Heat Shock Proteins in the Progression of Cancer

  • Stuart K. Calderwood
  • Abdul Khalique
  • Daniel R. Ciocca
Part of the Protein Reviews book series (PRON, volume 7)


The cohort of heat shock proteins (HSP) induced by cell stress becomes expressed at high levels in a wide range of tumors, and elevated levels of HSP are closely associated with a poor prognosis and treatment resistance. Increased HSP transcription in tumor cells is due both to loss of p53 function and elevated expression of proto-oncogenes such as HER2 and c-Myc and plays an essential role in tumorigenesis. The HSP family members overexpressed in cancer play overlapping, essential roles in tumor growth both by promoting autonomous cell proliferation and by inhibiting multiple death pathways. The HSP have thus become important and novel targets for rational anti-cancer drug design and HSP 90 inhibitors such as geldanomycin and 17-AAG are currently showing much promise in clinical trial while elevated HSP in tumors form the basis for chaperone-based immunotherapy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agoff, S. N., Hou, J., Linzer, D. I., and Wu, B. (1993) Regulation of the human hsp70 promoter by p53. Science 259:84–7.PubMedCrossRefGoogle Scholar
  2. Arrigo, A. P. (2005) Heat shock proteins as molecular chaperones. Med Sci (Paris) 21:619–25.Google Scholar
  3. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., and Calderwood, S. K. (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–42.PubMedCrossRefGoogle Scholar
  4. Assimakopoulou, M. (2000) Human meningiomas: Immunohistochemical localization of progesterone receptor and heat shock protein 27 and absence of estrogen receptor and PS2. Cancer Detect Prev 24:163–8.PubMedGoogle Scholar
  5. Assimakopoulou, M., Sotiropoulou-Bonikou, G., Maraziotis, T., and Varakis, I. (1997) Prognostic significance of Hsp-27 in astrocytic brain tumors: An immunohistochemical study. Anticancer Res 17:2677–82.PubMedGoogle Scholar
  6. Athanassiadou, P., Petrakakou, E., Sakelariou, V., Zerva, C., Liossi, A., Michalas, S., and Athanassiades, P. (1998) Expression of p53, bcl-2 and heat shock protein (hsp72) in malignant and benign ovarian tumours. Eur J Cancer Prev 7:225–31.PubMedCrossRefGoogle Scholar
  7. Bader, A. G., Kang, S., Zhao, L., and Vogt, P. K. (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5:921–9.PubMedCrossRefGoogle Scholar
  8. Banerji, U., Walton, M., Raynaud, F., Grimshaw, R., Kelland, L., Valenti, M., Judson, I., and Workman, P. (2005) Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res 11:7023–32.PubMedCrossRefGoogle Scholar
  9. Barnes, J. A., Dix, D. J., Collins, B. W., Luft, C., and Allen, J. W. (2001) Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress Chap 6:316–25.CrossRefGoogle Scholar
  10. Bases, R. (2005) Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70. Cell Stress Chap 10:37–45.CrossRefGoogle Scholar
  11. Bayerl, C., Dorfner, B., Rzany, B., Fuhrmann, E., Coelho, C. C., and Jung, E. G. (1999) Heat shock protein HSP 27 is expressed in all types of basal cell carcinoma in low and high risk UV exposure groups. Eur J Dermatol 9:281–4.PubMedGoogle Scholar
  12. Beere, H. M. (2001) Stressed to death: Regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001:RE1.PubMedCrossRefGoogle Scholar
  13. Bindra, R. S., and Glazer, P. M. (2005) Genetic instability and the tumor microenvironment: Towards the concept of microenvironment-induced mutagenesis. Mutat Res 569:75–85.PubMedGoogle Scholar
  14. Bonay, M., Soler, P., Riquet, M., Battesti, J. P., Hance, A. J., and Tazi, A. (1994) Expression of heat shock proteins in human lung and lung cancers. Am J Respir Cell Mol Biol 10:453–61.PubMedGoogle Scholar
  15. Boquete, A. L., Vargas Roig, L., Lopez, G. A., Gude, R., Binda, M. M., Gonzalez, A. D., Ciocca, D. R., and Bonfil, R. D. (2001) Differential anthracycline sensitivity in two related human colon carcinoma cell lines expressing similar levels of P-glycoprotein. Cancer Lett 165:111–6.PubMedCrossRefGoogle Scholar
  16. Bukau, B., and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–66.PubMedCrossRefGoogle Scholar
  17. Calderwood, S. K. (2005) Chaperones and slow death—a recipe for tumor immunotherapy. Trends Biotechnol 23:57–9.PubMedCrossRefGoogle Scholar
