Skip to main content

Gastroenterologic and Hepatic Diseases

  • Chapter
Immunogenetics of Autoimmune Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 650 Accesses

Abstract

Celiac disease, autoimmune hepatitis (AIH), and the inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis (UC), are chronic inflammatory diseases of unknown etiology. They are considered complex genetic diseases because both inherited and environmental influences appear to be important in determining risk Complex genetic diseases are more common than Mendelian diseases in the population. Prevalence ranges for AIH, IBD and celiac disease are given in Table 1. Generally, accepted average prevalences are 1 in 1,000 persons for Crohn’s disease and UC, and 3 in 1,000 for celiac disease. However, the prevalence rate of Crohn’s, UC and celiac disease are much lower in some populations (e.g., 1.25 in 100,000 for Crohn’s disease in Hong Kong1). The average prevalence of AIH is 10-fold lower at 1 in 10,000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang SK, Loftus Jr EV, Sandborn WJ. Epidemiology of inflammatory bowel disease in Asia. Inflamm Bowel Dis 2001; 7(3):260–270.

    PubMed  CAS  Google Scholar 

  2. Yang H, Taylor KD, Rotter JL Inflammatory bowel disease. I. Genetic epidemiology. Mol Genet Metab 2001; 74(1–2):1–21.

    PubMed  CAS  Google Scholar 

  3. Book L, Zone JJ, Neuhausen SL. Prevalence of celiac disease among relatives of sib pairs with celiac disease in U.S. families. Am J Gastroenterol 2003; 98(2):377–381.

    PubMed  Google Scholar 

  4. Beck S, Trowsdale J. The human major histocompatability complex: Lessons from the DNA sequence. Annu Rev Genomics Hum Genet 2000; 1:117–137.

    PubMed  CAS  Google Scholar 

  5. Farrokhyar F, Swarbrick ET, Irvine EJ. A critical review of epidemiological studies in inflammatory bowel disease. Scand J Gastroenterol 2001; 36(1):2–15.

    PubMed  CAS  Google Scholar 

  6. Vyse TJ, Todd JA. Genetic analysis of autoimmune disease. Cell 1996; 85(3):311–318.

    PubMed  CAS  Google Scholar 

  7. AGA. AGA technical review on celiac sprue. Gastroenterology 2001; 120(6):1526–1540.

    Google Scholar 

  8. Fasano A, Catassi C. Current approaches to diagnosis and treatment of celiac disease: An evolving spectrum. Gastroenterology 2001; 120(3):636–651.

    PubMed  CAS  Google Scholar 

  9. Bevan S, Popat S, Braegger CP et al. Contribution of the MHC region to the familial risk of coeliac disease. J Med Genet 1999; 36(9):687–690.

    PubMed  CAS  Google Scholar 

  10. Van Belzen MJ, Meijer JW, Sandkuijl LA et al. A major non HLA locus in celiac disease maps to chromosome 19. Gastroenterology 2003; 125(4):1032–1041.

    PubMed  Google Scholar 

  11. Boberg KM. Prevalence and epidemiology of autoimmune hepatitis. Clin Liver Dis 2002; 6(3):347–359.

    Google Scholar 

  12. Hurlburt KJ, McMahon BJ, Deubner H et al. Prevalence of autoimmune liver disease in Alaska natives. Am J Gastroenterol 2002; 97(9):2402–2407.

    PubMed  Google Scholar 

  13. Lee YM, Teo EK, Ng TM et al. Autoimmune hepatitis in Singapore: A rare syndrome affecting middle-aged women. J Gastroenterol Hepatol 2001; 16(12):1384–1389.

    PubMed  CAS  Google Scholar 

  14. Feld JJ, Heathcote EJ. Epidemiology of autoimmune liver disease. J Gastroenterol Hepatol 2003; 18(10):1118–1128.

    PubMed  CAS  Google Scholar 

  15. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987; 40(1):1–14.

    PubMed  CAS  Google Scholar 

  16. Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11(3):241–247.

    PubMed  CAS  Google Scholar 

  17. Daly MJ, Rioux JD, Schaffner SF et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29(2):229–232.

    PubMed  CAS  Google Scholar 

  18. Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225–2229.

    PubMed  CAS  Google Scholar 

  19. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001; 29(2):217–222.

    PubMed  CAS  Google Scholar 

  20. Gibbs RA, Belmont JW, Hardenbol P et al. The international HapMap project. Nature 2003; 426(6968):789–796.

    CAS  Google Scholar 

  21. Kornbluth A, Sachar DB, Salomon P. Crohn’s disease. In: Feldman M, Friedman LS, Sleisenger MH, eds. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 6th ed. Philadelphia: WB Saunders, 1998; 2:1708–1734.

    Google Scholar 

  22. Jewell DP. Ulcerative colitis. In: Feldman M, Friedman LS, Sleisenger MH, eds. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 6th ed. Philadelphia: WB Saunders, 1998; 2:1735–1761.

    Google Scholar 

  23. Joossens S, Reinisch W, Vermeire S et al. The value of serologic markers in indeterminate colitis: A prospective follow-up study. Gastroenterology 2002; 122(5):1242–1247.

    PubMed  Google Scholar 

  24. Mourn B, Ekbom A, Vatn MH et al. Inflammatory bowel disease: Reevaluation of the diagnosis in a prospective population based study in south eastern Norway. Gut 1997; 40(3):328–332.

    Google Scholar 

  25. Reumaux D, Sendid B, Poulain D et al. Serological markers in inflammatory bowel diseases. Best Pract Res Clin Gastroenterol 2003; 17(1):19–35.

    PubMed  CAS  Google Scholar 

  26. Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis 1998; 16(6):351–355.

    PubMed  CAS  Google Scholar 

  27. Orholm M, Binder V, Sorensen TI et al. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol 2000; 35(10):1075–1081.

    PubMed  CAS  Google Scholar 

  28. Halfvarson J, Bodin L, Tysk C et al. Inflammatory bowel disease in a Swedish twin cohort: A long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003; 124(7):1767–1773.

    PubMed  Google Scholar 

  29. Cottone M, Rosselli M, Orlando A et al. Smoking habits and recurrence in Crohn’s disease. Gastroenterology 1994; 106(3):643–648.

    PubMed  CAS  Google Scholar 

  30. Reif S, Lavy A, Keter D et al. Lack of association between smoking and Crohn’s disease but the usual association with ulcerative colitis in Jewish patients in Israel: A multicenter study. Am J Gastroenterol 2000; 95(2):474–478.

    PubMed  CAS  Google Scholar 

  31. Madretsma S, Wolters LM, van Dijk JP et al. In-vivo effect of nicotine on cytokine production by human nonadherent mononuclear cells. Eur J Gastroenterol Hepatol 1996; 8(10):1017–1020.

    PubMed  CAS  Google Scholar 

  32. Pullan RD. Colonic mucus, smoking and ulcerative colitis. Ann R Coll Surg Engl 1996; 78(2):85–91.

    PubMed  CAS  Google Scholar 

  33. Finnie LA, Campbell BJ, Taylor BA et al. Stimulation of colonic mucin synthesis by corticosteroids and nicotine. Clin Sci (Lond) 1996; 91(3):359–364.

    PubMed  CAS  Google Scholar 

  34. Van Dijk JP, Madretsma GS, Keuskamp ZJ et al. Nicotine inhibits cytokine synthesis by mouse colonic mucosa. Eur J Pharmacol 1995; 278(1):R11–12.

    PubMed  Google Scholar 

  35. Green JT, Richardson C, Marshall RW et al. Nitric oxide mediates a therapeutic effect of nicotine in ulcerative colitis. Aliment Pharmacol Ther 2000; 14(11):1429–1434.

    PubMed  CAS  Google Scholar 

  36. Wolf JM, Lashner BA. Inflammatory bowel disease: Sorting out the treatment options. Cleve Clin J Med 2002; 69(8):621–626, 629–631.

