Skip to main content

Abstract

Neural maps of the somatosensory periphery are characterized by their somatotopic organization, and whisker- and digit-specific patterning in rodents. While a variety of molecular guidance cues help set up the topographic axonal projections in the brain, activity-dependent interactions between pre- and postsynaptic elements play a key role in neural patterning. Here we review our and other groups’ analyses of the phenotypes of mice with various types of NMDA receptor (NMDAR) subunit mutations as they relate to the development and patterning of somatosensory pathways. Our recent studies on axonal and dendritic development in region specific NMDAR subunit NR1 knockout and transgenic rescue of global NR1 knockout mice show that NMDAR signaling is necessary for dendritic and axonal pruning and patterning. Further development of region and cell type-specific gene targeting strategies in mice will undoubtedly reveal cellular and molecular mechanisms that underlie the formation of patterned somatotopic maps and their plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Majid, R.M., Leong, W.L., Schalkwyk, L.C., Smallman, D.S., Wong, S.T., Storm, D.R., Fine, A., Dobson, M.J., Guernsey, D.L., and Neumann, P.E. (1998). Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat. Genet. 19:289–291.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, O., Stenqvist, A., Attersand, A., and von Euler, G. (2001). Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78:178–184.

    Article  PubMed  CAS  Google Scholar 

  • Ascher, P., and Nowak, L. (1988). The role of divalent cations in the N-Methyl-D-aspartate responses of mouse central neurons in culture. J. Physiol. (Lond.) 399:247–266.

    CAS  Google Scholar 

  • Bates, C.A., and Killackey, H.P. (1985). The organization of the neonatal rat’s brainstem trigeminal complex and its role in the formation of central trigeminal patterns. J. Comp. Neurol. 240:265–87.

    Article  PubMed  CAS  Google Scholar 

  • Bear. M.F., Kleinschmidt, A., Gu, Q., and Singer, W. (1990). Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10:909–925.

    PubMed  CAS  Google Scholar 

  • Belford, G.R., Killackey, H.P. (1978). Anatomical correlates of the forelimb in the ventrobasal complex and the cuneate nucleus of the neonatal rat. Brain Res. 158:450–455.

    Article  PubMed  CAS  Google Scholar 

  • Belford, G.R., Killackey, H.P. (1979). The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J. Comp. Neurol. 188:63–74.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T.V.P., and Collingridge, G.L. (1993). A synaptic model of memory: longterm potentiation in the hippocampus. Nature 361:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bolz, J., Uziel, D., Muhlfriedel, S., Gullmar, A., Peuckert, C., Zarbalis, K., Wurst, W., Torii, M., and Levitt, P. (2004). Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. J. Neurobiol. 59:82–94.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N., Schoepfer, R., Monyer, H., Ruppensberg, J.P., Günther, W., Seeburg, P.H., and Sakmann, B. (1992). Control by aspargine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257:1415–1419.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, R.C., and Zukin, R.S. (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends. Neurosci. 25:571–577.

    Article  PubMed  CAS  Google Scholar 

  • Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., and Gaspar, P. (1996). Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: Role of a serotonin excess during the critical period. Neuron 16:297–307.

    Article  PubMed  CAS  Google Scholar 

  • Catalano, SM., and Shatz, C.J. (1998). Activity-dependent cortical target selection by thalamic axons. Science 281:559–562.

    Article  PubMed  CAS  Google Scholar 

  • Chiaia, N.L., Fish, S.E., Bauer, W.R., Bennett-Clarke, C.A., and Rhoades, R.W. (1992a). Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat’s somatosensory cortex. Dev. Brain Res. 66:244–250.

    Article  CAS  Google Scholar 

  • Chiaia, N.L., Bennett-Clarke, C.A., Eck, M., White, F.A., Crissman, R.S., and Rhoades, R.W. (1992b). Evidence for prenatal competition among the central arbors of trigeminal primary afferent neurons. J. Neurosci. 12:62–76.