  18. Calderwood, S. K., Theriault, J. R., and Gong, J. (2005) Message In A Bottle: Role of the 70 kilodalton heat shock protein family in anti-tumor immunity. Eur J immunol in press.Google Scholar
  19. Camphausen, K., Moses, M. A., Beecken, W. D., Khan, M. K., Folkman, J., and O’Reilly, M. S. (2001) Radiation therapy to aprimary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–11.PubMedGoogle Scholar
  20. Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–22.PubMedCrossRefGoogle Scholar
  21. Cappello, F., Bellafiore, M., David, S., Anzalone, R., and Zummo, G. (2003a) Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Lett 196:35–41.PubMedCrossRefGoogle Scholar
  22. Cappello, F., Bellafiore, M., Palma, A., Marciano, V., Martorana, G., Belfiore, P., Martorana, A., Farina, F., Zummo, G., and Bucchieri, F. (2002) Expression of 60-kD heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 70: 83–8.PubMedCrossRefGoogle Scholar
  23. Cappello, F., Rappa, F., David, S., Anzalone, R., and Zummo, G. (2003b) Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 23:1325–31.PubMedGoogle Scholar
  24. Cardillo, M. R., Sale, P., and Di Silverio, F. (2000) Heat shock protein-90, IL-6 and IL-10 in bladder cancer. Anticancer Res 20:4579–83.PubMedGoogle Scholar
  25. Cashikar, A. G., Duennwald, M., and Lindquist, S. L. (2005) A chaperone pathway in protein disaggregation: HSP26 alters the nature of protein aggregates to facilitate reactivation by hsp104. J Biol Chem 280:23869–75.PubMedCrossRefGoogle Scholar
  26. Chae, H. D., Yun, J., and Shi, D. Y. (2005) Transcription repression of a CCAAT-binding transcription factor CBF/HSP70 by p53. Exp Mol Med 37:488–91.PubMedGoogle Scholar
  27. Chant, I. D., Rose, P. E., and Morris, A. G. (1995) Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol 90:163–8.PubMedCrossRefGoogle Scholar
  28. Chuma, M., Saeki, N., Yamamoto, Y., Ohta, T., Asaka, M., Hirohashi, S., and Sakamoto, M. (2004) Expression profiling in hepatocellular carcinoma with intrahepatic metastasis: identification of high-mobility group I(Y) protein as a molecular marker of hepatocellular carcinoma metastasis. Keio J Med 53:90–7.PubMedCrossRefGoogle Scholar
  29. Ciocca, D. R., and Calderwood, S. K. (2005) Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment applications. Cell Stress Chap 10:86–103.CrossRefGoogle Scholar
  30. Ciocca, D. R., Clark, G. M., Tandon, A. K., Fuqua, S. A., Welch, W. J., and McGuire, W. L. (1993) Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: Prognostic implications. J Natl Cancer Inst 85:570–4.PubMedCrossRefGoogle Scholar
  31. Ciocca, D. R., Fuqua, S. A., Lock-Lim, S., Toft, D. O., Welch, W. J., and McGuire, W. L. (1992) Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52:3648–54.PubMedGoogle Scholar
  32. Ciocca, D. R., Lo Castro, G., Alonio, L. V., Cobo, M. F., Lotfi, H., and Teyssie, A. (1992) Effect of human papillomavirus infection on estrogen receptor and heat shock protein hsp27 phenotype in human cervix and vagina. Int J Gynecol Pathol 11:113–21.PubMedCrossRefGoogle Scholar
  33. Ciocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L., and Fuqua, S. A. (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): A review. J Natl Cancer Inst 85:1558–70.PubMedCrossRefGoogle Scholar
  34. Ciocca, D. R., Puy, L. A., Edwards, D. P., Adams, D. J., and McGuire, W. L. (1985) The presence of an estrogen-regulated protein detected by monoclonal antibody in abnormal human endometrium. J Clin Endocrinol Metab 60:137–43.PubMedGoogle Scholar
  35. Ciocca, D. R., Puy, L. A., and Fasoli, L. C. (1989) Study of estrogen receptor, progesterone receptor, and the estrogen-regulated Mr 24,000 protein in patients with carcinomas of the endometrium and cervix. Cancer Res 49:4298–304.PubMedGoogle Scholar
  36. Ciocca, D. R., Puy, L. A., and Lo Castro, G. (1986) Localization of an estrogen-responsive protein in the human cervix during menstrual cycle, pregnancy, and menopause and in abnormal cervical epithelia without atypia. Am J Obstet Gynecol 155:1090–6.PubMedGoogle Scholar