    PubMed  Google Scholar 

  37. Katschinski B, Logan RF, Edmond M et al. Smoking and sugar intake are separate but interactive risk factors in Crohn’s disease. Gut 1988; 29(9):1202–1206.

    PubMed  CAS  Google Scholar 

  38. Persson PG, Ahlbom A, Hellers G. Diet and inflammatory bowel disease: A case-control study. Epidemiology 1992; 3(1):47–52.

    PubMed  CAS  Google Scholar 

  39. Ainley C, Cason J, Slavin BM et al. The influence of zinc status and malnutrition on immunological function in Crohn’s disease. Gastroenterology 1991; 100(6):1616–1625.

    PubMed  CAS  Google Scholar 

  40. Kanauchi O, Mitsuyama K, Araki Y et al. Modification of intestinal flora in the treatment of inflammatory bowel disease. Curr Pharm Des 2003; 9(4):333–346.

    PubMed  CAS  Google Scholar 

  41. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996; 379(6568):821–823.

    PubMed  CAS  Google Scholar 

  42. Cavanaugh J. International collaboration provides convincing linkage replication in complex disease through analysis of a large pooled data set: Crohn disease and chromosome 16. Am J Hum Genet 2001; 68(5):1165–1171.

    PubMed  CAS  Google Scholar 

  43. Satsangi J, Parkes M, Louis E et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14(2):199–202.

    PubMed  CAS  Google Scholar 

  44. Cho JH, Nicolae DL, Gold LH et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes lp, 3q, and 4q: Evidence for epistasis between lp and IBD1. Proc Natl Acad Sci USA 1998; 95(13):7502–7507.

    PubMed  CAS  Google Scholar 

  45. Ma Y, Ohmen JD, Li Z et al. A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis 1999; 5(4):271–278.

    PubMed  CAS  Google Scholar 

  46. Hampe J, Schreiber S, Shaw SH et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet 1999; 64(3):808–816.

    PubMed  CAS  Google Scholar 

  47. Duerr RH, Barmada MM, Zhang L et al. Linkage and association between inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet 1998; 63(1):95–100.

    PubMed  CAS  Google Scholar 

  48. Rioux JD, Silverberg MS, Daly MJ et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66:1863–1870.

    PubMed  CAS  Google Scholar 

  49. Cavanaugh JA, Callen DF, Wilson SR et al. Analysis of Australian Crohn’s disease pedigrees refines the localization for susceptibility to inflammatory bowel disease on chromosome 16. Ann Hum Genet 1998; 62 (Pt 4):291–298.

    PubMed  CAS  Google Scholar 

  50. Brant SR, Fu Y, Fields CT et al. American families with Crohn’s disease have strong evidence for linkage to chromosome 16 but not chromosome 12. Gastroenterology 1998; 115(5):1056–1061.

    PubMed  CAS  Google Scholar 

  51. Rioux JD, Daly MJ, Green T et al. Absence of linkage between inflammatory bowel disease and selected loci on chromosomes 3, 7, 12, and 16. Gastroenterology 1998; 115(5):1062–1065.

    PubMed  CAS  Google Scholar 

  52. Annese V, Latiano A, Bovio P et al. Genetic analysis in Italian families with inflammatory bowel disease supports linkage to the IBD1 locus-a GISC study. Eur J Hum Genet 1999; 7(5):567–573.

    PubMed  CAS  Google Scholar 

  53. Vermeire S, Peeters M, Vlietinck R et al. Exclusion of linkage of Crohn’s disease to previously reported regions on chromosomes 12, 7, and 3 in the Belgian population indicates genetic heterogeneity. Inflamm Bowel Dis 2000; 6(3):165–170.

    PubMed  CAS  Google Scholar 

  54. Hampe J, Lynch NJ, Daniels S et al. Fine mapping of the chromosome 3p susceptibility locus in inflammatory bowel disease. Gut 2001; 48(2):191–197.

    PubMed  CAS  Google Scholar 

  55. Paavola P, Helio T, Kiuru M et al. Genetic analysis in Finnish families with inflammatory bowel disease supports linkage to chromosome 3p21. Eur J Hum Genet 2001; 9(5):328–334.

    PubMed  CAS  Google Scholar 

  56. Shaw SH, Hampe J, White R et al. Stratification by CARD 15 variant genotype in a genome-wide search for inflammatory bowel disease susceptibility loci. Hum Genet 2003; 113(6):514–521.

    PubMed  Google Scholar 

  57. Van Heel DA, Dechairo BM, Dawson G et al. The IBD6 Crohn’s disease locus demonstrates complex interactions with CARD 15 and IBD5 disease-associated variants. Hum Mol Genet 2003; 12(20):2569–2575.

    PubMed  Google Scholar 

  58. Williams CN, Kocher K, Lander ES et al. Using a genome-wide scan and meta-analysis to identify a novel IBD locus and confirm previously identified IBD loci. Inflamm Bowel Dis 2002; 8(6):375–381.

    PubMed  Google Scholar 

  59. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411(6837):599–603.

    PubMed  CAS  Google Scholar 

  60. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411(6837):603–606.

    PubMed  CAS  Google Scholar 

  61. Duerr RH, Barmada MM, Zhang L et al. High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12. Am J Hum Genet 2000; 66(6):1857–1862.

    PubMed  CAS  Google Scholar 

  62. Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29(2):223–228.

    PubMed  CAS  Google Scholar 

  63. Kobayashi K, Atoh M, Konoeda Y et al. HLA-DR, DQ and T cell antigen receptor constant beta genes in Japanese patients with ulcerative colitis. Clin Exp Immunol 1990; 80(3):400–403.

    PubMed  CAS  Google Scholar 

  64. Asakura H, Tsuchiya M, Aiso S et al. Association of the human lymphocyte-DR2 antigen with Japanese ulcerative colitis. Gastroenterology 1982; 82(3):413–418.

    PubMed  CAS  Google Scholar 

  65. Sugimura K, Asakura H, Mizuki N et al. Analysis of genes within the HLA region affecting susceptibility to ulcerative colitis. Hum Immunol 1993; 36(2):112–118.

    PubMed  CAS  Google Scholar 

  66. Futami S, Aoyama N, Honsako Y et al. HLA-DRB1*15O2 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Dig Dis Sci 1995; 40(4):814–818.

    PubMed  CAS  Google Scholar 

  67. Yoshitake S, Kimura A, Okada M et al. HLA class II alleles in Japanese patients with inflammatory bowel disease. Tissue Antigens 1999; 53(4 Pt 1):350–358.

    PubMed  CAS  Google Scholar 

  68. Stokkers PC, Reitsma PH, Tytgat GN et al. HLA-DR and-DQ phenotypes in inflammatory bowel disease: A meta-analysis. Gut 1999; 45(3):395–401.

    PubMed  CAS  Google Scholar 

  69. Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001; 357(9272):1925–1928.

    PubMed  CAS  Google Scholar 

  70. Lesage S, Zouali H, Cezard JP et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70(4):845–857.

    PubMed  CAS  Google Scholar 

  71. Vermeire S, Wild G, Kocher K et al. CARD 15 genetic variation in a Quebec population: Prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 2002; 71(1):74–83.

    PubMed  CAS  Google Scholar 

  72. Croucher PJ, Mascheretti S, Hampe J et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet 2003; 11(1):6–16.

    PubMed  CAS  Google Scholar 

  73. Cuthbert AP, Fisher SA, Mirza MM et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002; 122(4):867–874.

    PubMed  CAS  Google Scholar 

  74. Helio T, Halme L, Lappalainen M et al. CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut 2003; 52(4):558–562.

    PubMed  CAS  Google Scholar 

  75. Inoue N, Tamura K, Kinouchi Y et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 2002; 123(1):86–91.

    PubMed  CAS  Google Scholar 

  76. Yamazaki K, Takazoe M, Tanaka T et al. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet 2002; 47(9):469–472.

    PubMed  CAS  Google Scholar 

  77. Marsh S, McLeod HL. Crohn’s disease: Ethnic variation in CARD 15 genotypes. Gut 2003; 52(5):770.

    PubMed  CAS  Google Scholar 

  78. Leong RW, Armuzzi A, Ahmad T et al. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment Pharmacol Ther 2003; 17(12):1465–1470.