    PubMed  CAS  Google Scholar 

  • Chiaia, N.L., Fish, S.E., Bauer, W.R., Figley, B.A., Eck, M., Bennett-Clarke, C.A., and Rhoades, R.W. (1994a). Effects of postnatal blockage of cortical activity with tetrodotoxin upon lesion-induced reorganization of vibrissae-related patterns in the somatosensory cortex of rat. Dev. Brain Res. 79:301–306.

    Article  CAS  Google Scholar 

  • Chiaia, N.L., Fish, S.E., Bauer, W.R., Figley, B.A., Eck, M., Bennett-Clarke, C.A., and Rhoades, R.W. (1994b). Effects of postnatal blockade of cortical activity with tetrodotoxin upon the development and plasticity of vibrissa-related patterns in the somatosensory cortex of hamsters. Somatosens. Mot. Res. 11:219–228.

    PubMed  CAS  Google Scholar 

  • Ciabarra, A.M., Sullivan, J.M., Gahn, L.G., Pecht, G., Heinemann, S., and Sevarino, K.A. (1995). Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J. Neurosci. 15:6498–4508.

    PubMed  CAS  Google Scholar 

  • Clements, J.D. and Westbrook, G.L. (1991). Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7: 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Cline, H.T., Debski, E.A., and Constantine-Paton, M. (1987). N-methyl-Daspartate receptor antagonist desegregates eye-specific stripes. Proc. Natl. Acad. Sci. USA 84:4325–4342.

    Article  Google Scholar 

  • Constantine-Paton, M., Cline, H.T., and Debski, E. (1990). Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13:129–54.

    Article  PubMed  CAS  Google Scholar 

  • Dalva, M.B., Takasu, M.A., Lin, M.Z., Shamah, S.M., Hu, L., Gale, N.W., and Greenberg, M.E. (2000). EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956.

    Article  PubMed  CAS  Google Scholar 

  • Das, S., Sasaki, Y.F., Rothe, T., Premkumar, L.S., Takasu, M., Crandall, J.E., Dikkes, P., Conner, D.A., Rayudu, P.V., Cheung, W., Chen, H.S., Lipton, S.A., and Nakanishi, N. (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377–381.

    Article  PubMed  CAS  Google Scholar 

  • Datwani, A., Iwasato, T., Itohara, S., and Erzurumlu, R.S. (2002a). Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons. J. Neurosci. 22:9171–9175.

    PubMed  CAS  Google Scholar 

  • Datwani, A., Iwasato, T., Itohara, S., and Erzurumlu, R.S. (2002b). NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel cortex. Mol. Cell. Neurosci. 21:477–492.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, D.R., and Killackey, H.P. (1987). The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat. J. Comp. Neurol. 256:246–256.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51:7–61.

    PubMed  CAS  Google Scholar 

  • Dufour, A., Seibt, J., Passante, L., Depaepe, V., Ciossek, T., Frisen, J., Kullander, K., Flanagan, J.G., Polleux, F., and Vanderhaeghen, P. (2003). Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Erzurumlu, R.S., and Jhaveri, S. (1990). Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. Dev. Brain. Res. 56:229–234.

    Article  CAS  Google Scholar 

  • Erzurumlu, R.S., and Jhaveri, S. (1992a). Trigeminal ganglion cell processes are spatially ordered prior to the differentiation of the vibrissa pad. J. Neurosci. 12:3946–3955.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R.S., and Jhaveri, S. (1992b). Emergence of connectivity in the embryonic rat parietal cortex. Cereb. Cortex 2:336–352.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R.S., and Kind, P.C. (2001). Neural activity: sculptor of ‘barrels’ in the neocortex. Trends. Neurosci. 24:589–595.

