Skip to main content

Making and Breaking Eye-specific Projections to the Lateral Geniculate Nucleus

  • Chapter
  • 548 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerman CJ, Smyth D, and Thompson ID (2002) Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36: 869–79.

    Article  PubMed  CAS  Google Scholar 

  • Akerman CJ, Tolhurst DJ, Morgan JE, Baker GE, and Thompson ID (2003) Relay of visual information to the lateral geniculate nucleus and the visual cortex in albino ferrets. J Comp Neurol. 461:217–35.

    Article  PubMed  Google Scholar 

  • Angelucci A, Clasca F, Bricolo E, Cramer KS, and Sur M (1997) Experimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific projections in a novel target. J Neurosci. 17:2040–2055.

    PubMed  CAS  Google Scholar 

  • Bansal A, Singer JH, Hwang BJ, Xu W, Beudet A, and Feller MB (2000) Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J Neurosci. 20:7672–81.

    PubMed  CAS  Google Scholar 

  • Brown TH, Chapman PF, Kairiss EW, and Keenan CL (1988) Long-term synaptic potentiation. Science 242:724–8.

    Article  PubMed  CAS  Google Scholar 

  • Brown A, Yates PA, Burrola, P, Ortuno D, Vaidya A, Jessell TM, Pfaff SL, O’Leary DD, and Lemke G (2000) Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102:77–88.

    Article  PubMed  CAS  Google Scholar 

  • Brunso-Bechtold JK, and Casagrande VA (1981) Effect of bilateral enucleation on the development of layers in the dorsal lateral geniculate nucleus. Neuroscience 2:589–597.

    Google Scholar 

  • Casagrande VA, and Condo GJ (1988) The effect of altered neuronal activity on the development of layers in the lateral geniculate nucleus. J Neurosci. 8: 395–416.

    PubMed  CAS  Google Scholar 

  • Chalupa LM, and Huberman (2004) New Perspectives on the Role of Neural Activity in Development of the Visual System. In: The Newest Cognitive Neurosciences, 3rd edition. MIT Press.

    Google Scholar 

  • Chalupa LM, and Williams RW (1984) Organization of the cat’s lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 3:103–7.

    PubMed  CAS  Google Scholar 

  • Chapman B (2000) Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287:2479–2482.

    Article  PubMed  CAS  Google Scholar 

  • Chapman B, and Godecke I (2000) Cortical cell orientation selectivity fails to develop in the absence of ON-center ganglion cell activity. J Neurosci. 20:1922–1930.

    PubMed  CAS  Google Scholar 

  • Cheng HJ, Nakamoto M, Bergemann AD, and Flanagan JG (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381.

    Article  PubMed  CAS  Google Scholar 

  • Cline HT (1987) N-methyl-D-aspartate receptor antagonist desegregates eyespecific stripes. Proc Natl Acad Sci USA 84:4342–5.

    Article  PubMed  CAS  Google Scholar 

  • Cook PM, Prusky G, and Ramoa AS (1999) The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret. Vis Neurosci. 16:491–501.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton M, and Law MI(1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–41.

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC, and Katz LC (1999) Development of ocular dominance columns in the absence of retinal input. Nat Neurosci. 2:1125–30.

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC, and Katz LC (2000) Early development of ocular dominance columns. Science 290:1321–4.

    Article  PubMed  CAS  Google Scholar 

  • Cucchiaro J, and Guillery, RW (1984) The development of the retinogeniculate pathways in normal and albino ferrets. Proc R Soc Lond 223:141–164.

    Article  CAS  Google Scholar 

  • Demas J, Eglen SJ, and Wong RO (2003) Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J Neurosci. 23:2851–60.

    PubMed  CAS  Google Scholar 

  • Demas J, Stacey R, Sanes JR, and Wong RO (2004) FASEB Summer Research Conferences Retinal Neurobiology and Visual Processing. Saxtons River, VT.

    Google Scholar 

  • Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, and Bonhoeffer F (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370.