    PubMed  CAS  Google Scholar 

  79. Inohara N, Nunez G. NODs: Intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003; 3(5):371–382.

    PubMed  CAS  Google Scholar 

  80. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature 2001; 411(6839):826–833.

    PubMed  CAS  Google Scholar 

  81. Hisamatsu T, Suzuki M, Reinecker HC et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 2003; 124(4):993–1000.

    PubMed  CAS  Google Scholar 

  82. Ogura Y, Lala S, Xin W et al. Expression of NOD2 in Paneth cells: A possible link to Crohn’s ileitis. Gut 2003; 52(11):1591–1597.

    PubMed  CAS  Google Scholar 

  83. Daly MJ, Rioux JD. New approaches to gene hunting in IBD. Inflamm Bowel Dis 2004; 10(3):312–317.

    PubMed  Google Scholar 

  84. Giallourakis C, Stoll M, Miller K et al. IBD5 is a general risk factor for inflammatory bowel disease: Replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am J Hum Genet 2003; 73(1):205–211.

    PubMed  CAS  Google Scholar 

  85. Negoro K, McGovern DP, Kinouchi Y et al. Analysis of the IBD5 locus and potential gene-gene interactions in Crohn’s disease. Gut 2003; 52(4):541–546.

    PubMed  CAS  Google Scholar 

  86. Mirza MM, Fisher SA, King K et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn disease. Am J Hum Genet 2003; 72(4):1018–1022.

    PubMed  CAS  Google Scholar 

  87. Armuzzi A, Ahmad T, Ling KL et al. Genotype-phenotype analysis of the Crohn’s disease susceptibility haplotype on chromosome 5q31. Gut 2003; 52(8):1133–1139.

    PubMed  CAS  Google Scholar 

  88. Pokorny RM, Hofmeister A, Galandiuk S et al. Crohn’s disease and ulcerative colitis are associated with the DNA repair gene MLH1. Ann Surg 1997; 225(6):718–723, discussion 723–715.

    PubMed  CAS  Google Scholar 

  89. Annese V, Piepoli A, Andriulli A et al. Association of Crohn’s disease and ulcerative colitis with haplotypes of the MLH1 gene in Italian inflammatory bowel disease patients. J Med Genet 2002; 39(5):332–334.

    PubMed  CAS  Google Scholar 

  90. Frenzel H, Hampe J, Huse K et al. Mutation detection and physical mapping of the CD 11 gene cluster in association with inflammatory bowel disease. Immunogenetics 2002; 53(10–11):835–842.

    PubMed  CAS  Google Scholar 

  91. de Jong DJ, Franke B, Naber AH et al. No evidence for involvement of IL-4R and CD11B from the IBD1 region and STAT6 in the IBD2 region in Crohn’s disease. Eur J Hum Genet 2003; 11(11):884–887.

    PubMed  Google Scholar 

  92. Mansfield JC, Holden H, Tarlow JK et al. Novel genetic association between ulcerative colitis and the anti-inflammatory cytokine interleukin-1 receptor antagonist. Gastroenterology 1994; 106(3):637–642.

    PubMed  CAS  Google Scholar 

  93. Bioque G, Crusius JB, Koutroubakis I et al. Allelic polymorphism in IL-1 beta and IL-1 receptor antagonist (IL-IRa) genes in inflammatory bowel disease. Clin Exp Immunol 1995; 102(2):379–383.

    PubMed  CAS  Google Scholar 

  94. Roussomoustakaki M, Satsangi J, Welsh K et al. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology 1997; 112(6):1845–1853.

    PubMed  CAS  Google Scholar 

  95. Heresbach D, Alizadeh M, Dabadie A et al. Significance of interleukin-1 beta and interleukin-1 receptor antagonist genetic polymorphism in inflammatory bowel diseases. Am J Gastroenterol 1997; 92(7):1164–1169.

    PubMed  CAS  Google Scholar 

  96. Hacker UT, Bidlingmaier C, Gomolka M et al. Inflammatory bowel disease: No association between allele combinations of the interleukin (IL) I beta and IL-I receptor antagonist gene polymorphisms. Eur J Clin Invest 1998; 28(3):214–219.

    PubMed  CAS  Google Scholar 

  97. Stokkers PC, van Aken BE, Basoski N et al. Five genetic markers in the interleukin 1 family in relation to inflammatory bowel disease. Gut 1998; 43(1):33–39.

    PubMed  CAS  Google Scholar 

  98. Gonzalez Sarmiento R, Araoz P, Rodriguez R et al. Polymorphism of the IL1RN gene in Spanish patients with ulcerative colitis. Med Clin (Bare) 1999; 112(20):778–779.

    CAS  Google Scholar 

  99. Nemetz A, Kope A, Molnar T et al. Significant differences in the interleukin-1 beta and interleukin-1 receptor antagonist gene polymorphisms in a Hungarian population with inflammatory bowel disease. Scand J Gastroenterol 1999; 34(2):175–179.

    PubMed  CAS  Google Scholar 

  100. Bouma G, Crusius JB, Garcia-Gonzalez MA et al. Genetic markers in clinically well defined patients with ulcerative colitis (UC). Clin Exp Immunol 1999; 115(2):294–300.

    PubMed  CAS  Google Scholar 

  101. Tountas NA, Casini-Raggi V, Yang H et al. Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology 1999; 117(4):806–813.

    PubMed  CAS  Google Scholar 

  102. Papo M, Quer JC, Gutierrez C et al. Genetic heterogeneity within ulcerative colitis determined by an interleukin-1 receptor antagonist gene polymorphism and antineutrophil cytoplasmic antibodies. Eur J Gastroenterol Hepatol 1999; 11(4):413–420.

    PubMed  CAS  Google Scholar 

  103. Carter MJ, di Giovine FS, Jones S et al. Association of the interleukin 1 receptor antagonist gene with ulcerative colitis in Northern European Caucasians. Gut 2001; 48(4):461–467.

    PubMed  CAS  Google Scholar 

  104. Craggs A, Welfare M, Donaldson PT et al. The CC chemokine receptor 5 delta32 mutation is not associated with inflammatory bowel disease (IBD) in NE England. Genes Immun 2001; 2(2):114–116.

    PubMed  CAS  Google Scholar 

  105. Nohara H, Saito Y, Higaki S et al. Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis. J Gastroenterol 2002; 37(Suppl 14):107–110.

    PubMed  CAS  Google Scholar 

  106. Olavesen MG, Hampe J, Mirza MM et al. Analysis of single-nucleotide polymorphisms in the interleukin-4 receptor gene for association with inflammatory bowel disease. Immunogenetics 2000; 51(1):1–7.

    PubMed  CAS  Google Scholar 

  107. Aithal GP, Day CP, Leathart J et al. Association of single nucleotide polymorphisms in the interleukin-4 gene and interleukin-4 receptor gene with Crohn’s disease in a British population. Genes Immun 2001; 2(1):44–47.

    PubMed  CAS  Google Scholar 

  108. Tagore A, Gonsalkorale WM, Pravica V et al. Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. Tissue Antigens 1999; 54(4):386–390.

    PubMed  CAS  Google Scholar 

  109. Mitchell SA, Grove J, Spurkland A et al. Association of the tumour necrosis factor alpha-308 but not the interleukin 10-627 promoter polymorphism with genetic susceptibility to primary sclerosing cholangitis. Gut 2001; 49(2):288–294.

    PubMed  CAS  Google Scholar 

  110. Kagnoff MF, Brown RJ, Schanfield MS. Association between Crohn’s disease and immunoglobulin heavy chain (Gm) allotypes. Gastroenterology 1983; 85(5):1044–1047.

