S., Morgenstern, K., Sanchez, A., Heiz, U., Schneider, and W.-D. (2000). Imaging size-selected silicon clusters with a low-temperature scanning tunneling microscope, Surf. Sci. 465, 331–338.

    Article  CAS  Google Scholar 

  71. van Buuren, T., Dinh, L.N., Chase, L.L., Siekhaus, W.J., and Terminello, L.J. (1998). Changes in the electronic properties of Si nanocrystals as a function of particle size, Phys. Rev. Lett. 80, 3803–3806.

    Article  Google Scholar 

  72. Marsen, B., Lonfat, M., Scheier, P., and Sattler K. (2000). Energy gap of silicon clusters studied by scanning tunneling spectroscopy, Phys. Rev. B 62, 6892–6895.

    Article  CAS  Google Scholar 

  73. Rouillard, Y., Lambert, B., Toudic, Y., Baudet, M., and Gauneau, M. (1995). On the use of dimeric antimony in molecular beam epitaxy, J. Cryst. Growth 156, 30–38.

    Article  CAS  Google Scholar 

  74. Brewer, P.D., Chow, D.H., and Miles R.H. (1996). Atomic antimony for molecular beam epitaxy of high quality III-V semiconductor alloys, J. Vac. Sci. Technol. B 14, 2335–2338.

    Article  CAS  Google Scholar 

  75. Francis, G.M., Kuipers, L., Cleaver, J.R.A., and Palmer, R.E. (1996). Diffusion controlled growth of metallic nanoclusters at selected surface sites, J. Appl. Phys. 79, 2942–2947.

    Article  CAS  Google Scholar 

  76. Perez, A., Melinon, P., Dupuis, V., Jensen, P., Prevel, B., Tuaillon, J., Bardotti, L., Martet, C., Treilleux, M., Broyer, M., Pellarin, M., Vaille, J.L., Palpant, B., and Lerme, J. (1997). Cluster assembled materials: A novel class of nanostructured solids with original structures and properties, J. Phys. D: Appl. Phys. 30, 709–721.

    Article  CAS  Google Scholar 

  77. Yoon, B., Akulin, V.M., Cahuzac, P., Carlier, F., de Frutos, M., Masson, A., Mory, C., Colliex, C., and Bréchignac, C. (1999). Morphology control of the supported islands grown from soft-landed clusters, Surf. Sci. 443, 76–88.

    Article  CAS  Google Scholar 

  78. Heyde, M., Cappella, B., Sturm, H., Ritter, C., and Rademann, K. (2001). Dislocation of antimony clusters on graphite by means of dynamic plowing nanolithography, Surf. Sci. 476, 54–62.

    Article  CAS  Google Scholar 

  79. Kaiser, B., Stegemann, B., Kaukel, H., and Rademann, K. (2002). Instabilities and pattern formation during the self-organized growth of nanoparticles on graphite, Surf. Sci. 496, L18–L22.

    Article  CAS  Google Scholar 

  80. Mo, Y.W. (1993). Direct determination of the reaction path of Sb4 on Si(001) with scanning tunneling microscopy, Phys. Rev. B 48, 17233–17238.

    Article  CAS  Google Scholar 

  81. Stegemann, B., Bernhardt, T.M., Kaiser, B., and Rademann, K. (2002). STM investigation of surface alloy formation and thin film growth by Sb4 deposition on Au(111), Surf. Sci. 511, 153–162.

    Article  CAS  Google Scholar 

  82. Stegemann, B., Ritter, C., Kaiser, B., and Rademann, K. (2004).Characterization of the (0001) cleavage surface of antimony single crystals using scanning probe microscopy: Atomic structure, vacancies, cleavage steps, and twinned interlayers, Phys. Rev. B 69, 155432.

    Article  CAS  Google Scholar 

  83. Johnson, E.A. (2001). Electrons in quantum semiconductor structures: An introduction, in: Low-dimensional Semiconductor Structures: Fundamentals and Device Applications, ed. K. Barnham, D. Vvedensky Cambridge, UK: Cambridge University Press, pp. 56–78.

