Skip to main content

Genetic Models of HSF Function

  • Chapter
Cell Stress Proteins

Part of the book series: Protein Reviews ((PRON,volume 7))

  • 686 Accesses

Abstract

Since Ritossa’s seminal discovery in 1962 that the puffing pattern changes of Drosophila salivary gland polytene chromosomes can be induced by heat shock and chemical treatment (Ritossa, 1962), the heat shock response (HSR) has served as an excellent model and paradigm of inducible gene expression. During the ensuing decades considerable evidence has accumulated, from diverse areas of biology, about the regulation of the stress response during development, homeostatic maintenance of organs and organisms, and pathophysiological conditions. From bacteria to man, environmental stress, cell growth, differentiation, and pathophysiological states are all known to induce the rapid and reversible synthesis of evolutionary conserved set of proteins commonly termed, heat shock proteins (HSPs). HSPs, acting as molecular chaperones, play essential roles in protein folding, trafficking, higher order assembly and degradation of proteins thereby ensuring survival under both stressful and extreme physiological conditions (Lindquist, 1986; Lindquist and Craig, 1988; Morimoto, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abravaya, K., Myers, M. P., Murphy, S. P., and Morimoto, R. I. (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6(7):1153–64.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S. G., and Thiele, D. J. (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17(4): 516–28.

    Article  PubMed  CAS  Google Scholar 

  • Alastalo, T. P., Lonnstrom, M., Leppa, S., Kaarniranta, K., Pelto-Huikko, M., Sistonen, L., and Parvinen, M. (1998) Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp Cell Res 240(1): 16–27.

    Article  PubMed  CAS  Google Scholar 

  • Ali, A., Bharadwaj, S., O’Carroll, R., and Ovsenek, N. (1998). HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–60.

    PubMed  CAS  Google Scholar 

  • Baler, R., Dahl, G., and Voellmy, R. (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13(4):2486–96.

    PubMed  CAS  Google Scholar 

  • Baler, R., Welch, W. J., and Voellmy, R. (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117(6):1151–9.

    Article  PubMed  CAS  Google Scholar 

  • Bu, L., Jin, Y., Chu, R., Ban, A., Eiberg, H., Andres, L., Jiang, H., Zheng, G., Qian, M., et al. (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31(3):276–8.

    Article  PubMed  CAS  Google Scholar 

  • Christians, E., and Benjamin I. J. (2005) A murine world without HSFs: Meeting report. Cell Stress Chap 10(4):265–7.

    Article  Google Scholar 

  • Christians, E., Davis, A. A., Thomas, S. D., and Benjamin, I. J. (2000) Maternal effect of Hsf1 on reproductive success. Nature 407(6805):693–4.

    Article  PubMed  CAS  Google Scholar 

  • Christians, E. S., Zhou, Q., Renard, J., and Benjamin, I. J. (2003) Heat shock proteins in mammalian development. Semin Cell Dev Biol 14(5):283–90.

    Article  PubMed  CAS  Google Scholar 

  • Clos, J., Westwood, J.T., Becker, P. B., Wilson, S., Lambert, K., and Wu, C. (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63(5):1085–97.

    Article  PubMed  CAS  Google Scholar 

  • Cotto, J. J., Kline, M., and Morimoto, R. I. (1996). Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem 271:3355–8.

    Article  PubMed  CAS  Google Scholar 

  • Fairfield, D. A., Lomax, M. I., Dootz, G. A., Chen, S., Galecki, A. T., Benjamin, I. J., Dolan, D. F., and Altschuler, R. A. (2005) Heat shock factor 1-deficient mice exhibit decreased recovery of hearing following noise overstimulation. J Neurosci Res 81(4): 589–96.

    Article  PubMed  CAS  Google Scholar 

  • Fiorenza, M. T., Farkas, T., Dissing, M., Kolding, D., and Zimarino, V. (1995) Complex expression of murine heat shock transcription factors. Nucleic Acids Res 23(3): 467–74.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, M., Izu, H., Seki, K., Fukuda, K., Nishida, T., Yamada, S., Kato, K., Yonemura, S., Inouye, S., and Nakai, A. (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23(21):4297–306.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, G. J., Prentice, H., and Kingston, R. E. (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13(2):749–61.

    PubMed  CAS  Google Scholar 

  • Guettouche, T., Boellmann, F., Lane, W. S., and Voellmy, R. (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6(1):4.