    PubMed  CAS  Google Scholar 

  111. Gudjonsson H, Schanfield MS, Albertini RJ et al. Association and linkage studies of immunoglobulin heavy chain allotypes in inflammatory bowel disease. Tissue Antigens 1988; 31(5):243–249.

    PubMed  CAS  Google Scholar 

  112. Simmons JD, Mullighan C, Welsh KI et al. Vitamin D receptor gene polymorphism: Association with Crohn’s disease susceptibility. Gut 2000; 47(2):211–214.

    PubMed  CAS  Google Scholar 

  113. Martin K, Radlmayr M, Borchers R et al. Candidate genes colocalized to linkage regions in inflammatory bowel disease. Digestion 2002; 66(2):121–126.

    PubMed  CAS  Google Scholar 

  114. Yang H, Vora DK, Targan SR et al. Intercellular adhesion molecule 1 gene associations with immunologic subsets of inflammatory bowel disease. Gastroenterology 1995; 109(2):440–448.

    PubMed  CAS  Google Scholar 

  115. Braun C, Zahn R, Martin K et al. Polymorphisms of the ICAM-1 gene are associated with inflammatory bowel disease, regardless of the p-ANCA status. Clin Immunol 2001; 101(3):357–360.

    PubMed  CAS  Google Scholar 

  116. Matsuzawa J, Sugimura K, Matsuda Y et al. Association between K469E allele of intercellular adhesion molecule 1 gene and inflammatory bowel disease in a Japanese population. Gut 2003; 52(1):75–78.

    PubMed  CAS  Google Scholar 

  117. Papa A, Danese S, Armuzzi A et al. Association between K469E allele of intercellular adhesion molecule 1 gene and inflammatory bowel disease in different populations. Gut 2003; 52(8):1227–1228, author reply 1228.

    PubMed  CAS  Google Scholar 

  118. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol 1998; 161(10):5733–5744.

    PubMed  CAS  Google Scholar 

  119. Schwab M, Schaeffeler E, Marx C et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003; 124(1):26–33.

    PubMed  CAS  Google Scholar 

  120. Croucher PJ, Mascheretti S, Foelsch UR et al. Lack of association between the C3435T MDR1 gene polymorphism and inflammatory bowel disease in two independent Northern European populations. Gastroenterology 2003; 125(6):1919–1920, author reply 1920–1921.

    PubMed  Google Scholar 

  121. Brant SR, Panhuysen CI, Nicolae D et al. MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 2003; 73(6):1282–1292.

    PubMed  CAS  Google Scholar 

  122. Gazouli M, Zacharatos P, Gorgoulis P. The C3435T MDRlgene polymorphism is not associated with susceptibility for ulcerative colitis in a Greek population. Gastroenterology 2004; 126(1):367–369.

    PubMed  CAS  Google Scholar 

  123. Glas J, Torok HP, Schiemann U et al. MDR1 gene polymorphism in ulcerative colitis. Gastroenterology 2004; 126(1):367.

    PubMed  Google Scholar 

  124. Kim RB, Leake BF, Choo EF et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70(2):189–199.

    PubMed  CAS  Google Scholar 

  125. Hofmeister A, Neibergs HL, Pokorny RM et al. The natural resistance-associated macrophage protein gene is associated with Crohn’s disease. Surgery 1997; 122(2):173–178, discussion 178–179.

    PubMed  CAS  Google Scholar 

  126. Klein W, Tromm A, Griga T et al. A polymorphism in the IL11 gene is associated with ulcerative colitis. Genes Immun 2002; 3(8):494–496.

    PubMed  CAS  Google Scholar 

  127. Glas J, Torok HP, Unterhuber H et al. The-295T-to-C promoter polymorphism of the IL-16 gene is associated with Crohn’s disease. Clin Immunol 2003; 106(3):197–200.

    PubMed  CAS  Google Scholar 

  128. Haslam N, Standen GR, Probert CS. An investigation of the association of the factor V Leiden mutation and inflammatory bowel disease. Eur J Gastroenterol Hepatol 1999; 11(11):1289–1291.

    PubMed  CAS  Google Scholar 

  129. de Jong DJ, van der Logt EM, van Schaik A et al. Genetic polymorphisms in biotransformation enzymes in Crohn’s disease: Association with microsomal epoxide hydrolase. Gut 2003; 52(4):547–551.

    PubMed  Google Scholar 

  130. Bachvarov DR, Landry M, Houle S et al. Altered frequency of a promoter polymorphic allele of the kinin B1 receptor gene in inflammatory bowel disease. Gastroenterology 1998; 115(5):1045–1048.

    PubMed  CAS  Google Scholar 

  131. Rector A, Lemey P, Laffut W et al. Mannan-binding lectin (MBL) gene polymorphisms in ulcerative colitis and Crohn’s disease. Genes Immun 2001; 2(6):323–328.

    PubMed  CAS  Google Scholar 

  132. Kyo K, Muto T, Nagawa H et al. Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn’s disease. J Hum Genet 2001; 46(1):5–20.

    PubMed  CAS  Google Scholar 

  133. Karban AS, Okazaki T, Panhuysen CI et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2004; 13(1):35–45.

    PubMed  CAS  Google Scholar 

  134. King K, Moody A, Fisher SA et al. Genetic variation in the IGSF6 gene and lack of association with inflammatory bowel disease. Eur J Immunogenet 2003; 30(3):187–190.

    PubMed  CAS  Google Scholar 

  135. Haslam N, Standen GR, Probert CS. An investigation of the association of the prothrombin G20210A gene mutation and inflammatory bowel disease: Factor II and IBD. Inflamm Bowel Dis 2001; 7(2):133–135.

    PubMed  CAS  Google Scholar 

  136. Seegers D, Zwiers A, Strober W et al. A TaqI polymorphism in the 3’UTR of the s gene correlates with increased IL-12 secretion. Genes Immun 2002; 3(7):419–423.

    PubMed  CAS  Google Scholar 

  137. Buning C, Genschel J, Weltrich R et al. The interleukin-25 gene located in the inflammatory bowel disease (IBD) 4 region: No association with inflammatory bowel disease. Eur J Immunogenet 2003; 30(5):329–333.

    PubMed  CAS  Google Scholar 

  138. Hampe J, Hermann B, Bridger S et al. The interferon-gamma gene as a positional and functional candidate gene for inflammatory bowel disease. Int J Colorectal Dis 1998; 13(5–6):260–263.

    PubMed  CAS  Google Scholar 

  139. Rector A, Vermeire S, Thoelen I et al. Analysis of the CC chemokine receptor 5 (CCR5) delta-32 polymorphism in inflammatory bowel disease. Hum Genet 2001; 108(3):190–193.

    PubMed  CAS  Google Scholar 

  140. Van Heel DA, Carey AH, Jewell DP. Identification of novel polymorphisms in the beta7 integrin gene: Family-based association studies in inflammatory bowel disease. Genes Immun 2001; 2(8):455–460.

    PubMed  Google Scholar 

  141. Xia B, Crusius JB, Wu J et al. CTLA4 gene polymorphisms in Dutch and Chinese patients with inflammatory bowel disease. Scand J Gastroenterol 2002; 37(11):1296–1300.

    PubMed  CAS  Google Scholar 

  142. Zouali H, Lesage S, Merlin F et al. CARD4/NOD1 is not involved in inflammatory bowel disease. Gut 2003; 52(1):71–74.

    PubMed  CAS  Google Scholar 

  143. Murillo L, Crusius JB, van Bodegraven AA et al. CARD 15 gene and the classification of Crohn’s disease. Immunogenetics 2002; 54(1):59–61.

    PubMed  CAS  Google Scholar 

  144. Bairead E, Harmon DL, Curtis AM et al. Association of NOD2 with Crohn’s disease in a homogenous Irish population. Eur J Hum Genet 2003; 11(3):237–244.