    Article  PubMed  CAS  Google Scholar 

  • Erzurumlu, R.S., Jhaveri, S., and Benowitz, L.I. (1990). Transient patterns of GAP-43 expression during the formation of barrels in the rat somatosensory cortex. J. Comp. Neurol. 292:443–456.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, G.D., and Storm, D.R. (2004), Why calcium-stimulated adenylyl cyclases? Physiology 19: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Forrest, D., Yuzaki, M., Soares, H.D., Ng, L., Luk, D.C., Sheng, M., Stewart, C.L., Morgan, J.I., Connor, J.A., and Curran, T. (1994). Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13:325–338.

    Article  PubMed  CAS  Google Scholar 

  • Fox, K., and Daw, N.W. (1993). Do NMDA receptors have a critical function in visual cortical plasticity? Trends. Neurosci. 16:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Fox, K., Schlaggar, B.L., Glazewski, S., and O’Leary, D.D. (1996). Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc. Natl. Acad. Sci.USA 93:5584–9.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Shimogori, T., and Grove, E.A. (2001). Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074.

    Article  PubMed  CAS  Google Scholar 

  • Grove, E.A., and Fukuchi-Shimohoro, T. (2003). Generating the cerebral cortical area map. Annu. Rev. Neurosci. 26:355–380.

    Article  PubMed  CAS  Google Scholar 

  • Hahm, J.O., Langdon, R.B., and Sur, M. (1991). Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351:568–570.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, T., Leingartner, A., Ringstedt, T., and O’Leary, D.D. (2004). EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43:359–372.

    Article  PubMed  CAS  Google Scholar 

  • Hannan, A.J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K.M., Near, M., Roder, J., Kim, D., Shin, H.S., and Kind, P.C. (2001). PLC-B1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4:282–328.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, T.A., Woolsey, T.A., and Jacquin, M.F. (1992). Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat. Dev. Brain Res. 66:146–52.

    Article  CAS  Google Scholar 

  • Hollmann, M. (1999). Structure of ionotropic glutamate receptors. In: Jonas, P., and Monyer, H. (eds.), Ionotropic Glutamate Receptors in the CNS. Springer, Berlin, pp 3–98.

    Google Scholar 

  • Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31–108.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, K., Nagasawa, M., Mori, H., Araki, K., Sakimura, K., Watanabe, M., Inoue, Y., and Mishina, M. (1992). Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett. 313:34–38.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, K., Araki, K., Takayama, C., Inoue, Y., Yagi, T., Aizawa, S., and Mishina, M. (1995). Reduced spontaneous activity of mice defective in the epsilon 4 subunit of the NMDA receptor channel. Mol. Brain Res. 33: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Iwasato, T., Erzurumlu, R.S., Huerte, P.T., Chen, D.F., Sasaoka, T., Ulupinar, E., and Tonegawa, S.T. (1997). NMDA receptor-dependent refinement of somatotopic maps. Neuron 19:1201–1210.

    Article  PubMed  CAS  Google Scholar 

  • Iwasato, T., Datwani, A., Wolf, A.M., Nishiyama, H., Taguchi, Y., Tonegawa, S., Knöpfel, T., Erzurumlu, R.S., and Itohara, S. (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726–731.

    Article  PubMed  CAS  Google Scholar 

  • Iwasato, T., Nomura, R., Ando, R., Ikeda, T., Tanaka, M., and Itohara, S. (2004). Dorsal telencephalon-specific expression of Cre recombinase in PAC transgenic mice. Genesis 38: 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Jacquin, M.F., Renehan, W.E., Rhoades, R.W., and Panneton, W.M. (1993). Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. J. Neurophysiol. 70:1911–1936.

    PubMed  CAS  Google Scholar 

  • Kashiwagi, K., Pahk, A.J., Masuko, T., Igarashi, K., and Williams, K. (1997). Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore forming regions of NR1 and NR2 subunits. Mol. Pharmacol. 52:701–713.