    Article  PubMed  Google Scholar 

  • Hoj, A., and Jakobsen, B. K. (1994). Ashort element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. Embo J 13:2617–24.

    PubMed  CAS  Google Scholar 

  • Hong, Y., and Sarge, K. D. (1999) Regulation of protein phosphatase 2A activity by heat shock transcription factor 2. J Biol Chem 274(19):12967–70.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S., Katsuki, K., Izu, H., Fujimoto, M., Sugahara, K., Yamada, S., Shinkai, Y., Oka, Y., Katoh, Y., and Nakai, A. (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23(16):5882–95.

    Article  PubMed  CAS  Google Scholar 

  • Izu, H., Inouye, S., Fujimoto, M., Shiraishi, K., Naito, K., and Nakai, A. (2004) Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol Reprod 70(1):18–24.

    Article  PubMed  CAS  Google Scholar 

  • Jedlicka, P., Mortin, M. A., and Wu, C. (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16(9):2452–62.

    Article  PubMed  CAS  Google Scholar 

  • Kallio, M., Chang, Y., Manuel, M., Alastalo, T. P., Rallu, M., Gitton, Y., Pirkkala, L., Loones, M. T., Paslaru, L., Larney, S., et al. (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21(11):2591–601.

    Article  PubMed  CAS  Google Scholar 

  • Kline, M. P., and Morimoto, R. I. (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–15.

    PubMed  CAS  Google Scholar 

  • Knauf, U., Newton, E. M., Kyriakis, J., and Kingston, R. E. (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10(21):2782–93.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. (1986) The heat-shock response. Annu Rev Biochem 55:1151–91.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S., and Craig, E. A. (1988) The heat-shock proteins. Annu Rev Genet 22:631–77.

    Article  PubMed  CAS  Google Scholar 

  • Lis, J., andWu, C. (1993) Protein traffic on the heat shock promoter: Parking, stalling, and trucking along. Cell 74(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, D. R., Christians, E., Forster, M., Xiao, X., Connell, P., Plumier, J. C., Zuo, X., Richardson, J., Morgan, S., and Benjamin, I. J. (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22(22):8005–14.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, D. R., Xiao, X., Shao, L., Graves, K., and Benjamin, I. J. (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273(13):7523–8.

    Article  PubMed  CAS  Google Scholar 

  • Min, J. N., Zhang, Y., Moskophidis, D., and Mivechi, N. F. (2004) Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40(4):205–17.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–96.

    Article  PubMed  CAS  Google Scholar 

  • Mosser, D. D., Duchaine, J., and Massie, B. (1993) The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13:5427–38.

    PubMed  CAS  Google Scholar 

  • Nakai, A., and Morimoto, R. I. (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13(4):1983–97.

    PubMed  CAS  Google Scholar 

  • Nakai, A., Suzuki, M., and Tanabe, M. (2000) Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J 19(7):1545–54.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R. I., and Nagata, K. (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17(1):469–81.

    PubMed  CAS  Google Scholar 

  • Orosz, A., Wisniewski, J., and Wu, C. (1996) Regulation of Drosophila heat shock factor trimerization: Global sequence requirements and independence of nuclear localization. Mol Cell Biol 16(12):7018–30.

    PubMed  CAS  Google Scholar 

  • Preville, X., Salvemini, F., Giraud, S., Chaufour, S., Paul, C., Stepien, G., Ursini, M. V., and Arrigo, A. P. (1999) Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 247(1):61–78.

    Article  PubMed  CAS  Google Scholar 

  • Rabindran, S. K., Giorgi, G., Clos, J., and Wu, C. (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA 88(16):6906–10.

    Article  PubMed  CAS  Google Scholar 

  • Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J., and Wu, C. (1993) Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259(5092):230–4.

    Article  PubMed  CAS  Google Scholar 

  • Rabindran, S. K., Wisniewski, J., Li, L., Li, G. C., and Wu, C. (1994). Interaction between heat shock factor and hsp70 is insufficient to suppress induction of DNA-binding activity in vivo. Mol Cell Biol 14:6552–60.

    PubMed  CAS  Google Scholar 

  • Rallu, M., Loones, M., Lallemand, Y., Morimoto, R., Morange, M., and Mezger, V. (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci USA 94(6):2392–7.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa, F. (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–73.

