Skip to main content

Use of Nanoparticles as Building Blocks for Bioapplications

  • Chapter
Molecular Building Blocks for Nanotechnology

Part of the book series: Topics in Applied Physics ((TAP,volume 109))

Abstract

Nanoparticles (NPs) are a new class of advanced materials with sizes ranging from 1 nm to 100 nm. They have special physicochemical properties that are very different from those of bulk materials. For example, metal nanoparticles smaller than 5 nm show remarkable quantum size effects, which endow them with peculiar physical and chemical properties. The superlattices of metal nanoparticles exhibit novel electronic and optical properties that are not present in the isolated particles. The sizes of the nanoparticles are close to those of biomolecules, which allows an integration of nanotechnology and biotechnology, leading to major advances in multiplexed bioassays [1–3], clinical therapies [4], ultrasensitive biodetection, and bioimaging [5,6]. Moreover, nanoparticles can be used as building blocks for the fabrication of micro/nanoscale constructs with highly ordered architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., and Mirkin, C.A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:(5329), 1078–1081.

    Article  CAS  Google Scholar 

  2. Dubertret, B., Calame, M., and Libchaber, A.J. (2001). Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol. 19:(4), 365–370.

    Article  CAS  Google Scholar 

  3. Reynolds, R.A., Mirkin, C.A., and Letsinger, R.L. (2000). Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Amer. Chem. Soc. 122:(15), 3795–3796.

    Article  CAS  Google Scholar 

  4. Gruttner, C., Teller, J., and Schutt, W. (1997). In: Scientific and Clinical Applications of Magnetic Carriers. U. Häfeli, W. Schütt, J. Teller, and M. Zborowski (Eds.) New York: Plenum, p. 53.

    Google Scholar 

  5. Bruchez, M., Moronne, M., Gin, P.,Weiss, S., and Alivisatos, A.P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science 281:(5385), 2013–2016.

    Article  CAS  Google Scholar 

  6. Chan, W.C.W. and Nie, S.M. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:(5385), 2016–2018.

    Article  CAS  Google Scholar 

  7. Davis, S.A., Breulmann, M., Rhodes, K.H., Zhang, B., and Mann, S. (2001). Template-directed assembly using nanoparticle building blocks: A nanotectonic approach to organized materials. Chem. Mater. 13:(10), 3218–3226.

    Article  CAS  Google Scholar 

  8. Nie, S.M. and Emery, S.R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:(5303), 1102–1106.

    Article  CAS  Google Scholar 

  9. Emery, S.R., Haskins, W.E., and Nie, S.M. (1998). Direct observation of size-dependent optical enhancement in single metal nanoparticles. J. Amer. Chem. Soc. 120:(31), 8009–8010.

    Article  Google Scholar 

  10. Shipway, A.N., Katz, E., and Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 1:(1), 18–52.

    Article  CAS  Google Scholar 

  11. Daniel, M.C. and Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346.

    Article  CAS  Google Scholar 

  12. Turkevitch, J., Stevenson, P.C., and Hillier, J. (1951). Nucleation and growth Process in the synthesis of colloidal gold. Discuss. Faraday Soc. 11: 55–75.

    Article  Google Scholar 

  13. Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., and Murray, R.W. (1998). Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 14:(1), 17–30.

    Article  CAS  Google Scholar 

  14. Cassagneau, T. and Fendler, J.H. (1999). Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets. J. Phys. Chem. B 103:(11), 1789–1793.

    Article  CAS  Google Scholar 

  15. Bright, R.M., Musick, M.D., and Natan, M.J. (1998). Preparation and characterization of Ag colloid monolayers. Langmuir 14:(20), 5695–5701.

    Article  CAS  Google Scholar 

  16. Schmid, G. (1992). Large clusters and colloids—Metals in the embryonic state. Chem. Reviews 92:(8), 1709–1727.

    Article  CAS  Google Scholar 

  17. Toshima, N. and Yonezawa, T. (1998). Bimetallic nanoparticles–Novel materials for chemical and physical applications. New J. Chem. 22:(11), 1179–1201.

