Skip to main content

Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

  • Chapter
Computational and Instrumental Methods in EPR

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 25))

Abstract

The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10−10 < T 1 < 10−6 s) is of great importance today for the study of relaxation processes. Recent case studies include, for example, glasses doped with paramagnetic ions (Vergnoux et al., 1996; Zinsou et al., 1996), amorphous Si (dangling bonds) and copper-chromium-tin spinel (Cr3+) (Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10−6 s. A summary of relevant experimental data is presented in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  • Ablart G. 1978. Étude de la relaxation spin-réseau de certains sels ioniques à partir des dependence T1 −1(H0) et T1 −1(T). PhD dissertation, Université Paul Sabatier, Toulouse, France.

    Google Scholar 

  • Ablart G, Pescia J. 1980. Magnetic field dependence of spin-lattice relaxation in three iron group salts. Phys Rev B 22:1150–1162.

    Article  ADS  Google Scholar 

  • Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions. Oxford: Oxford University Press.

    Google Scholar 

  • Alger RS. 1968. Electron paramagnetic resonance: techniques and applications. New York: Interscience Publishers (inversion-recovery technique).

    Google Scholar 

  • Forrer J, Schuutz H, Tschaggelar R, Simovic B, Granwehr J, Schweiger A. 2005. Novel EPR Detection schemes and new detectors. EPR Instrumentation Workshop, Milwaukee, WI.

    Google Scholar 

  • Hervé J, Pescia J. 1960. Résonance Paramagnétique — Mesure du temps de relaxation T 1 par modulation du champ radiofréquence H 1 et détection de variation d’aimantation selon le champ director. Compt Rend 251:665–667.

    Google Scholar 

  • Hervé J, Pescia J. 1963a. Résonance Magnétique Électronique — théorie phénoménologique de la mesure du temps de relaxation T 1, utilisant un champ radiofréquence modulé en amplitude: vérification experimentale sur le diphényl-picryl-hydrazyl. Compt Rend 255:2926–2928.

    Google Scholar 

  • Hervé J, Pescia J. 1963b. Influence de la température de carbonisation sur le temps de relaxation spin-réseau de charbon en presence d’oxygène. Compt Rend 256:5076–5079.

    Google Scholar 

  • Lopez R. 1993. Improvement in measurement of spin-lattice relaxation time T 1 in electron paramagnetic resonance: application to diluted copper calcium acetate and a Fe2O3-doped borate glass. PhD dissertation, Université Paul Sabatier, Toulouse, France [English translation by SK Misra]. In Biological magnetic resonance, vol. 25. Ed C Bender, L Berliner. New York: Springer, 2006.

    Google Scholar 

  • Misra SK. 1976. Evaluation of spin-Hamiltonian parameters from EPR data by the method of least-squares fitting. J Magn Reson 23:403–410.

    Google Scholar 

  • Misra SK. 1998. Role of exchange interaction in effecting spin-lattice relaxation: interpretation of data on Cr3+ in Cu2+xCr2xSn2−2x spinel and dangling bonds in amorphous silicon. Phys Rev B 58:14971–14977.

    Article  ADS  Google Scholar 

  • Misra SK. 1999. Angular variation of electron paramagnetic resonance spectrum: simulation of a polycrystalline spectrum. J Magn Reson 137:83–92.

    Article  ADS  Google Scholar 

  • Misra SK. 2005. Microwave amplitude modulation technique to measure spin-lattice relaxation times: solution of Bloch’s equations by a matrix technique. Appl Magn Reson 28:55–67.

    Article  Google Scholar 

  • Pescia J. 1965. La mesure de temps de relaxation spin-réseau. Ann Phys 10:389–406.

    Google Scholar 

  • Pescia J, Hervé J. 1963. Mesure des temps de relaxation spin-réseau dans le cas d’un élargissement inhomogène de la raie. Compt Rend 256:4621–4624.

    Google Scholar 

  • Pescia J, Misra SK, Zaripov M. 1999a. Evidence for spin-fracton relaxation in the polymer resin P4VP doped with Co2+, Nd3+, Yb3+. Phys Rev Lett 83:1866–1869.

    Article  ADS  Google Scholar 

  • Pescia J, Misra SK, Zaripov M, and Servant Y. 1999b. Spin-lattice relaxation in the polymer resin P4VP doped with of Cu2+, Cr3+, Mn2+, and Gd3+ transition ions possessing weak spin-orbit coupling. Phys Rev B 83:1866–1869.

    Article  ADS  Google Scholar 

  • Piasecki W, Froncisz W, Hyde JS. 1996. Bimodal loop-gap resonator. Rev Sci Instrum 67:1896–1904.

    Article  ADS  Google Scholar 

  • Poole CP. 1982. Electron spin resonance: a comprehensive treatise on experimental techniques, 2nd ed. New York: Wiley.

    Google Scholar 

  • Press WH, Telkolsky SA, Vetterling WT, Flannery BP. 1992. Numerical recipes in fortran. New York: Cambridge UP.

    MATH  Google Scholar 

  • Rinard GA, Quine RW, Eaton SS, Eaton GR, Froncisz W. 1994. Relative benefits of over-coupled resonators vs inherently low-Q resonators for pulsed magnetic resonance. J Magn Reson A108:71–81.

    Google Scholar 

  • Rinard GA., Quine RW, Ghim BT, Eaton SS Eaton GR. 1996a. Easily tunable crossed loop (bimodal) EPR resonator. J Magn Reson A122:50–57.

    Google Scholar 

  • Rinard GA, Quine RW, Ghim BT, Eaton SS Eaton GR. 1996b. Dispersion and Superheterodyne EPR using a bimodal EPR resonator. J Magn Reson A122:57–63.

    Google Scholar 

  • Rinard GA, Quine RW, Eaton GR. 2000. An L-band crossed-loop (bimodal) resonator. J Magn Reson 144:85–88.

    Article  ADS  Google Scholar 

  • Rinard GA, Quine RW, Eaton GR, Eaton SS. 2002. 250 MHz crossed-loop resonator for pulsed electron paramagnetic resonance. Magn Reson Eng 15: 37–46.

    Article  Google Scholar 

  • Standley KJ, Vaughan RA. 1979. Electron spin relaxation in solids. New York: Plenum.

    Google Scholar 

  • Vergnoux D, Zinsou PK, Zaripov M, Ablart G, Pescia J, Misra SK, Rakhmatullin R, Orlinskii S. 1996. Electron spin-lattice relaxation of Yb3+ and Gd3+ ions in glasses. Appl Magn Reson 11:493–498.

    Article  Google Scholar 

  • Weidner RT, Whitmer CA. 1952. Recording of microwave paramagnetic resonance spectra. Rev Sci Instrum 23:75–77.

    Article  ADS  Google Scholar 

  • Zinsou PK, Vergnoux D, Ablart G, Pescia J, Misra SK, Berger R. 1996. Temperature and concentration dependences of the spin-latice relaxation rate in four borate glasses doped with Fe2O3. Appl Magn Reson 11:487–492.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Misra, S.K. (2006). Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times. In: Computational and Instrumental Methods in EPR. Biological Magnetic Resonance, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38880-9_1

Download citation

Publish with us

Policies and ethics