  37. Ciocca, D. R., Rozados, V. R., Cuello Carrion, F. D., Gervasoni, S. I., Matar, P., and Scharovsky, O. G. (2003) Hsp25 and Hsp70 in rodent tumors treated with doxorubicin and lovastatin. Cell Stress Chap 8:26–36.CrossRefGoogle Scholar
  38. Concannon, C. G., FitzGerald, U., Holmberg, C. I., Szegezdi, E., Sistonen, L., and Samali, A. (2005) CD95-mediated alteration in Hsp70 levels is dependent on protein stabilization. Cell Stress Chap 10:59–65.CrossRefGoogle Scholar
  39. Cornford, P. A., Dodson, A. R., Parsons, K. F., Desmond, A. D., Woolfenden, A., Fordham, M., Neoptolemos, J. P., Ke, Y., and Foster, C. S. (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60: 7099–105.PubMedGoogle Scholar
  40. Craig, E. A., and Gross, C. A. (1991) Is HSP70 the molecular thermometer. Trends Biochem Sci 16:135–40.PubMedCrossRefGoogle Scholar
  41. Daniels, G. A., Sanchez-Perez, L., Diaz, R. M., Kottke, T., Thompson, J., Lai, M., Gough, M., Karim, M., Bushell, A., Chong, H., Melcher, A., Harrington, K., and Vile, R. G. (2004) A simple method to cure established tumors by inflammatory killing of normal cells. Nat Biotechnol 22:1125–32.PubMedCrossRefGoogle Scholar
  42. Davidson, D. J., Haskell, C., Majest, S., Kherzai, A., Egan, D. A., Walter, K. A., Schneider, A., Gubbins, E. F., Solomon, L., Chen, Z., Lesniewski, R., and Henkin, J. (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65:4663–72.PubMedCrossRefGoogle Scholar
  43. de Candia, P., Solit, D. B., Giri, D., Brogi, E., Siegel, P. M., Olshen, A. B., Muller, W. J., Rosen, N., and Benezra, R. (2003) Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc Natl Acad Sci USA 100:12337–42.PubMedCrossRefGoogle Scholar
  44. Delhaye, M., Gulbis, B., Galand, P., and Mairesse, N. (1992) Expression of 27-kD heat-shock protein isoforms in human neoplastic and nonneoplastic liver tissues. Hepatology 16:382–9.PubMedCrossRefGoogle Scholar
  45. Donaldson, S. S., Gordon, L. F., and Hahn, G. M. (1978) Protective effect of hyperthermia against the cytotoxicity of actinomycin D on Chinese hamster cells. Cancer Treat Rep 62:1489–95.PubMedGoogle Scholar
  46. Dong, D., Ko, B., Baumeister, P., Swenson, S., Costa, F., Markland, F., Stiles, C., Patterson, J. B., Bates, S. E., and Lee, A. S. (2005) Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65:5785–91.PubMedCrossRefGoogle Scholar
  47. Eustace, B. K., and Jay, D. G. (2004) Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 3:1098–100.PubMedGoogle Scholar
  48. Farooqui-Kabir, S. R., Budhram-Mahadeo, V., Lewis, H., Latchman, D. S., Marber, M. S., and Heads, R. J. (2004) Regulation of Hsp27 expression and cell survival by the POU transcription factor Brn3 a. Cell Death Differ 11:1242–4.PubMedCrossRefGoogle Scholar
  49. Fernandez, P. M., Tabbara, S. O., Jacobs, L. K., Manning, F. C., Tsangaris, T. N., Schwartz, A. M., Kennedy, K. A., and Patierno, S. R. (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26.PubMedCrossRefGoogle Scholar
  50. Fishel, R., and Kolodner, R. D. (1995) Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev 5:382–95.PubMedCrossRefGoogle Scholar
  51. Fishel, R., Lescoe, M. K., Rao, M. R., Copeland, N. G., Jenkins, N. A., Garber, J., Kane, M., and Kolodner, R. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–38.PubMedCrossRefGoogle Scholar
  52. Folkman, J. (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–8.PubMedGoogle Scholar
  53. Garrido, C., Mehlen, P., Fromentin, A., Hammann, A., Assem, M., Arrigo, A. P., and Chauffert, B. (1996) Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 237:653–9.PubMedCrossRefGoogle Scholar
  54. Gehrmann, M., Schonberger, J., Zilch, T., Rossbacher, L., Thonigs, G., Eilles, C., and Multhoff, G. (2005) Retinoid-and sodium-butyrate-induced decrease in heat shock protein 70 membrane-positive tumor cells is associated with reduced sensitivity to natural killer cell lysis, growth delay, and altered growth morphology. Cell Stress Chap 10: 136–46.CrossRefGoogle Scholar
  55. Georgopolis, C., and Welch, W. J. (1993) Role of the major heat shock proteins as molecular chaperones. Ann Rev Cell Biol 9:601–34.Google Scholar
  56. Gerner, E. W., and Schneider, M. J. (1975) Induced thermal resistance in HeLa cells. Nature 256:500–2.PubMedCrossRefGoogle Scholar