    Article  CAS  Google Scholar 

  18. Keating, C.D., Kovaleski, K.M., and Natan, M.J. (1998). Protein: Colloid conjugates for surface enhanced Raman scattering: Stability and control of protein orientation. J. Phys. Chem. B 102:(47), 9404–9413.

    Article  CAS  Google Scholar 

  19. Kamat, P.V. and Shanghavi, B. (1997). Interparticle electron transfer in metal/semiconductor composites. Picosecond dynamics of CdS-capped gold nanoclusters. J. Phys. Chem. B 101:(39), 7675–7679.

    Article  CAS  Google Scholar 

  20. Roos, C., Schmidt, M., Ebenhoch, J., Baumann, F., Deubzer, B., and Weis, J. (1999). Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters. Adv. Mater. 11:(9), 761–766.

    Article  CAS  Google Scholar 

  21. Freeman, R.G., Hommer, M.B., Grabar, K.C., Jackson, M.A., and Natan, M.J. (1996). Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties. J. Phys. Chem. 100:(2), 718–724.

    Article  CAS  Google Scholar 

  22. Kim, D.K., Zhang, Y., Voit, W., Rao, K.V., and Muhammed, M. (2001). Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magnet. Magnetic Mater. 225:(1–2), 30–36.

    Article  CAS  Google Scholar 

  23. Tronc, E., Belleville, P., Jolivet, J.P., and Livage, J. (1992). Transformation of ferric hydroxide into spinel by Fe(Ii) adsorption. Langmuir 8:(1), 313–319.

    Article  CAS  Google Scholar 

  24. Nakatsuka, K. and Jeyadevan, B. (1994). Initial susceptibilities of magnetic fluids dispersing Mn–Zn ferrite and cobalt ferrite particles. IEEE Trans. Magnet. 30:(6), 4671–4673.

    Article  CAS  Google Scholar 

  25. Davies, K.J., Wells, S., and Charles, S.W. (1993). The effect of temperature and oleate adsorption on the growth of maghemite particles. J. Magnet. Magnetic Mater. 122:(1–3), 24–28.

    Article  CAS  Google Scholar 

  26. Davies, K.J., Wells, S., Upadhyay, R.V., Charles, S.W., Ogrady, K., Elhilo, M., Meaz, T., and Morup, S. (1995). The observation of multiaxial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids. J. Magnet. Magnetic Mater. 149:(1–2), 14–18.

    Article  CAS  Google Scholar 

  27. Kim, D.K., Zhang, Y., Voit, W., Kao, K.V., Kehr, J., Bjelke, B., and Muhammed, M. (2001). Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scripta Mater. 44:(8–9), 1713–1717.

    CAS  Google Scholar 

  28. Murray, C.B., Norris, D.J., and Bawendi, M.G. (1993). Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J. Amer. Chem. Soc. 115:(19), 8706–8715.

    Article  CAS  Google Scholar 

  29. Talapin, D.V., Haubold, S., Rogach, A.L., Kornowski, A., Haase, M., and Weller, H. (2001). A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 105:(12), 2260–2263.

    Article  CAS  Google Scholar 

  30. Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M., and Weller, H. (2001). Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:(4), 207–211.

    Article  CAS  Google Scholar 

  31. Qu, L.H., Peng, Z.A., and Peng, X.G. (2001). Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1:(6), 333–337.

    Article  CAS  Google Scholar 

  32. Hines, M.A. and Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100:(2), 468–471.

    Article  CAS  Google Scholar 

  33. Peng, X.G., Schlamp, M.C., Kadavanich, A.V., and Alivisatos, A.P. (1997). Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Amer. Chem. Soc. 119:(30), 7019–7029.

    Article  CAS  Google Scholar 

  34. Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., Rio, L.G., and Leis, J.R. (2004). Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 9:(3–4), 264–278.

    Article  CAS  Google Scholar 

  35. Okubo, M., Minami, H., and Morikawa, K. (2003). Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid Polym. Sci. 281:(3), 214–219.

    Article  CAS  Google Scholar 

  36. Larpent, C., Bernard, E., Richard, J., and Vaslin, S. (1997). Synthesis of functionalized nanoparticles via copolymerization in microemulsions and surface reactions. React. Function. Polym. 33:(1), 49–59.