    PubMed  CAS  Google Scholar 

  145. Brant SR, Picco MF, Achkar JP et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis 2003; 9(5):281–289.

    PubMed  Google Scholar 

  146. Tomer G, Ceballos C, Concepcion E et al. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn’s disease. Am J Gastroenterol 2003; 98(11):2479–2484.

    PubMed  CAS  Google Scholar 

  147. Abreu MT, Taylor KD, Lin YC et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002; 123(3):679–688.

    PubMed  CAS  Google Scholar 

  148. Radlmayr M, Torok HP, Martin K et al. The c-insertion mutation of the NOD2 gene is associated with flstulizing and fibrostenotic phenotypes in Crohn’s disease. Gastroenterology 2002; 122(7):2091–2092.

    PubMed  CAS  Google Scholar 

  149. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20:495–549.

    PubMed  CAS  Google Scholar 

  150. Barbara G, Xing Z, Hogaboam CM et al. Interleukin 10 gene transfer prevents experimental colitis in rats. Gut 2000; 46(3):344–349.

    PubMed  CAS  Google Scholar 

  151. Hogaboam CM, Vallance BA, Kumar A et al. Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease. J Clin Invest 1997; 100(11):2766–2776.

    PubMed  CAS  Google Scholar 

  152. Neurath MF, Fuss I, Kelsall BL et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995; 182(5):1281–1290.

    PubMed  CAS  Google Scholar 

  153. Mombaerts P, Mizoguchi E, Grusby MJ et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993; 75(2):274–282.

    PubMed  CAS  Google Scholar 

  154. Pauleau AL, Murray PJ. Role of nod2 in the response of macrophages to toll-like receptor agonists. Mol Cell Biol 2003; 23(21):7531–7539.

    PubMed  CAS  Google Scholar 

  155. Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NODI in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 4(7):702–707.

    PubMed  CAS  Google Scholar 

  156. Girardin SE, Boneca IG, Carneiro LA et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 2003; 300(5625):1584–1587.

    PubMed  CAS  Google Scholar 

  157. Madara JL, Podolsky DK, King NW et al. Characterization of spontaneous colitis in cotton-top tamarins (Saguinus oedipus) and its response to sulfasalazine. Gastroenterology 1985; 88(1 Pt 1):13–19.

    PubMed  CAS  Google Scholar 

  158. Sundberg JP, Elson CO, Bedigian H et al. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994; 107(6):1726–1735.

    PubMed  CAS  Google Scholar 

  159. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse Pl/Yit strain. Gut 1998; 43(1):71–78.

    PubMed  CAS  Google Scholar 

  160. Kosiewicz MM, Nast CC, Krishnan A et al. Thl-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest 2001; 107(6):695–702.

    PubMed  CAS  Google Scholar 

  161. Morris GP, Beck PL, Herridge MS et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989; 96(3):795–803.

    PubMed  CAS  Google Scholar 

  162. Boirivant M, Fuss IJ, Chu A et al. Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998; 188(10):1929–1939.

    PubMed  CAS  Google Scholar 

  163. MacPherson BR, Pfeiffer CJ. Experimental production of diffuse colitis in rats. Digestion 1978; 17(2):135–150.

    PubMed  CAS  Google Scholar 

  164. Yamada T, Sartor RB, Marshall S et al. Mucosal injury and inflammation in a model of chronic granulomatous colitis in rats. Gastroenterology 1993; 104(3):759–771.

    PubMed  CAS  Google Scholar 

  165. Hodgson HJ, Potter BJ, Skinner J et al. Immune-complex mediated colitis in rabbits. An experimental model. Gut 1978; 19(3):225–232.

    PubMed  CAS  Google Scholar 

  166. Watt J, Marcus R. Ulcerative colitis in the guinea-pig caused by seaweed extract. J Pharm Pharmacol 1969; 21(Suppl):187S+.

    Google Scholar 

  167. Okayasu I, Hatakeyama S, Yamada M et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990; 98(3):694–702.

    PubMed  CAS  Google Scholar 

  168. Stewart TH, Hetenyi C, Rowsell H et al. Ulcerative enterocolitis in dogs induced by drugs. J Pathol 1980; 131(4):363–378.

    PubMed  CAS  Google Scholar 

  169. Bucy RP, Xu XY, Li J et al. Cydosporin A-induced autoimmune disease in mice. J Immunol 1993; 151(2):1039–1050.

    PubMed  CAS  Google Scholar 

  170. Rachmilewitz D, Okon E, Karmeli F. Sulphydryl blocker induced small intestinal inflammation in rats: A new model mimicking Crohn’s disease. Gut 1997; 41(3):358–365.

    PubMed  CAS  Google Scholar 

  171. Quinn TC, Taylor HR, Schachter J. Experimental proctitis due to rectal infection with Chlamydia trachomatis in nonhuman primates. J Infect Dis 1986; 154(5):833–841.

    PubMed  CAS  Google Scholar 

  172. Shomer NH, Dangler CA, Schrenzel MD et al. Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect Immun 1997; 65(11):4858–4864.

    PubMed  CAS  Google Scholar 

  173. Cahill RJ, Foltz CJ, Fox JG et al. Inflammatory bowel disease: An immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect Immun 1997; 65(8):3126–3131.

    PubMed  CAS  Google Scholar 

  174. Hammer RE, Maika SD, Richardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: An animal model of HLA-B27-associated human disorders. Cell 1990; 63(5):1099–1112.

    PubMed  CAS  Google Scholar 

  175. Watanabe M, Ueno Y, Yajima T et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 1998; 187(3):389–402.

    PubMed  CAS  Google Scholar 

  176. Hermiston ML, Gordon JI. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 1995; 270(5239):1203–1207.

    PubMed  CAS  Google Scholar 

  177. Clegg CH, Rulffes JT, Haugen HS et al. Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice. Int Immunol 1997; 9(8):1111–1122.

    PubMed  CAS  Google Scholar 

  178. Bush TG, Savidge TC, Freeman TC et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 1998; 93(2):189–201.

    PubMed  CAS  Google Scholar 

  179. Hahm KB, Im YH, Parks TW et al. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 2001; 49(2):190–198.

    PubMed  CAS  Google Scholar 

  180. Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359(6397):693–699.

    PubMed  CAS  Google Scholar 

  181. Takeda K, Clausen BE, Kaisho T et al. Enhanced Thl activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999; 10(1):39–49.

    PubMed  CAS  Google Scholar 

  182. Wirtz S, Finotto S, Kanzler S et al. Cutting edge: Chronic intestinal inflammation in STAT-4 transgenic mice: Characterization of disease and adoptive transfer by TNF-plus IFN-gamma-producing CD4+ T cells that respond to bacterial antigens. J Immunol 1999; 162(4):1884–1888.

    PubMed  CAS  Google Scholar 

  183. Mashimo H, Wu DC, Podolsky DK et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 1996; 274(5285):262–265.

    PubMed  CAS  Google Scholar 

  184. Sadlack B, Merz H, Schorle H et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75(2):253–261.

    PubMed  CAS  Google Scholar 

  185. Willerford DM, Chen J, Ferry JA et al. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3(4):521–530.

    PubMed  CAS  Google Scholar 

  186. Kuhn R, Lohler J, Rennick D et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75(2):263–274.

    PubMed  CAS  Google Scholar 

  187. Kontoyiannis D, Pasparakis M, Pizarro TT et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies. Immunity 1999; 10(3):387–398.

    PubMed  CAS  Google Scholar 

  188. Fox JG, Rogers AB, Whary MT et al. Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Campyiobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect Immun 2004; 72(2):1116–1125.

    PubMed  CAS  Google Scholar 

  189. Rudolph U, Finegold MJ, Rich SS et al. Gi2 alpha protein deficiency: A model of inflammatory bowel disease. J Clin Immunol 1995; 15(6 Suppl):101S–105S.

    PubMed  CAS  Google Scholar 

  190. Baribault H, Penner J, Iozzo RV et al. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev 1994; 8(24):2964–2973.