    PubMed  CAS  Google Scholar 

  • Killackey, H.P., and Fleming, K. (1985). The role of the principal sensory nucleus in central trigeminal pattern formation. Dev. Brain Res. 22:141–145.

    Article  Google Scholar 

  • Killackey, H.P., Rhoades, R.W., and Bennett-Clarke, C.A. (1995). The formation of a cortical somatotopic map. Trends. Neurosci. 18:402–407.

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt, A., Bear, M.F., and Singer, W. (1987). Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238:355–35

    Article  PubMed  CAS  Google Scholar 

  • Kuner, T., Wollmuth, L.P., Karlin, A., Seeburg, P.H., and Sakmann, B. (1996). Structure of the NMDA receptor M2 segment inferred from the accessibility of substituted cysteines. Neuron 17:343–352.

    Article  PubMed  CAS  Google Scholar 

  • Kuryatov, A., Laube, B., Betz, H., and Kuhse, J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358:36–41.

    Article  PubMed  CAS  Google Scholar 

  • Kutsuwada, T., Sakimura, K., Manabe, T., Takayama, C., Katakura, N., Kushiya, E., Natsume, R., Watanabe, M., Inoue, Y., Yagi, T., Aizawa, S., Arakawa, M., Takahashi, T., Nakamura, Y., Mori, H., and Mishina, M. (1996). Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16: 333–344.

    Article  PubMed  CAS  Google Scholar 

  • Laube, B., Hirai, H., Sturgess, M., Betz, H., and Kuhse, J. (1997). Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503.

    Article  PubMed  CAS  Google Scholar 

  • Laurie, D.J., Bartke, I., Schoepfer, R., Naujoks, K., and Seeburg, P.H. (1997). Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Mol. Brain Res. 51:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Lebrand, C., Cases, O., Adelbrecht, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I., and Gaspar, P. (1996). Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–835.

    Article  PubMed  CAS  Google Scholar 

  • Lebrand, C., Cases, O., Wehrle, R., Blakely, R.D., Edwards, R.H., and Gaspar, P. (1998). Transient developmental expression of monoamine transporters in the rodent forebrain. J. Comp. Neurol. 401:506–524.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L.J., and Erzurumlu, R.S. (2005). Altered parcellation of neocortical somatosensory maps in N-Methyl-D-Aspartate receptor-deficient mice. J. Comp. Neurol. 485:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L.J., Lo, F.S., and Erzurumlu, R.S. (2005a). NMDA receptor-dependent regulation of axonal and dendritic branching. J. Neurosci. 25:2304–2311.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L.J., Iwasato, T., Itohara, S., and Erzurumlu, R.S. (2005b). Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J. Comp. Neurol. 485:280–292.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Erzurumlu, R.S., Chen, C., Jhaveri, S., and Tonegawa, S. (1994). Whisker-related neuronal patterns fail to develop in the brainstem trigeminal nuclei of NMDAR1 knockout mice. Cell 76: 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Lo, F.S., and Erzurumlu, R.S. (2001). Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons. J. Neurophysiol. 85:1088–1096.

    PubMed  CAS  Google Scholar 

  • Lo, F.S., Guido, W., and Erzurumlu, R.S. (1999). Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats. J. Neurophysiol. 82:2765–2775.

    PubMed  CAS  Google Scholar 

  • López-Bendito, G., and Molnár, Z. (2003) Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4:276–289.

    Google Scholar 

  • Lu, H.C., Shi, W-C., Neumann, PE., Janz, R., and Crair, M.C. (2002). Altered presynaptic function in adenylyl cyclase I “barrelless” mutant mice. Soc. Neuro. Sci. Abst. No. 629.1

    Google Scholar 

  • Lu, H.C., She, W.C., Plas, D.T., Neumann, P.E., Janz, R., and Crair M.C. (2003). Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical ‘barrel’ map development. Nat. Neurosci. 6:939–947

    Article  PubMed  CAS  Google Scholar 

  • Ma, P.M. (1993). Barrellettes: Architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. II. Normal postnatal development. J. Comp. Neurol. 327:376–397.