    Article  PubMed  CAS  Google Scholar 

  • Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisen J, Kullander K, Flanagan JG, Polleux F, and Vanderhaeghen P (2003) Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisen J, Lu Q, Barbacid M, and Flanagan JG (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21: 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  • Feldheim DA, Kim YI, Bergemann AD, Frisen J, Barbacid M, and Flanagan JG (2000) Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25:563–574.

    Article  PubMed  CAS  Google Scholar 

  • Feldheim DA, Nakamoto M, Osterfiel M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, and Flanagan JG (2004) Loss-of-function analysis of EphA receptors in retinotectal mapping. J Neurosci. 24:2542–50.

    Article  PubMed  CAS  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin F, and Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propogation of spontaneous retinal waves. Science 272:1182–1187.

    PubMed  CAS  Google Scholar 

  • Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22:653–6.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JG, and Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci. 21:309–345.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JG, Cheng HJ, Feldheim DA, Hattori M, Lu Q, and Vanderhaeghen P (2000) Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods Enzymol. 327:19–35.

    Article  PubMed  CAS  Google Scholar 

  • Frisen J, Yates PA, McLaughlin T, Friedman GC, O’Leary DD, and Barbacid M (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20:235–243.

    Article  PubMed  CAS  Google Scholar 

  • Galli L, and Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90–1.

    Article  PubMed  CAS  Google Scholar 

  • Garraghty PE, Shatz CJ, and Sur M (1988a) Prenatal disruption of binocular interactions creates novel lamination in the cat’s lateral geniculate nucleus. Vis Neurosci. 1:93–102.

    PubMed  CAS  Google Scholar 

  • Godement P, Salaun J, and Imbert M (1984) Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol. 230:552–75.

    Article  PubMed  CAS  Google Scholar 

  • Grubb MS, Rossi FM, Changuex JP, and Thompson ID (2003) Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40:1161–72.

    Article  PubMed  CAS  Google Scholar 

  • Grubb MS, and Thompson ID (2004) The influence of early experience on the development of sensory systems. Curr Opin Neurobiol. 14:503–12.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1969) An abnormal retinogeniculate projection in Siamese cats. Brain Res 14:739–741.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1971) An abnormal retinogeniculate projection in the albino ferret (Mustela furo). Brain Res 33:482–485.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW, and Kaas, JH (1971) A study of normal and congenitally abnormal retinogeniculate projections in cats. J Comp Neurol. 143:73–100.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW, Scott GL, Cattanach BM, and Deol MS (1973) Genetic mechanisms determining the central visual pathways of mice. Science 179:1014–6.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW, LaMantia AS, Robson JA, and Huang K (1985a) The influence of retinal afferents upon the development of layers in the dorsal lateral geniculate nucleus of mustelids. J Neurosci. 5:1370–1379.

    PubMed  CAS  Google Scholar 

  • Guillery RW, Ombrellaro M, and LaMantia AL (1985b) The organization of the lateral geniculate nucleus and of the geniculocortical pathway that develops without retinal afferents. Brain Res 352:221–233.

    PubMed  CAS  Google Scholar 

  • Gunhan E, Choudary PV, Landerholm TE, and Chalupa LM (2002) Depletion of cholinergic amacrine cells by a novel immunotoxin does not perturb the formation of segregated on and off cone bipolar cell projections. J Neurosci. 22:2265–73.

    PubMed  CAS  Google Scholar 

  • Hahm JO, Cramer KS, and Sur M (1999) Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental segregation and the role of N-methyl-D aspartate receptors. J Comp Neurol. 411:327–345.

    Article  PubMed  CAS  Google Scholar 

  • Hanson MG, and Landmesser LT (2004) Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43:687–701.

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) Organization of Behavior: A Neuropsychological Theory (New York: John Wiley and sons).

    Google Scholar 

  • Hererra E, Brown L, Aruga J, Rachel RA, Dolen G, Mikoshiba K, Brown S, and Mason CA (2003) Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114:545–57.

    Article  Google Scholar 

  • Hill JA Jr, Zoli M, Bourgeois JP, and Changeux JP (1993) Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci. 13:1551–68.

    PubMed  CAS  Google Scholar 

  • Huberman AD, Stellwagen D, and Chapman B (2002) Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus. J Neurosci. 22:9419–29.