    Article  CAS  Google Scholar 

  37. Tang, L.S., Yang, J.W., Zhang, S.F., Yang, J.Z., and Wu, Y.M. (2004). Emulsifier-minor emulsion copolymerization of BA-MMA-St-MAA (or AA)-N-MA. J. Appl. Polym. Sci. 92:(5), 2923–2929.

    Article  CAS  Google Scholar 

  38. Gao, H.F., Zhao, Y.Q., Fu, S.K., Li, B., and Li, M.Q. (2002). Preparation of a novel polymeric fluorescent nanoparticle. Colloid Polym. Sci. 280(7), 653–660.

    Article  CAS  Google Scholar 

  39. Song, G.P., Bo, J., and Guo, R. (2004). The characterization and property of polystyrene compounding of alpha-Fe2O3 in the nano-scale. Colloid Polym. Sci. 282:(6), 656–660.

    Article  CAS  Google Scholar 

  40. Allemann, E., Gurny, R., and Doelker, E. (1993). Drug-loaded nanoparticles—preparation methods and drug targeting issues. Euro. J. Pharmaceut. Biopharmaceut. 39:(5), 173–191.

    CAS  Google Scholar 

  41. Andrade, J.D., Hlady, V., and Jeon, S.I. (1996). Poly(ethylene oxide) and protein resistance—Principles, problems, and possibilities. In: Hydrophilic Polymers, Vol. 248, pp. 51–59.

    CAS  Google Scholar 

  42. Rogach, A.L., Kornowski, A., Gao, M.Y., Eychmuller, A., and Weller, H. (1999). Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B 103:(16), 3065–3069.

    Article  CAS  Google Scholar 

  43. Pathak, S., Choi, S.K., Arnheim, N., and Thompson, M.E. (2001). Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Amer. Chem. Soc. 123:(17), 4103–4104.

    Article  CAS  Google Scholar 

  44. Aldana, J., Wang, Y.A., and Peng, X.G. (2001). Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Amer. Chem. Soc. 123:(36), 8844–8850.

    Article  CAS  Google Scholar 

  45. Willard, D.M., Carillo, L.L., Jung, J., and Van Orden, A. (2001). CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 1:(9), 469–474.

    Article  CAS  Google Scholar 

  46. Chen, Y.F. and Rosenzweig, Z. (2002). Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett. 2:(11), 1299–1302.

    Article  CAS  Google Scholar 

  47. Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., and Alivisatos, A.P. (2001). Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105:(37), 8861–8871.

    Article  CAS  Google Scholar 

  48. Parak, W.J., Gerion, D., Zanchet, D., Woerz, A.S. Pellegrino, T. Micheel, C., Williams, S.C., Seitz, M., Bruehl, R.E., Bryant, Z., Bustamante, C., Bertozzi, C.R., and Alivisatos, A.P. (2002). Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater. 14:(5), 2113–2119.

    Article  CAS  Google Scholar 

  49. Bailey, R.E., Smith, A.M., and Nie, S.M. (2004). Quantum dots in biology and medicine. Physica E-Low-Dimen.Syst. Nanostruct. 25:(1), 1–12.

    Article  CAS  Google Scholar 

  50. Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.F., Peale, F., and Bruchez, M.P. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21:(1), 41–46.

    Article  CAS  Google Scholar 

  51. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., and Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:(5599), 1759–1762.

    Article  CAS  Google Scholar 

  52. Niemeyer, C.M. (2001). Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Edit. 40:(22), 4128–4158.

    Article  CAS  Google Scholar 

  53. Katz, E. and Willner, I. (2004). Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Edit. 43:(45), 6042–6108.

    Article  CAS  Google Scholar 

  54. Shenton, W., Davis, S.A., and Mann, S. (1999). Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition. Adv. Mater. 11:(6), 449–452.

    Article  CAS  Google Scholar 

  55. Broderick, J.B., Natan, M.J., Ohalloran, T.V., and Vanduyne, R.P. (1993). Evidence for retention of biological-activity of a nonheme iron enzyme adsorbed on a silver colloid—a surface-enhanced resonance raman-scattering study. Biochemistry 32:(50), 13771–13776.