    Article  PubMed  CAS  Google Scholar 

  • Ma, P.M., and Woolsey, T.A. (1984). Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse. Brain Res. 306:374–379.

    Article  PubMed  CAS  Google Scholar 

  • Maier, D.L., Mani, S., Donovan, S.L., Soppet, D., Tessarollo, L., McCasland, J.S., and Meiri, K.F. (1999). Disrupted cortical map and absence of cortical barrels in growth-associated protein (GAP)-43 knockout mice. Proc. Natl. Acad. Sci. USA 96:9397–9402.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C., and Nicoll, R.A. (1993). NMDA receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends. Neurosci. 16:521–527.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, I., Suzuki, Y., Defer, N., Nakanishi, H., and Hanoune, J. (1997). Differential expression of type I, II, and V adenylyl cyclase gene in the postnatal developing rat brain. J. Nueochem. 68: 498–506.

    CAS  Google Scholar 

  • Mayer, M.L., and Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28:197–276.

    Article  PubMed  CAS  Google Scholar 

  • McIlvain, V.A., Robertson, D.R., Maimone, M.M., and McCasland, J.S. (2003). Abnormal thalamocortical pathfinding and terminal arbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice. J. Comp. Neurol. 462:252–264.

    Article  PubMed  Google Scholar 

  • Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K., and Mishina, M. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74.

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic, N., Mohajeri, H., and Schachner, M. (1996). Effects of NMDA receptor blockade in the developing rat somatosensory cortex on the expression of the glia-derived extracellular matrix glycoprotein tenascin-C. Eur. J. Neurosci. 8:1793–802.

    Article  PubMed  CAS  Google Scholar 

  • Molnár, Z., and Blakemore, C. (1995) How do thalamic axons find their way to the cortex? Trends. Neurosci. 18:389–397.

    Google Scholar 

  • Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P.H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540.

    Article  PubMed  CAS  Google Scholar 

  • Monyer, H., Jonas, P., and Rossier, J. (1999). Molecular determinants controlling functional properties of AMPARs and NMDARs in the mammalian CNS. In: Jonas, P., and Monyer, H. (eds.), Ionotropic Glutamate Receptors in the CNS. Springer, Berlin, pp. 309–339.

    Google Scholar 

  • Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, A., Liu, X-B., and Jones, E.G. (1999). Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. J. Comp. Neurol. 409: 549–566.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T., and Süudhof, T.C. ((1997). Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J. Biol. Chem. 272:26032–26039.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, M., Hinds, H., Lu, H.P., Kawata, M., and Hayashi, Y. (2001). Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J. Neurosci. 21:RC185.

    PubMed  CAS  Google Scholar 

  • Ohsaki, K., Osumi, N., and Nakamura, S. (2002). Altered whisker patterns induced by ectopic expression of Shh are topographically represented by barrels. Dev. Brain Res. 137:159–170.

    Article  CAS  Google Scholar 

  • O’Leary, D.D.M., Ruff, N.L., and Dyck, R.H. ((1994). Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4: 535–544.

    Article  PubMed  CAS  Google Scholar 

  • Persico, A.M., Mengual, E., Moessner, R., Hall, F.S., Revay, R.S., Sora, I., Arellano, J., DeFelipe, J., Gimenez-Amaya, J.M., Conciatori, M., Marino, R., Balde, A., Cabib, S., Pascucci, T., Uhl, G.R., Murphy, D.L., Lesch, K.P., and Keller, F. (2001). Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J. Neurosci. 21:6862–6873.

    PubMed  CAS  Google Scholar 

  • Petralia, R.S., Wang, Y.X., and Wenthold, R.J. (1994). The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J. Neurosci. 14:6102–6120.

