Skip to main content

LTD as a Mechanism for Map Plasticity in Rat Barrel Cortex

  • Chapter
Development and Plasticity in Sensory Thalamus and Cortex

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen CB (2004) Synaptic depression induced by whisker deprivation in rat barrel cortex. PhD thesis University of California, San Diego.

    Google Scholar 

  • Allen CB, Celikel T, Feldman DE (2003) Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat Neurosci 6:291–299.

    Article  PubMed  CAS  Google Scholar 

  • Antonini A, Stryker MP (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260:1819–1821.

    Article  PubMed  CAS  Google Scholar 

  • Bear MF (1996) A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci U S A 93:13453–13459.

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of synapse modification. Science 237:42–48.

    Article  PubMed  CAS  Google Scholar 

  • Bender KJ, Rangel J, Feldman DE (2003) Development of columnar topography in the excitatory layer 4 to layer 2/3 projection in rat barrel cortex. J Neurosci 23:8759–8770.

    PubMed  CAS  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186.

    Article  PubMed  CAS  Google Scholar 

  • Bureau I, Shepherd GM, Svoboda K (2004) Precise development of functional and anatomical columns in the neocortex. Neuron 42:789–801.

    Article  PubMed  CAS  Google Scholar 

  • Celikel T, Szostak VA, Feldman DE (2004) Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat Neurosci 7:534–541.

    Article  PubMed  CAS  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368:737–740.

    Article  PubMed  CAS  Google Scholar 

  • DeBello WM, Feldman DE, Knudsen EI (2001) Adaptive axonal remodeling in the midbrain auditory space map. J Neurosci 21:3161–3174.

    PubMed  CAS  Google Scholar 

  • Diamond ME, Huang W, Ebner FF (1994) Laminar comparison of somatosensory cortical plasticity. Science 265:1885–1888.

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363–4367.

    Article  PubMed  CAS  Google Scholar 

  • Fee MS, Mitra PP, Kleinfeld D (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78:1144–1149.

    PubMed  CAS  Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56.

    Article  PubMed  CAS  Google Scholar 

  • Feldmeyer D, Lubke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538:803–822.

    Article  PubMed  CAS  Google Scholar 

  • Finnerty GT, Roberts LS, Connors BW (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400:367–371.

    Article  PubMed  CAS  Google Scholar 

  • Fischer QS, Beaver CJ, Yang Y, Rao Y, Jakobsdottir KB, Storm DR, McKnight GS, Daw NW (2004) Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J Neurosci 24:9049–9058.

    Article  PubMed  CAS  Google Scholar 

  • Fox K (1992) A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J Neurosci 12:1826–1838.

    PubMed  CAS  Google Scholar 

  • Fox K (2002) Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111:799–814.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:917–923.

    Article  PubMed  CAS  Google Scholar 

  • Glazewski S, Fox K (1996) Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J Neurophysiol 75:1714–1729.

    PubMed  CAS  Google Scholar 

  • Glazewski S, Giese KP, Silva A, Fox K (2000) The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nat Neurosci 3:911–918.

    Article  PubMed  CAS  Google Scholar 

  • Hardingham NR, Fox K (2004) The relationship between spike timing plasticity and experience-dependent plasticity in αCAMKII-T286A Mutants. Soc Neurosci Abstr 857.21.

    Google Scholar 

  • Hebb DO (1949) Organization of Behavior. John Wiley & Sons, New York.

    Google Scholar 

  • Hensch TK, Stryker MP (1996) Ocular dominance plasticity under metabotropic glutamate receptor blockade. Science 272:554–557.

    PubMed  CAS  Google Scholar 

  • Heynen AJ, Abraham WC, Bear MF (1996) Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature 381:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Heynen AJ, Yoon BJ, Liu CH, Chung HJ, Huganir RL, Bear MF (2003) Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6:854–862.

    Article  PubMed  CAS  Google Scholar 

  • Huber KM, Sawtell NB, Bear MF (1998) Brain-derived neurotrophic factor alters the synaptic modification threshold in visual cortex. Neuropharmacology 37:571–579.

    Article  PubMed  CAS  Google Scholar 

  • Keller A (1995) Synaptic organization of the barrel cortex. In: The barrel cortex of rodents (Jones EG and Diamond IT, ed). New York: Plenum:221–262.

    Google Scholar 

  • Kirkwood A, Rioult MC, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381:526–528.

    Article  PubMed  CAS  Google Scholar 

  • Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Lebel D, Grossman Y, Barkai E (2001) Olfactory learning modifies predisposition for long-term potentiation and long-term depression induction in the rat piriform (olfactory) cortex. Cereb Cortex 11:485–489.

    Article  PubMed  CAS  Google Scholar 

  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–881.

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ, Connor JA (1995) Long-term synaptic depression. Annu Rev Neurosci 18:319–357.

    Article  PubMed  CAS  Google Scholar 

  • Linkenhoker BA, von der Ohe CG, Knudsen EI (2005) Anatomical traces of juvenile learning in the auditory system of adult barn owls. Nat Neurosci 8:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Malenka RC, Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci 14:379–397.

    Article  PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, Braunewell KH (1999) Novelty acquisition is associated with induction of hippocampal long-term depression. Proc Natl Acad Sci U S A 96:8739–8744.

    Article  PubMed  CAS  Google Scholar 

  • Maravall M, Koh IY, Lindquist WB, Svoboda K (2004) Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. Cereb Cortex 14:655–664.

    Article  PubMed  Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611.

    Article  PubMed  CAS  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975.

    Article  PubMed  CAS  Google Scholar 

  • Petersen CC, Sakmann B (2001) Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J Neurosci 21:8435–8446.

    PubMed  CAS  Google Scholar 

  • Renger JJ, Hartman KN, Tsuchimoto Y, Yokoi M, Nakanishi S, Hensch TK (2002) Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc Natl Acad Sci U S A 99:1041–1046.

    Article  PubMed  CAS  Google Scholar 

  • Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536.

    Article  PubMed  CAS  Google Scholar 

  • Ruthazer ES, Cline HT (2004) Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. J Neurobiol 59:134–146.

    Article  PubMed  CAS  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415.

    Article  PubMed  CAS  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM, Pologruto TA, Svoboda K (2003) Circuit analysis of experiencedependent plasticity in the developing rat barrel cortex. Neuron 38:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820.

    PubMed  CAS  Google Scholar 

  • Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–764.

    PubMed  CAS  Google Scholar 

  • Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. Proc Natl Acad Sci U S A 70:997–1001.

    Article  PubMed  CAS  Google Scholar 

  • Welker C, Woolsey TA (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol 158:437–453.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-Cell Responses in Striate Cortex of Kittens Deprived of Vision in One Eye. J Neurophysiol 26:1003–1017.

    PubMed  CAS  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1998) Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394:891–894.

    Article  PubMed  CAS  Google Scholar 

  • Yabuta NH, Callaway EM (1998) Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1. Vis Neurosci 15:1007–1027.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Tao HW, Poo MM (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300:1953–1957.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bender, K.J., Deshmukh, S., Feldman, D.E. (2006). LTD as a Mechanism for Map Plasticity in Rat Barrel Cortex. In: Erzurumlu, R., Guido, W., Molnár, Z. (eds) Development and Plasticity in Sensory Thalamus and Cortex. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-38607-2_15

Download citation

Publish with us

Policies and ethics