  57. Ghioni, P., Bolognese, F., Duijf, P. H., Van Bokhoven, H., Mantovani, R., and Guerrini, L. (2002) Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 22:8659–68.PubMedCrossRefGoogle Scholar
  58. Grammatikakis, N., Vultur, A., Ramana, C. V., Siganou, A., Schweinfest, C. W., Watson, D. K., and Raptis, L. (2002) The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 277:8312–20.PubMedCrossRefGoogle Scholar
  59. Graven, K. K., and Farber, H. W. (1998) Endothelial cell hypoxic stress proteins. J Lab Clin Med 132:456–63.PubMedCrossRefGoogle Scholar
  60. Guisbert, E., Herman, C., Lu, C. Z., and Gross, C. A. (2004) A chaperone network controls the heat shock response in E. coli. Genes Dev 18:2812–21.PubMedCrossRefGoogle Scholar
  61. Hahn, G. M. (1983) Hyperthermia to Enhance Drug Delivery. Plenum Press, New York.Google Scholar
  62. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100:57–70.PubMedCrossRefGoogle Scholar
  63. Hartl, F. U., and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295:1852–8.PubMedCrossRefGoogle Scholar
  64. Heike, M., Frenzel, C., Meier, D., and Galle, P. R. (2000) Expression of stress protein gp96, a tumor rejection antigen, in human colorectal cancer. Int J Cancer 86:489–93.PubMedCrossRefGoogle Scholar
  65. Hitotsumatsu, T., Iwaki, T., Fukui, M., and Tateishi, J. (1996) Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha B-crystallin) in human brain tumors. Cancer 77:352–61.PubMedCrossRefGoogle Scholar
  66. Hoang, A. T., Huang, J., Rudra-Ganguly, N., Zheng, J., Powell, W. C., Rabindran, S. K., Wu, C., and Roy-Burman, P. (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156:857–64.PubMedGoogle Scholar
  67. Hsu, A. L., Murphy, C. T., and Kenyon, C. (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–5.PubMedCrossRefGoogle Scholar
  68. Hsu, P. L., and Hsu, S. M. (1998) Abundance of heat shock proteins (hsp89, hsp60, and hsp27) in malignant cells of Hodgkin’s disease. Cancer Res 58:5507–13.PubMedGoogle Scholar
  69. Hunt, C., and Calderwood, S. K. (1990) Characterization and sequence of a mouse HSP70 gene and its expression in mouse cell lines. Gene 87:199–204.PubMedCrossRefGoogle Scholar
  70. Hwang, J. R., Zhang, C., and Patterson, C. (2005) C-terminus of heat shock protein 70— interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1—dependent apoptosis. Cell Stress Chap 10:147–56.CrossRefGoogle Scholar
  71. Hwang, T. S., Han, H. S., Choi, H. K., Lee, Y. J., Kim, Y J., Han, M. Y., and Park, Y M. (2003) Differential, stage-dependent expression of Hsp70, Hsp 110 and Bcl-2 in colorectal cancer. J Gastroenterol Hepatol 18:690–700.PubMedCrossRefGoogle Scholar
  72. Imbriano, C., Bolognese, F., Gurtner, A., Piaggio, G., and Mantovani, R. (2001) HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J Biol Chem 276:26332–9.PubMedCrossRefGoogle Scholar
  73. Ito, T., Kawabe, R., Kurasono, Y., Hara, M., Kitamura, H., Fujita, K., and Kanisawa, M. (1998) Expression of heat shock proteins in squamous cell carcinoma of the tongue: An immunohistochemical study. J Oral Pathol Med 27:18–22.PubMedGoogle Scholar
  74. Jaattela, M. (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23:2746–56.PubMedCrossRefGoogle Scholar
  75. Jameel, A., Skilton, R. A., Campbell, T. A., Chander, S. K., Coombes, R. C., and Luqmani, Y. A. (1992) Clinical and biological significance of HSP89 alpha in human breast cancer. Int J Cancer 50:409–15.PubMedCrossRefGoogle Scholar
  76. Jiang, B., Xiao, W., Shi, Y., Liu, M., and Xiao, X. (2005) Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chap 10:252–62.CrossRefGoogle Scholar
  77. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., Fritz, L. C., and Burrows, F. J. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–10.PubMedCrossRefGoogle Scholar
  78. Kamishima, T., Fukuda, T., Usuda, H., Takato, H., Iwamoto, H., and Kaneko, H. (1997) Carcinosarcoma of the urinary bladder: expression of epithelial markers and different expression of heat shock proteins between epithelial and sarcomatous elements. Pathol Int 47:166–73.PubMedGoogle Scholar
  79. Kanitakis, J., Zambruno, G., Viac, J., Tommaselli, L., and Thivolet, J. (1989) Expression of an estrogen receptor-associated protein (p29) in epithelial tumors of the skin. J Cutan Pathol 16:272–6.PubMedCrossRefGoogle Scholar