    PubMed  CAS  Google Scholar 

  • Polleux, F. (2004). Generation of the cortical area map; emx2 strikes back. Neuron 43:295–297.

    Article  PubMed  CAS  Google Scholar 

  • Rudhard, Y., Kneussel, M., Nassar, M.A., Rast, G.F., Annala, A.J., Chen, P.E., Tigaret, C.M., Dean, I., Roes, J., Gibb, A.J., Hunt, S.P., and Schoepfer, R. (2003). Absence of Whisker-related pattern formation in mice with NMDA receptors lacking coincidence detection properties and calcium signaling. J. Neurosci. 23:2323–2332.

    PubMed  CAS  Google Scholar 

  • Sakurada, K., Masu, M., and Nakanishi, S. (1993). Alteration of Ca2+ permeability and sensitivity to Mg2+ and channel blocker by a single amino acid substitution in the N-methyl-D-aspartate receptor. J. Biol. Chem. 268: 410–415.

    PubMed  CAS  Google Scholar 

  • Salichon, N., Gaspar, P., Upton, A.L., Picaud, S., Hanoun, N., Hamon, M., De Maeyer, E., Murphy, D.L., Mossner, R., Lesch, K.P., Hen, R., and Seif, I. (2001). Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21: 884–896.

    PubMed  CAS  Google Scholar 

  • Sasaki, Y.F., Rothe, T., Premkumar, L.S., Das, S., Cui, J., Talantova, M.V., Wong, H.K., Gong, X., Chan, S.F., Zhang, D., Nakanishi, N., Sucher, N.J., and Lipton, S.A. (2002). Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol. 87:2052–2063.

    PubMed  CAS  Google Scholar 

  • Scheiffele, P. (2003). Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26:485–508.

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele, P., Fan, J., Choih, J., Fetter, R., and Serafini, T. (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669.

    Article  PubMed  CAS  Google Scholar 

  • Schlaggar, B.L., and O’Leary, D.D. (1994). Early development of the somatotopic map and barrel patterning in rat somatosensory cortex. J. Comp. Neurol. 346:80–96.

    Article  PubMed  CAS  Google Scholar 

  • Schlaggar, B.L., Fox, K., and O’Leary, D.D. (1993). Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364:623–626.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J.T. (2004). Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways. J. Neurobiol. 59:114–133.

    Article  PubMed  CAS  Google Scholar 

  • Scneggenburger, R., and Ascher, P. (1997). Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18:167–177.

    Article  Google Scholar 

  • Senft, S.L., and Woolsey, T.A. (1991). Growth of thalamic afferents into mouse barrel cortex. Cereb. Cortex 1:308–335.

    PubMed  CAS  Google Scholar 

  • Simon, D.K., Prusky, G.T., O’Leary, D.D., and Constantine-Paton, M. (1992). N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map. Proc. Natl. Acad. Sci. USA 89:10593–10597.

    Article  PubMed  CAS  Google Scholar 

  • Single, F.N., Rozov, A., Burnashev, N., Zimmermann, F., Hanley, D.F., Forrest, D., Curan, T., Jensen, V., Hvalby, O., Sprengel, R., and Seeburg, P.H. (2000). Dysfunctions in mice by NMDA receptor point mutations NR1(N598Q) and NR1(N598R). J. Neurosci. 20:2558–2566.

    PubMed  CAS  Google Scholar 

  • Spruston, N., Jonas P., and Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482:325–352.

    CAS  Google Scholar 

  • Stainier, D.Y., and Gilbert, W. (1990). Pioneer neurons in the mouse trigeminal sensory system. Proc. Natl. Acad. Sci. USA 87: 923–927.

    Article  PubMed  CAS  Google Scholar 

  • Stainier, D.Y., and Gilbert, W. (1991). Neuronal differentiation and maturation in the mouse trigeminal sensory system, in vivo and in vitro. J. Comp. Neurol. 311:300–312.