    Article  CAS  Google Scholar 

  56. Macdonald, I.D.G. and Smith, W.E. (1996). Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12:(3), 706–713.

    Article  CAS  Google Scholar 

  57. Rospendowski, B.N., Kelly, K., Wolf, C.R., and Smith, W.E. (1991). Surface-enhanced resonance raman-scattering from cytochromes-p-450 adsorbed on citrate-reduced silver sols. J. Amer. Chem. Soc. 113:(4), 1217–1225.

    Article  CAS  Google Scholar 

  58. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., and Bawendi, M.G. (2000). Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Amer. Chem. Soc. 122:(49), 12142–12150.

    Article  CAS  Google Scholar 

  59. Mahtab, R., Rogers, J.P., and Murphy, C.J. (1995). Protein-sized quantum-dot luminescence can distinguish between straight, bent, and kinked oligonucleotides. J. Amer. Chem. Soc. 117:(35), 9099–9100.

    Article  CAS  Google Scholar 

  60. Mahtab, R., Rogers, J.P., Singleton, C.P., and Murphy, C.J. (1996). Preferential adsorption of a “kinked” DNA to a neutral curved surface: Comparisons to and implications for nonspecific DNA-protein interactions. J. Amer. Chem. Soc. 118:(30), 7028–7032.

    Article  CAS  Google Scholar 

  61. Mahtab, R., Harden, H.H., and Murphy, C.J. (2000). Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: Thermodynamics of “inorganic protein”-DNA interactions. J. Amer. Chem. Soc. 122:(1), 14–17.

    Article  CAS  Google Scholar 

  62. Lakowicz, J.R., Gryczynski, I., Gryczynski, Z., Nowaczyk, K., and Murphy, C.J. (2000). Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding. Analyt. Biochem. 280:(1), 128–136.

    Article  CAS  Google Scholar 

  63. Bigham, S.R. and Coffer, J.L. (2000). Thermochemical passivation of DNA-stabilized Q-cadmium sulfide nanoparticles. J. Cluster Sci. 11:(2), 359–372.

    Article  CAS  Google Scholar 

  64. Caruso, F. (2001). Nanoengineering of particle surfaces. Adv. Mater. 13:(1), 11–22.

    Article  CAS  Google Scholar 

  65. Hayat, M.A. (1989). Colloidal Gold: Principles, Methods, and Applications, New York: Academic.

    Google Scholar 

  66. Ghosh, S.S., Kao, P.M., McCue, A.W., and Chappelle, H.L. (1990). Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjug. Chem. 1:(1), 71–76.

    Article  CAS  Google Scholar 

  67. Droz, E., Taborelli, M., Descouts, P., Wells, T.N.C., and Werlen, R.C. (1996). Covalent immobilization of immunoglobulins G and Fab' fragments on gold substrates for scanning force microscopy imaging in liquids. J. Vacuum Sci. Technol. B 14:(2), 1422–1426.

    Article  CAS  Google Scholar 

  68. Hong, H.G., Bohn, P.W., and Sligar, S.G. (1993). Optical Determination Of Surface-Density In Oriented Metalloprotein Nanostructures. Analyt. Chem. 65:(11), 1635–1638.

    Article  CAS  Google Scholar 

  69. Hong, H.G., Jiang, M., Sligar, S.G., and Bohn, P.W. (1994). Cysteine-specific surface tethering of genetically-engineered cytochromes for fabrication of metalloprotein nanostructures. Langmuir 10:(1), 153–158.

    Article  CAS  Google Scholar 

  70. Firestone, M.A., Shank, M.L., Sligar, S.G., and Bohn, P.W. (1996). Film architecture in biomolecular assemblies. Effect of linker on the orientation of genetically engineered surface-bound proteins. J. Amer. Chem. Soc. 118:(38), 9033–9041.

    Article  CAS  Google Scholar 

  71. Kanno, S., Yanagida, Y., Haruyama, T., Kobatake, E., and Aizawa, M. (2000). Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization. J. Biotechnol. 76:(2–3), 207–214.