    PubMed  CAS  Google Scholar 

  191. Spencer SD, Di Marco F, Hooley J et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998; 187(4):571–578.

    PubMed  CAS  Google Scholar 

  192. Snapper SB, Rosen FS, Mizoguchi E et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 1998; 9(1):81–91.

    PubMed  CAS  Google Scholar 

  193. Morrissey PJ, Charrier K, Braddy S et al. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993; 178(1):237–244.

    PubMed  CAS  Google Scholar 

  194. Hollander GA, Simpson SJ, Mizoguchi E et al. Severe colitis in mice with aberrant thymic selection. Immunity 1995; 3(1):27–38.

    PubMed  CAS  Google Scholar 

  195. Steinhoff U, Brinkmann V, Klemm U et al. Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells. Immunity 1999; 11(3):349–358.

    PubMed  CAS  Google Scholar 

  196. AGA. AGA technical review on celiac sprue. Gastroenterology 2001; 120(6):1526–1540.

    Google Scholar 

  197. Shan L, Molberg O, Parrot I et al. Structural basis for gluten intolerance in celiac sprue. Science 2002; 297(5590):2275–2279.

    PubMed  CAS  Google Scholar 

  198. Teshigawara K, Kannagi R, Noro N et al. Possible involvement of transglutaminase in endocytosis and antigen presentation. Microbiol Immunol 1985; 29(8):737–750.

    PubMed  CAS  Google Scholar 

  199. Ciccocioppo R, Di Sabatino A, Ara C et al. Gliadin and tissue transglutaminase complexes in normal and coeliac duodenal mucosa. Clin Exp Immunol 2003; 134(3):516–524.

    PubMed  CAS  Google Scholar 

  200. Lundin KE, Scott H, Hansen T et al. Gliadin-specific, HLA-DQ(alpha l*0501, beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 1993; 178(1):187–196.

    PubMed  CAS  Google Scholar 

  201. Molberg O, McAdam SN, Korner R et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998; 4(6):713–717.

    PubMed  CAS  Google Scholar 

  202. Molberg O, McAdam S, Lundin KE et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol 2001; 31(5):1317–1323.

    PubMed  CAS  Google Scholar 

  203. Dieterich W, Ehnis T, Bauer M et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997; 3(7):797–801.

    PubMed  CAS  Google Scholar 

  204. Sulkanen S, Halttunen T, Laurila K et al. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 1998; 115(6):1322–1328.

    PubMed  CAS  Google Scholar 

  205. Dieterich W, Laag E, Schopper H et al. Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterology 1998; 115(6):1317–1321.

    PubMed  CAS  Google Scholar 

  206. Llorente MJ, Sebastian M, Fernandez-Acenero MJ et al. IgA antibodies against tissue transglutaminase in the diagnosis of celiac disease: Concordance with intestinal biopsy in children and adults. Clin Chem 2004; 50(2):451–453.

    PubMed  CAS  Google Scholar 

  207. Sollid LM, Thorsby E. HLA susceptibility genes in celiac disease: Genetic mapping and role in pathogenesis. Gastroenterology 1993; 105(3):910–922.

    PubMed  CAS  Google Scholar 

  208. Greco L, Romino R, Coto I et al. The first large population based twin study of coeliac disease. Gut 2002; 50(5):624–628.

    PubMed  CAS  Google Scholar 

  209. Zhong F, McCombs CC, Olson JM et al. An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland. Nat Genet 1996; 14(3):329–333.

    PubMed  CAS  Google Scholar 

  210. Greco L, Corazza G, Babron MC et al. Genome search in celiac disease. Am J Hum Genet 1998; 62(3):669–675.

    PubMed  CAS  Google Scholar 

  211. Naluai AT, Nilsson S, Gudjonsdottir AH et al. Genome-wide linkage analysis of Scandinavian affected sib-pairs supports presence of susceptibility loci for celiac disease on chromosomes 5 and 11. Eur J Hum Genet 2001; 9(12):938–944.

    PubMed  CAS  Google Scholar 

  212. Neuhausen SL, Feolo M, Farnham J et al. Linkage analysis of HLA and candidate genes for celiac disease in a North American family-based study. BMC Med Genet 2001; 2(1):12.

    PubMed  CAS  Google Scholar 

  213. Liu J, Juo SH, Holopainen P et al. Genomewide linkage analysis of celiac disease in Finnish families. Am J Hum Genet 2002; 70(1):51–59.

    PubMed  CAS  Google Scholar 

  214. Babron MC, Nilsson S, Adamovic S et al. Meta and pooled analysis of European coeliac disease data. Eur J Hum Genet 2003; 11(11):828–834.

    PubMed  CAS  Google Scholar 

  215. Rioux JD, Karinen H, Kocher K et al. Genomewide search and association studies in a Finnish celiac disease population: Identification of a novel locus and replication of the HLA and CTLA4 loci. Am J Med Genet epub ahead of print Sep 22, 2004.

    Google Scholar 

  216. Woolley N, Holopainen P, Ollikainen V et al. A new locus for coeliac disease mapped to chromosome 15 in a population isolate. Hum Genet 2002; 111(1):40–45.

    PubMed  CAS  Google Scholar 

  217. King AL, Yiannakou JY, Brett PM et al. A genome-wide family-based linkage study of coeliac disease. Ann Hum Genet 2000; 64 (Pt 6):479–490.

    PubMed  CAS  Google Scholar 

  218. Popat S, Bevan S, Braegger CP et al. Genome screening of coeliac disease. J Med Genet 2002; 39(5):328–331.

    PubMed  CAS  Google Scholar 

  219. Neuhausen SL, Feolo M, Camp NJ et al. Genome-wide linkage analysis for celiac disease in North American families. Am J Med Genet 2002; 111(1):1–9.

    PubMed  Google Scholar 

  220. Houlston RS, Tomlinson IP, Ford D et al. Linkage analysis of candidate regions for coeliac disease genes. Hum Mol Genet 1997; 6(8):1335–1339.

    PubMed  CAS  Google Scholar 

  221. Holopainen P, Arvas M, Sistonen P et al. CD28/CTLA4 gene region on chromosome 2q33 confers genetic susceptibility to celiac disease. A linkage and family-based association study. Tissue Antigens 1999; 53(5):470–475.

    PubMed  CAS  Google Scholar 

  222. Clot F, Fulchignoni-Lataud MC, Renoux C et al. Linkage and association study of the CTLA-4 region in coeliac disease for Italian and Tunisian populations. Tissue Antigens 1999; 54(5):527–530.

    PubMed  CAS  Google Scholar 

  223. Naluai AT, Nilsson S, Samuelsson L et al. The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens 2000; 56(4):350–355.

    PubMed  CAS  Google Scholar 

  224. Holopainen P, Mustalahti K, Uimari P et al. Candidate gene regions and genetic heterogeneity in gluten sensitivity. Gut 2001; 48(5):696–701.

    PubMed  CAS  Google Scholar 

  225. Greco L, Babron MC, Corazza GR et al. Existence of a genetic risk factor on chromosome 5q in Italian coeliac disease families. Ann Hum Genet 2001; 65(Pt 1):35–41.

    PubMed  CAS  Google Scholar 

  226. King AL, Fraser JS, Moodie SJ et al. Coeliac disease: Follow-up linkage study provides further support for existence of a susceptibility locus on chromosome 11p11. Ann Hum Genet 2001; 65(Pt 4):377–386.

    PubMed  CAS  Google Scholar 

  227. King AL, Moodie SJ, Fraser JS et al. CTLA-4/CD28 gene region is associated with genetic susceptibility to coeliac disease in UK families. J Med Genet 2002; 39(1):51–54.

    PubMed  CAS  Google Scholar 

  228. Popat S, Hearle N, Hogberg L et al. Variation in the CTLA4/CD28 gene region confers an increased risk of coeliac disease. Ann Hum Genet 2002; 66(Pt 2):125–137.