  80. Kato, S., Kato, M., Hirano, A., Takikawa, M., and Ohama, E. (2001) The immunohistochemical expression of stress-response protein (srp) 60 in human brain tumours: Relationship of srp 60 to the other five srps, proliferating cell nuclear antigen and p53 protein. Histol Histopathol 16:809–20.PubMedGoogle Scholar
  81. Kaur, G., Belotti, D., Burger, A. M., Fisher-Nielson, K., Borsotti, P., Riccardi, E., Thillainathan, J., Hollingshead, M., Sausville, E. A., and Giavazzi, R. (2004) Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: An orally bioavailable heat shock protein 90 modulator. Clin Cancer Res 10:4813–21.PubMedCrossRefGoogle Scholar
  82. Kaur, J., Das, S. N., Srivastava, A., and Ralhan, R. (1998) Cell surface expression of 70 kDa heat shock protein in human oral dysplasia and squamous cell carcinoma: Correlation with clinicopathological features. Oral Oncol 34:93–8.PubMedCrossRefGoogle Scholar
  83. Kaur, J., and Ralhan, R. (1995) Differential expression of 70-kDa heat shock-protein in human oral tumorigenesis. Int J Cancer 63:774–9.PubMedCrossRefGoogle Scholar
  84. Kerbel, R. S. (2005) Therapeutic implications of intrinsic or induced angiogenic growth factor redundancy in tumors revealed. Cancer Cell 8:269–71.PubMedCrossRefGoogle Scholar
  85. Khaleque, M. A., Bharti, A., Sawyer, D., Gong, J., Benjamin, I. J., Stevenson, M. A., and Calderwood, S. K. (2005) Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24:6564–73.PubMedGoogle Scholar
  86. Kumamoto, H., Suzuki, T., and Ooya, K. (2002) Immunohistochemical analysis of inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) in ameloblastomas. J Oral Pathol Med 31:605–11.PubMedCrossRefGoogle Scholar
  87. Lambot, M. A., Peny, M. O., Fayt, I., Haot, J., and Noel, J. C. (2000) Overexpression of 27-kDa heat shock protein relates to poor histological differentiation in human oesophageal squamous cell carcinoma. Histopathology 36:326–30.PubMedCrossRefGoogle Scholar
  88. Langdon, S. P., Rabiasz, G. J., Hirst, G. L., King, R. J., Hawkins, R. A., Smyth, J. F., and Miller, W. R. (1995) Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1:1603–9.PubMedGoogle Scholar
  89. Lazaris, A. C., Theodoropoulos, G. E., Aroni, K., Saetta, A., and Davaris, P. S. (1995) Immunohistochemical expression of C-myc oncogene, heat shock protein 70 and HLA-DR molecules in malignant cutaneous melanoma. Virchows Arch 426:461–7.PubMedCrossRefGoogle Scholar
  90. Lee, S. A., Ndisang, D., Patel, C., Dennis, J. H., Faulkes, D. J., D’Arrigo, C., Samady, L., Farooqui-Kabir, S., Heads, R. J., Latchman, D. S., and Budhram-Mahadeo, V. S. (2005) Expression of the Brn-3b transcription factor correlates with expression of HSP-27 in breast cancer biopsies and is required for maximal activation of the HSP-27 promoter. Cancer Res 65:3072–80.PubMedGoogle Scholar
  91. Li, G. C., and Werb, Z. (1982) Correlation between the synthesis of heat shock proteins and the development of thermotolerance in CHO fibroblasts. Proc Natl Acad Sci USA 79:3218–22.PubMedCrossRefGoogle Scholar
  92. Lindquist, S., and Craig, E. A. (1988) The heat shock proteins. Ann Rev Genet 22:631–7.PubMedCrossRefGoogle Scholar
  93. Liu, F. F., and Hill, R. P. (1996) Potential role of HSP70 as an indicator of response to radiation and hyperthermia treatments for recurrent breast cancer. Int J Hyperthermia 12:301–2.PubMedCrossRefGoogle Scholar
  94. Liu, X., Ye, L., Wang, J., and Fan, D. (1999) Expression of heat shock protein 90 beta in human gastric cancer tissue and SGC7901/VCR of MDR-type gastric cancer cell line. Chin Med J (Engl) 112:1133–7.Google Scholar
  95. Madden, S. L., Galella, E. A., Zhu, J., Bertelsen, A. H., and Beaudry, G. A. (1997) SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15:1079–85.PubMedCrossRefGoogle Scholar
  96. Maitra, A., Iacobuzio-Donahue, C., Rahman, A., Sohn, T. A., Argani, P., Meyer, R., Yeo, C. J., Cameron, J. L., Goggins, M., Kern, S. E., Ashfaq, R., Hruban, R. H., and Wilentz, R. E. (2002) Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays: Sea urchin fascin homolog and heat shock protein 47. Am J Clin Pathol 118: 52–9.PubMedCrossRefGoogle Scholar