    Article  CAS  Google Scholar 

  72. Park, S.J., Lazarides, A.A., Mirkin, C.A., Brazis, P.W., Kannewurf, C.R., and Letsinger, R.L. (2000). The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Edit. 39:(21), 3845–3848.

    Article  CAS  Google Scholar 

  73. Demers, L.M., Mirkin, C.A., Mucic, R.C., Reynolds, R.A., Letsinger, R.L., Elghanian, R., and Viswanadham, G. (2000). A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Analyt. Chem. 72:(22), 5535–5541.

    Article  CAS  Google Scholar 

  74. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:(6592), 607–609.

    Article  CAS  Google Scholar 

  75. Mitchell, G.P., Mirkin, C.A., and Letsinger, R.L. (1999). Programmed assembly of DNA functionalized quantum dots. J. Amer. Chem. Soc. 121:(35), 8122–8123.

    Article  CAS  Google Scholar 

  76. Letsinger, R.L., Elghanian, R., Viswanadham, G., and Mirkin, C.A. (2000). Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjug. Chem. 11:(2), 289–291.

    Article  CAS  Google Scholar 

  77. Bower, C.K., Xu, Q., and McGuire, J. (1998). Activity losses among T4 lysozyme variants after adsorption to colloidal silica. Biotechnol. Bioeng. 58:(6), 658–662.

    Article  CAS  Google Scholar 

  78. Vertegel, A.A., Siegel, R.W., and Dordick, J.S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:(16), 6800–6807.

    Article  CAS  Google Scholar 

  79. Kondo, A. and Mihara, J. (1996). Comparison of adsorption and conformation of hemoglobin and myoglobin on various inorganic ultrafine particles. J. Colloid Interface Sci. 177:(1), 214–221.

    Article  CAS  Google Scholar 

  80. Ho, C.H., Limberis, L., Caldwell, K.D., and Stewart, R.J. (1998). A metal-chelating pluronic for immobilization of histidine-tagged proteins at interfaces: Immobilization of firefly luciferase on polystyrene beads. Langmuir 14:(14), 3889–3894.

    Article  CAS  Google Scholar 

  81. Wu, C.W., Lee, J.G., and Lee, W.C. (1998). Protein and enzyme immobilization on non-porous microspheres of polystyrene. Biotechnol. Appl. Biochem. 27: 225–230.

    CAS  Google Scholar 

  82. Dolitzky, Y., Sturchak, S., Nizan, B., Sela, B.A., and Margel, S. (1994). Synthesis, characterization, and use of immobilized polyacrolein microspheres in diagnostics—a model determination of alpha(1)-antitrypsin in human serum. Analyt. Biochem. 220:(2), 257–267.

    Article  CAS  Google Scholar 

  83. Murray, C.B., Kagan, C.R., and Bawendi, M.G. (1995). Self-organization of cdse nanocrystallites into 3-dimensional quantum-dot superlattices. Science 270:(5240), 1335–1338.

    Article  CAS  Google Scholar 

  84. Wang, Z.L. (1998). Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 10:(1), 13–30.

    Article  Google Scholar 

  85. Collier, C.P., Saykally, R.J., Shiang, J.J., Henrichs, S.E., and Heath, J.R. (1997). Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277:(5334), 1978–1981.

    Article  CAS  Google Scholar 

  86. Li, M., Schnablegger, H., and Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402:(6760), 393–395.

    Article  CAS  Google Scholar 

  87. Brust, M., Bethell, D., Schiffrin, D.J., and Kiely, C.J. (1995). Novel gold-dithiol nano-networks with nonmetallic electronic-properties. Adv. Mater. 7:(9), 795–797.

    Article  CAS  Google Scholar 

  88. Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H.J., Gerber, C., and Gimzewski, J.K. (2000). Translating biomolecular recognition into nanomechanics. Science 288:(5464), 316–318.

    Article  CAS  Google Scholar 

  89. Niemeyer, C.M., Ceyhan, B., Gao, S., Chi, L., Peschel, S., and Simon, U. (2001). Site-selective immobilization of gold nanoparticles functionalized with DNA oligomers. Colloid Polym. Sci. 279:(1), 68–72.