    PubMed  CAS  Google Scholar 

  229. Louka AS, Sollid LM. HLA in coeliac disease: Unravelling the complex genetics of a complex disorder. Tissue Antigens 2003; 61(2):105–117.

    PubMed  CAS  Google Scholar 

  230. Keuning JJ, Pena AS, van Leeuwen A et al. HLA-DW3 associated with coeliac disease. Lancet 1976; 1(7958):506–508.

    PubMed  CAS  Google Scholar 

  231. Ek J, Albrechtsen D, Solheim BG et al. Strong association between the HLA-Dw3-related B cell alloantigen-DRw3 and coeliac disease. Scand J Gastroenterol 1978; 13(2):229–233.

    PubMed  CAS  Google Scholar 

  232. Mearin ML, Biemond I, Pena AS et al. HLA-DR phenotypes in Spanish coeliac children: Their contribution to the understanding of the genetics of the disease. Gut 1983; 24(6):532–537.

    PubMed  CAS  Google Scholar 

  233. Tosi R, Vismara D, Tanigaki N et al. Evidence that celiac disease is primarily associated with a DC locus allelic specificity. Clin Immunol Immunopathol 1983; 28(3):395–404.

    PubMed  CAS  Google Scholar 

  234. Trabace S, Giunta A, Rosso M et al. HLA-ABC and DR antigens in celiac disease. A study in a pediatric Italian population. Vox Sang 1984; 46(2):102–106.

    PubMed  CAS  Google Scholar 

  235. McManus R, Wilson AG, Mansfield J et al. TNF2, a polymorphism of the tumour necrosis-alpha gene promoter, is a component of the celiac disease major histocompatibility complex haplotype. Eur J Immunol 1996; 26(9):2113–2118.

    PubMed  CAS  Google Scholar 

  236. Polvi A, Maki M, Collin P et al. TNF microsatellite alleles a2 and b3 are not primarily associated with celiac disease in the Finnish population. Tissue Antigens 1998; 51(5):553–555.

    PubMed  CAS  Google Scholar 

  237. de la Concha EG, Fernandez-Arquero M, Vigil P et al. Celiac disease and TNF promoter polymorphisms. Hum Immunol 2000; 61(5):513–517.

    PubMed  Google Scholar 

  238. Hahn-Zoric M, Hytonen AM, Hanson LA et al. Association of −1087 IL10 and −308 TNFA gene polymorphisms with serological markers of coeliac disease. J Clin Immunol 2003; 23(4):291–296.

    PubMed  CAS  Google Scholar 

  239. Louka AS, Lie BA, Talseth B et al. Coeliac disease patients carry conserved HLA-DR3-DQ2 haplotypes revealed by association of TNF alleles. Immunogenetics 2003; 55(5):339–343.

    PubMed  CAS  Google Scholar 

  240. Partanen J, Milner C, Campbell RD et al. HLA-linked heat-shock protein 70 (HSP70-2) gene polymorphism and celiac disease. Tissue Antigens 1993; 41(1):15–19.

    PubMed  CAS  Google Scholar 

  241. Ramos-Arroyo MA, Feijoo E, Sanchez-Valverde F et al. Heat-shock protein 70-1 and HLA class II gene polymorphisms associated with celiac disease susceptibility in Navarra (Spain). Hum Immunol 2001; 62(8):821–825.

    PubMed  CAS  Google Scholar 

  242. de la Concha EG, Fernandez-Arquero M, Lopez-Nava G et al. Susceptibility to severe ulcerative colitis is associated with polymorphism in the central MHC gene IKBL. Gastroenterology 2000; 119(6):1491–1495.

    PubMed  Google Scholar 

  243. Fernandez L, Fernandez-Arquero M, Gual L et al. Triplet repeat polymorphism in the transmembrane region of the MICA gene in celiac disease. Tissue Antigens 2002; 59(3):219–222.

    PubMed  CAS  Google Scholar 

  244. Rueda B, Pascual M, Lopez-Nevot MA et al. Association of MICA-A5.1 allele with susceptibility to celiac disease in a family study. Am J Gastroenterol 2003; 98(2):359–362.

    PubMed  CAS  Google Scholar 

  245. Van Belzen MJ, Koeleman BP, Crusius JB et al. Defining the contribution of the HLA region to DQ2-positive coeliac disease patients. Genes Immun 2004; 5(3):215–220.

    PubMed  Google Scholar 

  246. Roschmann E, Wienker TF, Volk BA. Role of T cell receptor delta gene in susceptibility to celiac disease. J Mol Med 1996; 74(2):93–98.

    PubMed  CAS  Google Scholar 

  247. Rueda B, Lopez-Nevot MA, Pascual M et al. Polymorphism of the inducible nitric oxide synthase gene in celiac disease. Hum Immunol 2002; 63(11):1062–1065.

    PubMed  CAS  Google Scholar 

  248. Louka AS, Stensby EK, Ek J et al. Coeliac disease candidate genes: No association with functional polymorphisms in matrix metalloproteinase 1 and 3 gene promoters. Scand J Gastroenterol 2002; 37(8):931–935.

    PubMed  CAS  Google Scholar 

  249. Louka AS, Torinsson Naluai A, D’Alfonso S et al. The IL12B gene does not confer susceptibility to coeliac disease. Tissue Antigens 2002; 59(1):70–72.

    PubMed  CAS  Google Scholar 

  250. Seegers D, Borm ME, van Belzen MJ et al. IL12B and IRF1 gene polymorphisms and susceptibility to celiac disease. Eur J Immunogenet 2003; 30(6):421–425.

    PubMed  CAS  Google Scholar 

  251. Perez De Nanclares G, Bilbao JR, Calvo B et al. 5′-Insulin gene VNTR polymorphism is specific for type 1 diabetes: No association with celiac or Addison’s disease. Ann NY Acad Sci 2003; 1005:319–323.

    PubMed  Google Scholar 

  252. Aldersley MA, Hamlin PJ, Jones PF et al. No polymorphism in the tissue transglutaminase gene detected in coeliac disease patients. Scand J Gastroenterol 2000; 35(1):61–63.

    PubMed  CAS  Google Scholar 

  253. Van Belzen MJ, Mulder CJ, Pearson PL et al. The tissue transglutaminase gene is not a primary factor predisposing to celiac disease. Am J Gastroenterol 2001; 96(12):3337–3340.

    PubMed  Google Scholar 

  254. Bouguerra F, Dugoujon JM, Babron MC et al. Susceptibility to coeliac disease in Tunisian children and GM immunoglobulin allotypes. Eur J Immunogenet 1999; 26(4):293–297.

    PubMed  CAS  Google Scholar 

  255. Van Belzen MJ, Mulder CJJ, Zhernakova A et al. CTLA4 +49A/G and CT60 polymorphisms in Dutch coeliac disease patients. Eur J Hum Genet 2004; 12(9):782–785.

    PubMed  Google Scholar 

  256. Boniotto M, Braida L, Spano A et al. Variant mannose-binding lectin alleles are associated with celiac disease. Immunogenetics 2002; 54(8):596–598.

    PubMed  CAS  Google Scholar 

  257. Haimila K, Smedberg T, Mustalahti K et al. Genetic association of coeliac disease susceptibility to polymorphisms in the ICOS gene on chromosome 2q33. Genes Immun 2004; 5(2):85–92.

    PubMed  CAS  Google Scholar 

  258. Djilali-Saiah I, Schmitz J, Harfouch-Hammoud E et al. CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. Gut 1998; 43(2):187–189.

    PubMed  CAS  Google Scholar 

  259. Popat S, Hearle N, Wixey J et al. Analysis of the CTLA4 gene in Swedish coeliac disease patients. Scand J Gastroenterol 2002; 37(1):28–31.

    PubMed  CAS  Google Scholar 

  260. Mora B, Bonamico M, Indovina P et al. CTLA-4 +49 A/G dimorphism in Italian patients with celiac disease. Hum Immunol 2003; 64(2):297–301.