  97. Malusecka, E., Zborek, A., Krzyzowska-Gruca, S., and Krawczyk, Z. (2001) Expression of heat shock proteins HSP70 and HSP27 in primary non-small cell lung carcinomas. An immunohistochemical study. Anticancer Res 21:1015–21.PubMedGoogle Scholar
  98. Manjili, M. H., Wang, X. Y., Chen, X., Martin, T., Repasky, E. A., Henderson, R., and Subjeck, J. R. (2003) HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 171:4054–61.PubMedGoogle Scholar
  99. Masson-Gadais, B., Houle, F., Laferriere, J., and Huot, J. (2003) Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chap 8:37–52.CrossRefGoogle Scholar
  100. Mendez, F., Kozin, E., and Bases, R. (2003) Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta. Cell Stress Chap 8:153–61.CrossRefGoogle Scholar
  101. Michils, A., Redivo, M., Zegers de Beyl, V., de Maertelaer, V., Jacobovitz, D., Rocmans, P., and Duchateau, J. (2001) Increased expression of high but not low molecular weight heat shock proteins in resectable lung carcinoma. Lung Cancer 33:59–67.PubMedCrossRefGoogle Scholar
  102. Mihaylova, V. T., Bindra, R. S., Yuan, J., Campisi, D., Narayanan, L., Jensen, R., Giordano, F., Johnson, R. S., Rockwell, S., and Glazer, P. M. (2003) Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23:3265–73.PubMedCrossRefGoogle Scholar
  103. Mileo, A. M., Fanuele, M., Battaglia, F., Scambia, G., Benedetti-Panici, P., Mancuso, S., and Ferrini, U. (1990) Selective over-expression of mRNA coding for 90 KDa stress-protein in human ovarian cancer. Anticancer Res 10:903–6.PubMedGoogle Scholar
  104. Missotten, G. S., Journee-de Korver, J. G., de Wolff-Rouendaal, D., Keunen, J. E., Schlingemann, R. O., and Jager, M. J. (2003) Heat shock protein expression in the eye and in uveal melanoma. Invest Ophthalmol Vis Sci 44:3059–65.PubMedCrossRefGoogle Scholar
  105. Nadin, S. B., Vargas-Roig, L. M., Cuello-Carrion, F. D., and Ciocca, D. R. (2003) Deoxyribonucleic acid damage induced by doxorubicin in peripheral blood mononuclear cells: Possible roles for the stress response and the deoxyribonucleic acid repair process. Cell Stress Chap 8:361–72.CrossRefGoogle Scholar
  106. Nanbu, K., Konishi, I., Mandai, M., Kuroda, H., Hamid, A. A., Komatsu, T., and Mori, T. (1998) Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect Prev 22:549–55.PubMedCrossRefGoogle Scholar
  107. Neckers, L. (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–61.PubMedCrossRefGoogle Scholar
  108. Neckers, L., and Ivy, S. P. (2003) Heat shock protein 90. Curr Opin Oncol 15:419–24.PubMedCrossRefGoogle Scholar
  109. Neckers, L., and Lee, Y. S. (2003) Cancer: The rules of attraction. Nature 425:357–9.PubMedCrossRefGoogle Scholar
  110. Nelson, D. A., and White, E. (2004) Exploiting different ways to die. Genes Dev 18:1223–6.PubMedCrossRefGoogle Scholar
  111. Netzer, W. F., and Hartl, F. U. (1998) Protein folding in the cytosol: Chaperonin-dependent and-independent mecanisms. TIBS 23:68–74.PubMedGoogle Scholar
  112. Nimmanapalli, R., O’Bryan, E., and Bhalla, K. (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799–804.PubMedGoogle Scholar
  113. Nylandsted, J., Brand, K., and Jaattela, M. (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 926:122–5.PubMedCrossRefGoogle Scholar
  114. Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., Fehrenbacher, N., Lademann, U., Hoyer-Hansen, M., Weber, E., Multhoff, G., Rohde, M., and Jaattela, M. (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–35.PubMedCrossRefGoogle Scholar
  115. Ogata, M., Naito, Z., Tanaka, S., Moriyama, Y., and Asano, G. (2000) Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch 67:177–85.PubMedCrossRefGoogle Scholar
  116. Osada, M., Imaoka, S., and Funae, Y. (2004) Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1 alpha protein. FEBS Lett 575:59–63.PubMedCrossRefGoogle Scholar
  117. Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., and Arrigo, A. P. (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22:816–34.PubMedCrossRefGoogle Scholar
  118. Pearl, L. H. (2005) Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61.PubMedCrossRefGoogle Scholar
  119. Peng, X., Guo, X., Borkan, S. C., Bharti, A., Kuramochi, Y., Calderwood, S., and Sawyer, D. B. (2005) Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. J Biol Chem 280:13148–52.PubMedCrossRefGoogle Scholar