    Article  CAS  Google Scholar 

  90. Gerion, D., Parak, W.J., Williams, S.C., Zanchet, D., Micheel, C.M., and Alivisatos, A.P. (2002). Sorting fluorescent nanocrystals with DNA. J. Amer. Chem. Soc. 124:(24), 7070–7074.

    Article  CAS  Google Scholar 

  91. Park, S.J., Lazarides, A.A., Mirkin, C.A., and Letsinger, R.L. (2001). Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Edit. 40:(15), 2909–2912.

    Article  CAS  Google Scholar 

  92. Alivisatos, A.P., Johnsson, K.P., Peng, X.G., Wilson, T.E., Loweth, C.J., Bruchez, M.P., and Schultz, P.G. (1996). Organization of ‘nanocrystal molecules’ using DNA. Nature 382:(6592), 609–611.

    Article  CAS  Google Scholar 

  93. Loweth, C J., Caldwell, W.B., Peng, X.G., Alivisatos, A.P., and Schultz, P.G. (1999). DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Edit. 38:(12), 1808–1812.

    Article  CAS  Google Scholar 

  94. Sandhage, K.H., Dickerson, M.B., Huseman, P.M., Caranna, M.A., Clifton, J.D., Bull, T.A., Heibel, T.J., Overton, W.R., and Schoenwaelder, M.E.A. (2002). Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14:(6), 429–433.

    Article  CAS  Google Scholar 

  95. Rosi, N.L., Thaxton, C.S., and Mirkin, C.A. (2004). Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Edit. 43:(41), 5500–5503.

    Article  CAS  Google Scholar 

  96. Torimoto, T., Yamashita, M., Kuwabata, S., Sakata, T., Mori, H., and Yoneyama, H. (1999). Fabrication of CdS nanoparticle chains along DNA double strands. J. Phys. Chem. B 103:(42), 8799–8803.

    Article  CAS  Google Scholar 

  97. Kumar, A., Pattarkine, M., Bhadbhade, M., Mandale, A.B., Ganesh, K.N., Datar, S.S., Dharmadhikari, C.V., and Sastry, M. (2001). Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv. Mate. 13:(5), 341–344.

    Article  CAS  Google Scholar 

  98. Sastry, M., Kumar, A., Datar, S., Dharmadhikari, C.V., and Ganesh, K.N. (2001). DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure. Appl. Phys. Letts. 78:(19), 2943–2945.

    Article  CAS  Google Scholar 

  99. Warner, M.G. and Hutchison, J.E. (2003). Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2:(4), 272–277.

    Article  CAS  Google Scholar 

  100. Wang, G.L., and Murray, R.W. (2004). Controlled assembly of monolayer-protected gold clusters by dissolved DNA. Nano Lett. 4:(1), 95–101.

    Article  CAS  Google Scholar 

  101. Davis, S.A., Patel, H.M., Mayes, E.L., Mendelson, N.H., Franco, G., and Mann, S. (1998). Brittle bacteria: A biomimetic approach to the formation of fibrous composite materials. Chem. Mater. 10:(9), 2516–2524.

    Article  CAS  Google Scholar 

  102. Davis, S.A., Burkett, S.L., Mendelson, N.H., and Mann, S. (1997). Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385:(6615), 420–423.

    Article  CAS  Google Scholar 

  103. Shenton, W., Pum, D., Sleytr, U.B., and Mann, S. (1997). Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389(6651), 585–587.

    Article  CAS  Google Scholar 

  104. Shenton, W., Douglas, T., Young, M., Stubbs, G., and Mann, S. (1999). Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11:(3), 253–256.

    Article  CAS  Google Scholar 

  105. Mao, C.B., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., and Belcher, A.M. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:(5655), 213–217.

    Article  CAS  Google Scholar 

  106. Mamedov, A.A. and Kotov, N.A. (2000). Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16:(13), 5530–5533.

    Article  CAS  Google Scholar 

  107. Ai, H., Jones, S.A., and Lvov, Y.M. (2003). Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem. Biophys. 39:(1), 23–43.