    PubMed  CAS  Google Scholar 

  261. King AL, Moodie SJ, Fraser JS et al. Coeliac disease: Investigation of proposed causal variants in the CTLA4 gene region. Eur J Immunogenet 2003; 30(6):427–432.

    PubMed  CAS  Google Scholar 

  262. Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 2000; 1(3):170–184.

    PubMed  CAS  Google Scholar 

  263. Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423(6939):506–511.

    PubMed  CAS  Google Scholar 

  264. Batt RM, McLean L, Carter MW. Sequential morphologic and biochemical studies of naturally occurring wheat-sensitive enteropathy in Irish setter dogs. Dig Dis Sci 1987; 32(2):184–194.

    PubMed  CAS  Google Scholar 

  265. Polvi A, Garden OA, Houlston RS et al. Genetic susceptibility to gluten sensitive enteropathy in Irish setter dogs is not linked to the major histocompatibility complex. Tissue Antigens 1998; 52(6):543–549.

    PubMed  CAS  Google Scholar 

  266. Manns MP, Luttig B, Obermayer-Straub P. Autoimmune diseases: The liver. In: Rose NR, McKay IR, eds. The Autoimmune Diseases. 3rd ed. New York: Academic Press, 1998:511–544.

    Google Scholar 

  267. Gupta R, Agarwal SR, Jain M et al. Autoimmune hepatitis in the Indian subcontinent: 7 years experience. J Gastroenterol Hepatol 2001; 16(10):1144–1148.

    PubMed  CAS  Google Scholar 

  268. Yachha SK, Srivastava A, Chetri K et al. Autoimmune liver disease in children. J Gastroenterol Hepatol 2001; 16(6):674–677.

    PubMed  CAS  Google Scholar 

  269. Johnson PJ, McFarlane IG. Meeting report: International Autoimmune Hepatitis Group. Hepatology 1993; 18(4):998–1005.

    PubMed  CAS  Google Scholar 

  270. Manns MP, Obermayer-Straub P. Cytochromes P450 and uridine triphosphate-gjucuronosyltransferases: Model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease. Hepatology 1997; 26(4):1054–1066.

    PubMed  CAS  Google Scholar 

  271. Zanger UM, Hauri HP, Loeper J et al. Antibodies against human cytochrome P-450dbl in autoimmune hepatitis type II. Proc Natl Acad Sci USA 1988; 85(21):8256–8260.

    PubMed  CAS  Google Scholar 

  272. Czaja AJ, Manns MP. The validity and importance of subtypes in autoimmune hepatitis: A point of view. Am J Gastroenterol 1995; 90(8):1206–1211.

    PubMed  CAS  Google Scholar 

  273. Manns M, Gerken G, Kyriatsoulis A et al. Characterisation of a new subgroup of autoimmune chronic active hepatitis by autoantibodies against a soluble liver antigen. Lancet 1987; 1(8528):292–294.

    PubMed  CAS  Google Scholar 

  274. Strassburg CP, Obermayer-Straub P, Manns MP. Autoimmunity in hepatitis C and D virus infection. J Viral Hepat 1996; 3(2):49–59.

    PubMed  CAS  Google Scholar 

  275. Goldstein NS, Bayati N, Silverman AL et al. Minocycline as a cause of drug-induced autoimmune hepatitis. Report of four cases and comparison with autoimmune hepatitis. Am J Clin Pathol 2000; 114(4):591–598.

    PubMed  CAS  Google Scholar 

  276. Czaja AJ, Donaldson PT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev 2000; 174:250–259.

    PubMed  CAS  Google Scholar 

  277. Czaja AJ, Souto EO, Bittencourt PL et al. Clinical distinctions and pathogenic implications of type 1 autoimmune hepatitis in Brazil and the United States. J Hepatol 2002; 37(3):302–308.

    PubMed  Google Scholar 

  278. Agarwal K, Jones DE, Daly AK et al. CTLA-4 gene polymorphism confers susceptibility to primary biliary cirrhosis. J Hepatol 2000; 32(4):538–541.

    PubMed  CAS  Google Scholar 

  279. Djilali-Saiah I, Ouellette P, Caillat-Zucman S et al. CTLA-4/CD 28 region polymorphisms in children from families with autoimmune hepatitis. Hum Immunol 2001; 62(12):1356–1362.

    PubMed  CAS  Google Scholar 

  280. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology 2002; 35(1):126–131.

    PubMed  CAS  Google Scholar 

  281. Vogel A, Strassburg CP, Manns MP. 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: Evidence for a genetic link. Genes Immun 2003; 4(1):79–81.

    PubMed  CAS  Google Scholar 

  282. Manabe K, Hibberd ML, Donaldson PT et al. T-cell receptor constant beta germline gene polymorphisms and susceptibility to autoimmune hepatitis. Gastroenterology 1994; 106(5):1321–1325.

    PubMed  CAS  Google Scholar 

  283. Whittingham S, Mathews JD, Schanfield MS et al. Interaction of HLA and Gm in autoimmune chronic active hepatitis. Clin Exp Immunol 1981; 43(1):80–86.

    PubMed  CAS  Google Scholar 

  284. Cookson S, Constantini PK, Clare M et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology 1999; 30(4):851–856.

    PubMed  CAS  Google Scholar 

  285. Czaja AJ, Cookson S, Constantini PK et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology 1999; 117(3):645–652.

    PubMed  CAS  Google Scholar 

  286. Vogel A, Liermann H, Harms A et al. Autoimmune regulator AIRE: Evidence for genetic differences between autoimmune hepatitis and hepatitis as part of the autoimmune polyglandular syndrome type 1. Hepatology 2001; 33(5):1047–1052.

    PubMed  CAS  Google Scholar 

  287. Agarwal K, Czaja AJ, Jones DE et al. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology 2000; 31(1):49–53.

    PubMed  CAS  Google Scholar 

  288. Bittencourt PL, Palacios SA, Cancado EL et al. Cytotoxic T lymphocyte antigen-4 gene polymorphisms do not confer susceptibility to autoimmune hepatitis types 1 and 2 in Brazil. Am J Gastroenterol 2003; 98(7):1616–1620.

    PubMed  CAS  Google Scholar 

  289. Jaeckel E. Animal models of autoimmune hepatitis. Semin Liver Dis 2002; 22(4):325–338.

    PubMed  Google Scholar 

  290. Peters MG. Animal models of autoimmune liver disease. Immunol Cell Biol 2002; 80(1):113–116.

    PubMed  Google Scholar 

  291. Howell CD. Animal models of autoimmunity. Clin Liver Dis 2002; 6(3):487–495.

    Google Scholar 

  292. Lohse AW, Brunner S, Kyriatsoulis A et al. Autoantibodies in experimental autoimmune hepatitis. J Hepatol 1992; 14(1):48–53.

    PubMed  CAS  Google Scholar 

  293. Sadlack B, Lohler J, Schorle H et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 1995; 25(11):3053–3059.

    PubMed  CAS  Google Scholar 

  294. Gorham JD, Lin JT, Sung JL et al. Genetic regulation of autoimmune disease: BALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. J Immunol 2001; 166(10):6413–6422.

    PubMed  CAS  Google Scholar 

  295. Alper CA, Awdeh Z, Yunis EJ. Conserved, extended MHC haplotypes. Exp Clin Immunogenet 1992; 9(2):58–71.

    PubMed  CAS  Google Scholar 

  296. Cullen M, Perfetto SP, Klitz W et al. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am J Hum Genet 2002; 71(4):759–776.

    PubMed  Google Scholar 

  297. Walsh EC, Mather KA, Schaffner SF et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73(3):580–590.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Tello-Ruiz, M.K., Walsh, E.C., Rioux, J.D. (2006). Gastroenterologic and Hepatic Diseases. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_7

Download citation

Publish with us

Policies and ethics