    Google Scholar 

  84. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos A.P. (2000). Shape control of CdSe nanocrystals, Nature 404, 59–61.

    Article  CAS  Google Scholar 

  85. Kan, S., Aharoni, A., Mokari, T., and Banin, U. (2004). Shape control of III-V semiconductor nanocrystals: Synthesis and properties of InAs quantum rods, Faraday Discuss. 125, 23–38.

    Article  CAS  Google Scholar 

  86. Donohue, J. (1974). The Structures of the Elements. New York: Wiley.

    Google Scholar 

  87. Beister, H.J., Strössner, K., and Syassen, K. (1990). Rhombohedral to simple-cubic phase transition in arsenic under pressure, Phys. Rev. B 41, 5535–5543.

    Article  CAS  Google Scholar 

  88. Isshiki, T., Nishio, K., Saijo, H., and Shiojiri, M. (1994). Growth and crystallographic, surface and defect structures of antimony particles deposited in a high-resolution transmission electron microscope, Thin Solid Films 237, 155–159.

    Article  CAS  Google Scholar 

  89. Aoki, K., Fujiwara, S., and Kusakabe, M. (1983). New phase transition into the b.c.c. structure in antimony at high pressure, Solid State Commun. 45, 161–163.

    Article  CAS  Google Scholar 

  90. Iwasaki, H. and Kikegawa T. (1997). Structural systematics of the high-pressure phases of phosphorus, arsenic, antimony and bismuth, Acta Cryst. B 53, 353–357.

    Article  Google Scholar 

  91. Kolobyanina, T.N., Kabalkina, S.S., Vereshchagin, L.F., and Fedina: L.V. (1969). Investigation of the crystal structure of antimony at high pressures, Sov. Phys. JETP 28, 88–90.

    Google Scholar 

  92. Bréchignac, C., Cahuzac, Ph., Carlier, F., Colliex, C., de Frutos, M., Kébaïli, N., Le Roux, J., Masson, A., and Yoon, B. (2001). Control of island morphology by dynamic coalescence of soft-landed clusters, Eur. Phys. J. D 16, 265–269.

    Article  Google Scholar 

  93. Barnett, S.A., Winters, H.F., and Greene, J.E. (1986). The interaction of Sb4 molecular beams with Si(100) surfaces: Modulated-beam mass spectrometry and thermally stimulated desorption studies, Surf. Sci. 165, 303–326.

    Article  CAS  Google Scholar 

  94. Slijkerman, W.F.J., Zagwijn, P.M., van der Veen, J.F., Gravesteijn, D.J., and van de Walle G.F.A. (1992). The interaction of Sb overlayers with Si(001), Surf. Sci. 262, 25–32.

    Article  CAS  Google Scholar 

  95. Kumar, V. (1993). Electronic and atomic structures of Sb4 and Sb8 clusters, Phys. Rev. B 48, 8470–8473.

    Article  Google Scholar 

  96. Brune, H. (1998). Microscopic view of epitaxial metal growth: Nucleation and aggregation, Surf. Sci. Rep. 31, 121–229.

    CAS  Google Scholar 

  97. Fan, W.C., Strozier, J., and Ignatiev, A. (1988). Island formation of aluminum on the graphite (0001) surface: LEED and AES study, Surf. Sci. 195, 226–236.

    Article  CAS  Google Scholar 

  98. Ganz, E., Sattler, K., and Clarke, J. (1989). Scanning tunneling microscopy of Cu, Ag, Au and Al adatoms, small clusters, and islands on graphite, Surf. Sci. 219, 33–67.

    Article  CAS  Google Scholar 

  99. Maurice, V. and Marcus P. (1992). STM study of sputter-deposited Al clusters in chemical interaction with graphite (0001) surfaces, Surf. Sci. 275, 65–74.

    Article  CAS  Google Scholar 

  100. Hinnen, C., Imbert, D., Siffre, J.M., and Marcus, P. (1994). An in situ XPS study of sputter-deposited aluminum thin films on graphite, Appl. Surf. Sci. 78, 219–231.