    Article  CAS  Google Scholar 

  108. Phadtare, S., Kumar, A., Vinod, V.P., Dash, C., Palaskar, D.V., Rao, M., Shukla, P.G., Sivaram, S., and Sastry, M. (2003). Direct assembly of gold nanoparticle “shells” on polyurethane microsphere “cores” and their application as enzyme immobilization templates. Chem. Mater. 15:(10), 1944–1949.

    Article  CAS  Google Scholar 

  109. Fang, M., Grant, P.S., McShane, M.J., Sukhorukov, G.B., Golub, V.O., and Lvov, Y.M. (2002). Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir 18:(16), 6338–6344.

    Article  CAS  Google Scholar 

  110. Wang, C. and Zhang, Y. (2005). Protein micropatterning via self-assembly of nanoparticles. Adv. Mater. 17:(2), 150–153.

    Article  CAS  Google Scholar 

  111. Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., and Stucky, G.D. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Amer. Chem. Soc. 120:(24), 6024–6036.

    Article  CAS  Google Scholar 

  112. Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D. (1999). Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11:(10), 2813–2826.

    Article  CAS  Google Scholar 

  113. Antonelli, D.M. and Ying, J.Y. (1995). Synthesis of hexagonally packed mesoporous Tio2 by a modified sol-gel method. Angew. Chem. Int. Edit. English 34:(18), 2014–2017.

    Article  CAS  Google Scholar 

  114. Antonelli, D.M. and Ying, J.Y. (1996). Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew. Chem. Int. Edit. English 35:(4), 426–430.

    Article  CAS  Google Scholar 

  115. Chen, L.Y., Jaenicke, S., and Chuah, G.K. (1997). Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials. Micropor. Mater. 12:(4–6), 323–330.

    Article  CAS  Google Scholar 

  116. Tang, F.Q., Fudouzi, H., Uchikoshi, T., and Sakka, Y. (2004). Preparation of porous materials with controlled pore size and porosity. J. Euro. Ceram. Soc. 24:(2), 341–344.

    Article  CAS  Google Scholar 

  117. Chane-Ching, J.Y., Cobo, F., Aubert, D., Harvey, H.G., Airiau, M., and Corma, A. (2005). A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem. A Euro. J. 11:(3), 979–987.

    Article  CAS  Google Scholar 

  118. Caruso, F., Caruso, R.A., and Mohwald, H. (1998). Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:(5391), 1111–1114.

    Article  CAS  Google Scholar 

  119. Wong, M.S., Cha, J.N., Choi, K.S., Deming, T.J., and Stucky, G.D. (2002). Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Lett. 2:(6), 583–587.

    Article  CAS  Google Scholar 

  120. Murthy, V.S., Cha, J.N., Stucky, G.D., and Wong, M.S. (2004). Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres. J. Amer. Chem. Soc. 126:(16), 5292–5299.

    Article  CAS  Google Scholar 

  121. Yin, Y., Lu, Y., Gates, B., and Xia, Y. (2001). Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces. Chem. Mater. 13:(4), 1146–1148.

    Article  CAS  Google Scholar 

  122. Wulff, G. (1995). Molecular imprinting in cross-linked materials with the aid of molecular templates—A way towards artificial antibodies. Angew. Chem. Int. Ed. English 34:(17), 1812–1832.

    Article  CAS  Google Scholar 

  123. Mayes, A.G. and Mosbach, K. (1997). Molecularly imprinted polymers: useful materials for analytical chemistry? Trac-Trends Analyt. Chem. 16:(6), 321–332.

    Article  CAS  Google Scholar 

  124. Vlasov, Y.A., Yao, N., and Norris, D.J. (1999). Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv. Mater. 11:(2), 165–169.

    Article  CAS  Google Scholar 

  125. Breulmann, M., Davis, S.A., Mann, S., Hentze, H.P., and Antonietti, M. (2000). Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. Adv. Mater. 12:(7), 502–507.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zhang, Y., Wang, F. (2007). Use of Nanoparticles as Building Blocks for Bioapplications. In: Mansoori, G.A., George, T.F., Assoufid, L., Zhang, G. (eds) Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39938-6_15

Download citation

Publish with us

Policies and ethics