  120. Peng, X., Guo, X., Borkan, S. C., Bharti, A., Kuramochi, Y., Calderwood, S., and Sawyer, D. B. (2005) Heat shock protein 90 stabilization of erbB2 expression is disrupted by ATP depletion in myocytes. J Biol Chem 280:13148–52.PubMedCrossRefGoogle Scholar
  121. Pfosser, A., Thalgott, M., Buttner, K., Brouet, A., Feron, O., Boekstegers, P., and Kupatt, C. (2005) Liposomal Hsp90 cDNA induces neovascularization via nitric oxide in chronic ischemia. Cardiovasc Res 65:728–36.PubMedCrossRefGoogle Scholar
  122. Pratt, W B., Galigniana, M. D., Harrell, J. M., and DeFranco, D. B. (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–72.PubMedCrossRefGoogle Scholar
  123. Pratt, W. B., and Toft, D. O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–33.Google Scholar
  124. Price, J. T., Quinn, J. M., Sims, N. A., Vieusseux, J., Waldeck, K., Docherty, S. E., Myers, D., Nakamura, A., Waltham, M. C., Gillespie, M. T., and Thompson, E. W (2005) The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65:4929–38.PubMedCrossRefGoogle Scholar
  125. Proskuryakov, S. Y., Konoplyannikov, A. G., and Gabai, V. L. (2003) Necrosis: A specific form of programmed cell death? Exp Cell Res 283:1–16.PubMedCrossRefGoogle Scholar
  126. Puy, L. A., Lo Castro, G., Olcese, J. E., Lotfi, H. O., Brandi, H. R., and Ciocca, D. R. (1989) Analysis of a 24-kilodalton (KD) protein in the human uterine cervix during abnormal growth. Cancer 64:1067–73.PubMedCrossRefGoogle Scholar
  127. Queitsch, C., Sangster, T. A., and Lindquist, S. (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–24.PubMedCrossRefGoogle Scholar
  128. Rahmani, M., Reese, E., Dai, Y., Bauer, C., Kramer, L. B., Huang, M., Jove, R., Dent, P., and Grant, S. (2005) Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol Pharmacol 67:1166–76.PubMedCrossRefGoogle Scholar
  129. Richards, E. H., Hickey, E., Weber, L., and Master, J. R. (1996) Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 56:2446–51.PubMedGoogle Scholar
  130. Rohde, M., Daugaard, M., Jensen, M. H., Helin, K., Nylandsted, J., and Jaattela, M. (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19:570–82.PubMedCrossRefGoogle Scholar
  131. Rutherford, S. L., and Lindquist, S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–42.PubMedCrossRefGoogle Scholar
  132. Samali, A., Robertson, J. D., Peterson, E., Manero, F., van Zeijl, L., Paul, C., Cotgreave, I. A., Arrigo, A. P., and Orrenius, S. (2001) Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chap 6:49–58.CrossRefGoogle Scholar
  133. Scheibel, T., and Buchner, J. (1998) The Hsp90 complex—a super-chaperone machine as a novel drug target. Biochem Pharmacol 56:675–82.PubMedCrossRefGoogle Scholar
  134. Srivastava, P. (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425.PubMedCrossRefGoogle Scholar
  135. Stephanou, A., and Latchman, D. S. (1999) Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 7:311–9.PubMedGoogle Scholar
  136. Storm, F. K., Mahvi, D. M., and Gilchrist, K. W. (1993) Hsp-27 has no diagnostic or prognostic significance in prostate or bladder cancers. Urology 42:379–82.PubMedCrossRefGoogle Scholar
  137. Taira, T., Sawai, M., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M., and Ariga, H. (1999) Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. J Biol Chem 274:24270–9.PubMedCrossRefGoogle Scholar
  138. Takashi, M., Katsuno, S., Sakata, T., Ohshima, S., and Kato, K. (1998) Different concentrations of two small stress proteins, alphaB crystallin and HSP27 in human urological tumor tissues. Urol Res 26:395–9.PubMedCrossRefGoogle Scholar
  139. Tang, D., Khaleque, A. A., Jones, E. R., Theriault, J. R., Li, C., Wong, W H., Stevenson, M. A., and Calderwood, S. K. (2005) Expression of heat shock proteins and HSP messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chap 10:46–59.CrossRefGoogle Scholar
  140. Tatar, M., Khazaeli, A. A., and Curtsinger, J. W. (1997) Chaperoning extended life. Nature 390–30.Google Scholar
  141. Teng, S. C., Chen, Y. Y., Su, Y. N., Chou, P. C., Chiang, Y. C., Tseng, S. F., and Wu, K. J. (2004) Direct activation of HSP90 A transcription by c-Myc contributes to c-Myc-induced transformation. J Biol Chem 279:14649–55.PubMedCrossRefGoogle Scholar