    PubMed  CAS  Google Scholar 

  • Huberman AD, Wang GY, Liets LC, Collins OA, Chapman B, and Chalupa LM (2003) Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science 300:994–8.

    Article  PubMed  CAS  Google Scholar 

  • Huberman AD, Dehay C, Berland M, Chalupa LM, and Kennedy H (2005a) Early and rapid targeting of eye-specific axonal projections to the lateral geniculate nucleus in the fetal macaque. J Neurosci. 25:4014–4023.

    Article  PubMed  CAS  Google Scholar 

  • Huberman AD, Murray KD, Warland DK, Feldheim DA, and Chapman B (2005b) Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nature Neuroscience, 8:1013–21.

    Article  PubMed  CAS  Google Scholar 

  • Hutchins JB, and Casagrande VA (1990) Development of the lateral geniculate nucleus: interactions between retinal afferent, cytoarchitectonic, and glial cell process lamination in ferrets and tree shrews. J Comp Neurol. 298:113–128.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey G (1984) Retinal ganglion cell death and terminal field retraction in the developing rodent visual system. Brain Res. 315:81–96.

    Google Scholar 

  • Johnson PT, Williams RR, Cusato K, and Reese BE (2000) Rods and cones project to the inner plexiform layer during development. J Comp Neurol. 414:1–2.

    Article  Google Scholar 

  • Jones EG (1985) The Thalamus. (New York: Plenum Press).

    Google Scholar 

  • Kawasaki H, Crowley JC, Livesey FJ, and Katz LC (2003) Molecular correlates of ocular dominance column formation in ferret thalamus and cortex. J Neurosci. 24:9962–70.

    Article  CAS  Google Scholar 

  • Linden DC, Guillery RW, and Cucchiaro J (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J Comp Neurol. 203:189–211.

    Article  PubMed  CAS  Google Scholar 

  • Lund RD, Cunningham TJ, and Lund JS (1973) Modified optic projections after unilateral eye removal in young rats. Brain Behav Evol 8:51–72.

    PubMed  CAS  Google Scholar 

  • Maffei L, and Galli-Resta L (1990) Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad SciUSA 87:2861–4.

    Article  CAS  Google Scholar 

  • McLaughlin T, Torborg CL, Feller MB, and O’Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–60.

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Wong RO, Baylor DA, and Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–43.

    Article  PubMed  CAS  Google Scholar 

  • Morgan J, and Thompson ID (1993) The segregation of ON-and OFF-center responses in the ferret lateral geniculate nucleus of normal and monocularly enucleated ferrets. Vis Neurosci. 10:303–311.

    Article  PubMed  CAS  Google Scholar 

  • Muir-Robinson G, Hwang BJ, and Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci. 22:5259–64.

    PubMed  CAS  Google Scholar 

  • Nakamoto M, Cheng HJ, Friedman GC, McLaughlin T, Hansen MJ, Yoon CH, O’Leary, DD, and Flanagan JG (1996) Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86:755–766.

    Article  PubMed  CAS  Google Scholar 

  • Penn AA, Riquelme PA, Feller MB, Shatz CJ (1998) Competition in retinogeniculate patterning driven by spontaneous activity. Science 279:2108–2112.

    Article  PubMed  CAS  Google Scholar 

  • Pfieffenberger C, Cutforth T, Woods G, Yamada J, Renteria RC, Copenhagen DR, Flanagan JG, Feldheim DA (2005) Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat Neurosci. 8:1022–7.

    Article  CAS  Google Scholar 

  • Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1981) Development of visual centres in the primate brain depends on binocular competition before birth. Science 214:928–931.

    Article  PubMed  CAS  Google Scholar 

  • Ramoa AS, and McCormick DA (1994) Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse. J Neurosci. 14:2098–105.

    PubMed  CAS  Google Scholar 

  • Rossi FM, Pizzorusso T, Porciatti V, Marubio LM, Maffei L, and Changuex JP (2001) Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad USA 98:6453–6458.

    Article  CAS  Google Scholar 

  • Shatz CJ (1983) The prenatal development of the cats retinogeniculate pathway. J Neurosci. 3:482–499.