    Article  CAS  Google Scholar 

  101. Ma, Q. and Rosenberg, R.A. (1997). Interaction of Al clusters with the (0001) surface of highly oriented pyrolytic graphite, Surf. Sci. 391, L1224–L1229.

    Article  CAS  Google Scholar 

  102. Stabel, A., Eichhorst-Gerner, K., Rabe, J.P., and González-Elipe A.R. (1998). Surface defects and homogeneous distribution of silver particles on HOPG, Langmuir 14, 7324–7326.

    Article  CAS  Google Scholar 

  103. Moullet, I. (1995). Ab-initio molecular dynamics study of the interaction of aluminum clusters on a graphite surface, Surf. Sci. 331, 697–702.

    Article  Google Scholar 

  104. Zhu, Y.-J., Schnieders, A., Alexander, J.D., and Beebe T.P., Jr. (2002). Pit-templated synthesis and oxygen adsorption properties of gold nanostructures on highly oriented pyrolytic graphite, Langmiur 18, 5728–5733.

    Article  CAS  Google Scholar 

  105. Hövel, H., Becker, Th., Bettac, A., Reihl, B., Tschudy, M., and Williams, E.J. (1997). Crystalline structure and orientation of gold clusters grown in preformed nanometer-sized pits, Appl. Surf. Sci. 115, 124–127.

    Article  Google Scholar 

  106. Stumpf, R. and Scheffler, M. (1996). Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of Al and their implications on crystal growth, Phys. Rev. B 53, 4958–4973.

    Article  CAS  Google Scholar 

  107. Bogicevic, A., Strömquist J., and Lundqvist B.I. (1998). Low-symmetry diffusion barriers in homoepitaxial growth of Al(111), Phys. Rev. Lett. 81, 637–640.

    Article  CAS  Google Scholar 

  108. Ehrlich, G. and Hudda, F.G. (1966). Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys. 44, 1039–1049.

    Article  CAS  Google Scholar 

  109. Schwoebel, R.L. (1969). Step motion on crystal surfaces. II, J. Appl. Phys. 40, 614–618.

    Article  CAS  Google Scholar 

  110. Bardotti, L., Jensen, P., Hoareau, A., Treilleux, M., and Cabaud B. (1995). Experimental observation of fast diffusion of large antimony clusters on graphite surfaces, Phys. Rev. Lett. 74, 4694–4697.

    Article  CAS  Google Scholar 

  111. Lewis, L.J., Jensen, P., Combe, N., and Barrat J.-L. (2000). Diffusion of gold nanoclusters on graphite, Phys. Rev. B 61, 16084–16090.

    Article  CAS  Google Scholar 

  112. Goldby, I.M., Kuipers, L., von Issendorff, B., and Palmer, R.E. (1996). Diffusion and aggregation of size-selected silver clusters on a graphite surface, Appl. Phys. Lett. 69, 2819–2821.

    Article  CAS  Google Scholar 

  113. Zhang, Z., Lu, Y.-T., and Metiu, H. (1991). Pathways for dimer string growth during Si deposition on Si(100)–2×1, Surf. Sci. 255, L543–L549.

    CAS  Google Scholar 

  114. Witten, T.A., Jr. and Sander, L.M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47, 1400–1403.

    Article  CAS  Google Scholar 

  115. Gai, Z., Ji, H., Gao B., Zhao, R.G., and Yang, W.S. (1996). Surface structure of the (3 × 1) and (3 × 2) reconstructions of Ge(113), Phys. Rev. B 54, 8593–8599.

    Article  CAS  Google Scholar 

  116. Knall, J., Pethica, J.B., Todd, J.D., and Wilson, J.H. (1991). Structure of Si(113) determined by scanning tunneling microscopy, Phys. Rev. Lett. 66, 1733–1736.

    Article  CAS  Google Scholar 

  117. Hibino H. and Ogino T. (1997). Phase transitions on Si(113): A high-temperature scanning- tunneling-microscopy study, Phys. Rev. B 56, 4092–4097.