  142. Tenniswood, M. P., Guenette, R. S., Lakins, J., Mooibroek, M., Wong, P., and Welsh, J. E. (1992) Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 11:197–220.PubMedCrossRefGoogle Scholar
  143. Tetu, B., Lacasse, B., Bouchard, H. L., Lagace, R., Huot, J., and Landry, J. (1992) Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: A clinicopathological and immunohistochemical study. Cancer Res 52:2325–8.PubMedGoogle Scholar
  144. Trieb, K., Kohlbeck, R., Lang, S., Klinger, H., Blahovec, H., and Kotz, R. (2000) Heat shock protein 72 expression in chondrosarcoma correlates with differentiation. J Cancer Res Clin Oncol 126:667–70.PubMedCrossRefGoogle Scholar
  145. Tsutsumi-Ishii, Y., Tadokoro, K., Hanaoka, F., and Tsuchida, N. (1995) Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell Growth Differ 6:1–8.PubMedGoogle Scholar
  146. Uozaki, H., Ishida, T., Kakiuchi, C., Horiuchi, H., Gotoh, T., Iijima, T., Imamura, T., and Machinami, R. (2000) Expression of heat shock proteins in osteosarcoma and its relationship to prognosis. Pathol Res Pract 196:665–73.PubMedGoogle Scholar
  147. van’ t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–6.CrossRefGoogle Scholar
  148. van Gent, D. C., Hoeijmakers, J. H., and Kanaar, R. (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206.PubMedCrossRefGoogle Scholar
  149. Vargas-Roig, L. M., Gago, F E., Tello, O., Aznar, J. C., and Ciocca, D. R. (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79:468–75.PubMedCrossRefGoogle Scholar
  150. Viatour, P., Merville, M. P., Bours, V., and Chariot, A. (2005) Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation. Trends Biochem Sci 30:43–52.PubMedCrossRefGoogle Scholar
  151. Vogelstein, B., and Kinzler, K. W. (1993) The multistep nature of cancer. Trends Genet 9:138–41.PubMedCrossRefGoogle Scholar
  152. Wadhwa, R., Taira, K., and Kaul, S. C. (2002) An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: What, when, and where? Cell Stress Chap 7:309–16.CrossRefGoogle Scholar
  153. Wang, Q., An, L., Chen, Y., and Yue, S. (2002) Expression of endoplasmic reticulum molecular chaperon GRP94 in human lung cancer tissues and its clinical significance. Chin Med J (Engl) 115:1615–9.Google Scholar
  154. Wang, Y., Theriault, J. R., He, H., Gong, J., and Calderwood, S. K. (2004) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem 279:32651–9.PubMedCrossRefGoogle Scholar
  155. Workman, P. (2004) Altered states: Selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10:47–51.PubMedCrossRefGoogle Scholar
  156. Wu, C. (1995) Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev Biol 11:441–469.CrossRefGoogle Scholar
  157. Wu, G., Osada, M., Guo, Z., Fomenkov, A., Begum, S., Zhao, M., Upadhyay, S., Xing, M., Wu, F., Moon, C., Westra, W H., Koch, W M., Mantovani, R., Califano, J. A., Ratovitski, E., Sidransky, D., and Trink, B. (2005) DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65:758–66.PubMedGoogle Scholar
  158. Xiao, K., Liu, W., Qu, S., Sun, H., and Tang, J. (1996) Study of heat shock protein HSP90 alpha, HSP70, HSP27 mRNA expression in human acute leukemia cells. J Tongji Med Univ 16:212–6.PubMedGoogle Scholar
  159. Zhang, F., Hackett, N. R., Lam, G., Cheng, J., Pergolizzi, R., Luo, L., Shmelkov, S. V., Edelberg, J., Crystal, R. G., and Rafii, S. (2003) Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood 102:2115–21.PubMedCrossRefGoogle Scholar
  160. Zhou, V., Han, S., Brinker, A., Klock, H., Caldwell, J., and Gu, X. J. (2004) A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors. Anal Biochem 331:349–57.PubMedCrossRefGoogle Scholar
  161. Zou, J., Guo, Y., Guettouche, T., Smith, D. F., and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stuart K. Calderwood
    • 1
    • 2
  • Abdul Khalique
    • 1
  • Daniel R. Ciocca
    • 3
  1. 1.Division of Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBoston
  2. 2.Department of MedicineBoston University School of MedicineBoston
  3. 3.Oncology LaboratoryInstitute of Experimental Medicine and Biology of Cuyo (CRICYT- CONICET), and Argentine Foundation for Cancer Research (FAIC) MendozaMendozaArgentina

Personalised recommendations