    PubMed  CAS  Google Scholar 

  • Shatz CJ (1990). Competitive interactions between retinal ganglion cells during prenatal development. J Neurobiol. 21:197–211.

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ (1996) Emergence of order in visual system development. Proc Natl Acad Sci USA 93:602–8.

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ, and Stryker MP (1988) Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242:87–89.

    Article  PubMed  CAS  Google Scholar 

  • So KF, Schneider GE, and Frost DO (1978) Postnatal development of retinal projections to the lateral geniculate body in Syrian hamsters. Brain Res. 142:343–52.

    Article  PubMed  CAS  Google Scholar 

  • Sretavan D, and Shatz CJ (1984) Prenatal development of individual retinogeniculate axons during the period of segregation. Nature 308:845–8.

    Article  PubMed  CAS  Google Scholar 

  • Sretavan DW, and Shatz CJ (1986a) Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus. J Neurosci. 6:234–51.

    PubMed  CAS  Google Scholar 

  • Sretavan DW, and Shatz CJ (1986b) Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions. J Neurosci. 6:990–1003.

    PubMed  CAS  Google Scholar 

  • Sretavan DW, Shatz CJ, and Stryker MP (1988) Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336:468–71.

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D, Shatz CJ, and Feller MB (1999) Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24:673–685.

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D, and Shatz CJ (2002) An instructive role for retinal waves in the development of retnogeniculate connectivity. Neuron 33:357–367.

    Article  PubMed  CAS  Google Scholar 

  • Stryker MP, and Zahs KR (1983) On and off sublaminae in the lateral geniculate nucleus of the ferret. J Neurosci. 10:1943–1951.

    Google Scholar 

  • Syed MM, Lee S, Zheng J, and Zhou ZJ (2004) Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol. 560:533–49.

    Article  PubMed  CAS  Google Scholar 

  • Tavazoie SF, and Reid RC (2000) Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat Neurosci. 3:608–16.

    Article  PubMed  CAS  Google Scholar 

  • Thompson I, and Holt C (1989) Effects of intraocular tetrodotoxin on the development of the retinocollicular pathway in the Syrian hamster. J Comp Neurol. 282:371–388.

    Article  PubMed  CAS  Google Scholar 

  • Torborg CL, Hanson KA, and Feller MB (2005) High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate axons. Nat Neurosci. 8:72–8.

    Article  PubMed  CAS  Google Scholar 

  • Uhlrich DJ, Tamamki N, Murphy PC, and Sherman SM (1994) Effects of brain stem parabrachial activation on receptive field properties of cells in the cat’s lateral geniculate nucleus. J Neurophysiol. 73:2428–47.

    Google Scholar 

  • Weliky M, and Katz LC (1999) Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285:599–604.

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Hogan D, and Garraghty PE (1994) Target recognition and visual maps in the thalamus of achiasmatic dogs. Nature 367:637–639.

    Article  PubMed  CAS  Google Scholar 

  • Wong RO, Meister M, and Shatz CJ (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11:923–938.

    Article  PubMed  CAS  Google Scholar 

  • Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci. 22: 29–47.

    Article  PubMed  CAS  Google Scholar 

  • Wong RO (1999) Retinal waves: stirring up a storm. Neuron 24:493–5.

    Article  PubMed  CAS  Google Scholar 

  • Wong WT, Myhr KL, Miller ED, and Wong RO (2000) Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J Neurosci. 20:351–360.

    PubMed  CAS  Google Scholar 

  • Zahs KR, and Stryker MP(1985) The projection of the visual field onto the lateral geniculate nucleus of the ferret. J Comp Neurol. 241:210–224.

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZJ (1998) Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. J Neurosci. 18:4155–65.

    PubMed  CAS  Google Scholar 

  • Zoli M, Le Novere N, Hill JA Jr, and Changuex JP (1995) Developmental regulation of nicotinic Ach receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci. 15:1912–39.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huberman, A.D., Chapman, B. (2006). Making and Breaking Eye-specific Projections to the Lateral Geniculate Nucleus. In: Erzurumlu, R., Guido, W., Molnár, Z. (eds) Development and Plasticity in Sensory Thalamus and Cortex. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-38607-2_14

Download citation

Publish with us

Policies and ethics