    Article  CAS  Google Scholar 

  118. Gai, Z., Zhao, R.G., and Yang, W.S. (1998). Atomic structure of the Ge(313) surface, Phys. Rev. B 58, R4223–R4226.

    Article  CAS  Google Scholar 

  119. Tanaka, H., Yokoyama, T., and Sumita, I. (1994). Giant adatom-like structures observed with scanning tunneling microscopy: Super adatoms on Si(331), Appl. Surf. Sci. 76, 340–346.

    Article  Google Scholar 

  120. Stekolnikov, A.A., Furthmüller J., and Bechstedt, F. (2002). Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction, Phys. Rev. B 65, 115318.

    Article  CAS  Google Scholar 

  121. Becker, R.S., Golovchenko, J.A., and Swartzentruber, B.S. (1985). Tunneling images of germanium surface reconstructions and phase boundaries, Phys. Rev. Lett. 54, 2678–2680.

    Article  CAS  Google Scholar 

  122. Baski, A.A., Erwin, S.C., and Whitman, L.J. (1995). A stable high-index surface of silicon: Si(5 5 12), Science 269, 1556–1560.

    Article  CAS  Google Scholar 

  123. Gai, Z., Yang, W.S., Zhao, R.G., and Sakurai, T. (1999). Macroscopic and nanoscale faceting of germanium surfaces, Phys. Rev. B 59, 15230–15239.

    Article  CAS  Google Scholar 

  124. Neddermeyer, H. and Tosch, St. (1988). Atomic nature of reconstructed Si(110), Phys. Rev. B 38, 5784–5787.

    Article  CAS  Google Scholar 

  125. An, T., Yoshimura, M., Ono, I., and Ueda, K. (2000). Elemental structure in Si(110)–“16 × 2” revealed by scanning tunneling microscopy, Phys. Rev. B 61, 3006–3011.

    Article  CAS  Google Scholar 

  126. Ichikawa, T. (2004). Atomic geometry of the Ge(110)c(8×10) structure, Surf. Sci. 560, 205–212.

    Article  CAS  Google Scholar 

  127. Zhu, H. and Averback, R.S. (1996). Sintering processes of two nanoparticles: A study by molecular dynamics simulations, Philos. Mag. Lett. 73, 27–33.

    Article  CAS  Google Scholar 

  128. Wang, Z., Li, Y., and Adams, J.B. (2000). Kinetic lattice Monte Carlo simulation of facet growth rate, Surf. Sci. 450, 51–63.

    Article  CAS  Google Scholar 

  129. Shibata, M., Nitta, Y., Fujita, K., and Ichikawa, M. (2000). Facets formation of pyramidal Si nanocrystals selectively grown on Si(001) windows in ultrathin SiO2 films, J. Crystal Growth 220, 449–456.

    Article  CAS  Google Scholar 

  130. Dabrowski, J., Müssig, H.-J., Wolff, G., and Hinrich, S. (1998). Surface reconstruction suggests a nucleation mechanism in bulk: Sb/Si(113) and {113} planar defects, Surf. Sci. 411, 54–60.

    Article  CAS  Google Scholar 

  131. Hansen, K.H., Worren, T., Stempel, S., Lægsgaard, E., Bäumer, M., Freund, H.-J., Besenbacher, F., and Stensgaard, I. (1999). Palladium nanocrystals on Al2O3: structure and adhesion energy, Phys. Rev. Lett. 83, 4120–4123.

    Article  CAS  Google Scholar 

  132. Tseng, H.-C., Chang., C.Y., Pan, F.M., Chen, J.R., and Chen, L.J. (1997). Effects of isolation materials on facet formation for silicon selective epitaxial growth, Appl. Phys. Lett. 71, 2328–2330.

    Article  CAS  Google Scholar 

  133. Langdo, T.A., Leitz, C.W., Currie, M.T., Fitzgerald, E.A., Lochtefeld, A., and Antoniadis D.A. (2000). High quality Ge on Si by epitaxial necking, Appl. Phys. Lett. 76, 3700–3702.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wang, XS. (2007). Nanoparticles, Nanorods, and Other Nanostructures Assembled on Inert Substrates. In: Mansoori, G.A., George, T.F., Assoufid, L., Zhang, G. (eds) Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39938-6_7

Download citation

Publish with us

Policies and ethics