    Article  CAS  Google Scholar 

  • Roeder, G. S., and Bailis, J. M. (2000) The pachytene checkpoint. Trends Genet 16(9):395–403.

    Article  PubMed  CAS  Google Scholar 

  • Santos, S. D., and Saraiva, M. J. (2004) Enlarged ventricles, astrogliosis and neurodegeneration in heat shock factor 1 null mouse brain. Neuroscience 126(3):657–63.

    Article  PubMed  CAS  Google Scholar 

  • Sarge, K. D., Park-Sarge, O. K., Kirby, J. D., Mayo, K. E., and Morimoto, R. I. (1994) Expression of heat shock factor 2 in mouse testis: Potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol Reprod 50(6): 1334–43.

    Article  PubMed  CAS  Google Scholar 

  • Sarge, K. D., Zimarino, V., Holm, K., Wu, C., and Morimoto, R. I. (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5(10):1902–11.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, K. D., Rose, S., Zott, W., Schoffl, F., and Nover, L. (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9(13):4495–501.

    PubMed  CAS  Google Scholar 

  • Schuetz, T. J., Gallo, G. J., Sheldon, L., Tempst, P., and Kingston, R. E. (1991) Isolation of a cDNA for HSF2: Evidence for two heat shock factor genes in humans. Proc Natl Acad Sci USA 88(16):6911–5.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Mosser, D. D., and Morimoto, R. I. (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12(5):654–66.

    Article  PubMed  CAS  Google Scholar 

  • Sistonen, L., Sarge, K. D., Phillips, B., Abravaya, K., and Morimoto, R. I. (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12(9):4104–11.

    PubMed  CAS  Google Scholar 

  • Sorger, P. K., and Pelham, H. R. (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54(6):855–64.

    Article  PubMed  CAS  Google Scholar 

  • Sugahara, K., Inouye, S., Izu, H., Katoh, Y., Katsuki, K., Takemoto, T., Shimogori, H., Yamashita, H., and Nakai, A. (2003) Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 182(1-2): 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, M., Sasai, N., Nagata, K., Liu, X. D., Liu, P. C., Thiele, D. J., and Nakai, A. (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274(39):27845–56.

    Article  PubMed  CAS  Google Scholar 

  • Voellmy, R. (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chap 9(2):122–33.

    Article  CAS  Google Scholar 

  • Wang, G., Ying, Z., Jin, X., Tu, N., Zhang, Y., Phillips, M., Moskophidis, D., and Mivechi, N. F. (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38(2):66–80.

    Article  PubMed  Google Scholar 

  • Wang, G., Zhang, J., Moskophidis, D., and Mivechi, N. F. (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36(1):48–61.

    Article  PubMed  CAS  Google Scholar 

  • Westwood, J. T., Clos, J., and Wu, C. (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353(6347):822–7.

    Article  PubMed  CAS  Google Scholar 

  • Wiederrecht, G., Seto, D., and Parker, C. S. (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6):841–53.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, J., Orosz, A., Allada, R., and Wu, C. (1996) The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain. Nucleic Acids Res 24(2):367–74.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. (1995) Heat shock transcription factors: Structure and regulation. Annu Rev Cell Dev Biol 11:441–69.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, X., Zuo, X., Davis, A. A., McMillan, D. R., Curry, B. B., Richardson, J. A., and Benjamin, I. J. (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18(21):5943–52.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L. J., Christians, E. S., Liu, L., Xiao, X., Sohal, R. S., and Benjamin, I. J. (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21(19):5164–72.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L. J., Rajasekaran, N. S., Sathyanarayanan, S., and Benjamin, I. J. (2005) Mouse HSF1 disruption perturbs redox state and increases mitochondrial oxidative stress in kidney. Antioxid Redox Signal 7(3-4):465–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Huang, L., Zhang, J., Moskophidis, D., and Mivechi, N. F. (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86(2):376–93.

    Article  PubMed  CAS  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D. F., and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–80.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, J., Rungger, D., and Voellmy, R. (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15(8):4319–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Orosz, A., Benjamin, I.J. (2007). Genetic Models of HSF Function. In: Calderwood, S.K. (eds) Cell Stress Proteins. Protein Reviews, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39717-7_5

Download citation

Publish with us

Policies and ethics