    Article  PubMed  CAS  Google Scholar 

  • Stent, G.S. (1973). A physiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA 70:997–1001.

    Article  PubMed  CAS  Google Scholar 

  • Storm, D.R., Hansel, C. Hacker, B. Parent, A. and Linden, D. (1998). Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20: 1199–1210.

    Article  PubMed  CAS  Google Scholar 

  • Sucher, N.J., Akbarian, S., Chi, C.L., Leclerc, C.L., Awobuluyi, M., Deitcher, D.L., Wu, M.K., Yuan, J.P., Jones, E.G., and Lipton, S.A. (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit(NMDARL) in the rodent brain. J. Neurosci. 15:6509–6520.

    PubMed  CAS  Google Scholar 

  • Tokita, Y., Bessho, Y., Masu, M., Nakamura, K., Nakao, K., Katsuki, M., and Nakanishi, S. (1996). Characterization of excitatory amino acid neurotoxicity in N-methyl-D-aspartate receptor-deficient mouse cortical neuronal cells. Eur. J. Neurosci. 8:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Traynelis, S.F., Burgess, M.F., Zheng, F., Lyuboslavsky, P., and Powers, J.L. (1998). Control of voltage-dependent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18:6163–6175.

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen, P., Lu, Q., Prakash, N., Frisen, J., Walsh, C.A., Frostig, R.D., and Flanagan, J.G. (2000). A mapping label required for normal scale of body representation in the cortex. Nat. Neurosci. 3:358–365.

    Article  PubMed  CAS  Google Scholar 

  • Van der Loos, H. (1976). Barreloids in mouse somatosensory thalamus. Neurosci. Lett. 2:1–6.

    Article  Google Scholar 

  • Villacres, E.C. Wong, S.T. Chavkin, C. and Storm, D.R. (1998). Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J. Neurosci. 18: 3186–3194.

    PubMed  CAS  Google Scholar 

  • Wang, H., Ferguson, G.D., Pineda, V.V., Cundiff, P.E., and Storm, D.R. (2004). Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nat. Neurosci. 2004 7:635–642.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Inoue, Y., Sakimura, K., and Mishina, M. (1992). Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3:1138–1140.

    PubMed  CAS  Google Scholar 

  • Watanabe, M., Inoue, Y., Sakimura, K., and Mishina, M. (1993). Distinct distributions of five N-methyl-D-aspartate receptor channel subunit mRNAs in the forebrain. J. Comp. Neurol. 338:377–390.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Mishina, M., and Inoue, Y. (1994a). Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum. J. Comp. Neurol. 343:513–519.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Mishina, M., and Inoue, Y. (1994b). Distinct distributions of five NMDA receptor channel subunit mRNAs in the brainstem. J. Comp. Neurol. 343:520–531.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Nakamura, M., Sato, K., Kano, M., Simon, M.I., and Inoue, Y. (1998). Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cb in mouse brain. Eur. J. Neurosci. 10:2016–2025.

    Article  PubMed  CAS  Google Scholar 

  • Welker, E., and Van der Loos, H. (1986). Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae. J. Neurosci. 6:3355–3373.

    PubMed  CAS  Google Scholar 

  • Welker, E., Armstrong-James, M., Bronchti, G., Ourednik, W., Gheorghita-Baechler, F., Dubois, R., Guernsey, D.L., Van der Loos, H., and Neumann, P.E. (1996). Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science 27:1864–1867.

    Article  Google Scholar 

  • Wenthold, R.J., Prybylowski, K., Standley, S., Sans, N., and Petralia, R.S. (2003). Trafficking of NMDA receptors. Annu. Rev. Pharmacol. Toxicol. 43:335–358.

    Article  PubMed  CAS  Google Scholar 

  • Wisden, W., and Seeburg, P.H. (1993). Mammalian ionotropic glutamate receptors. Curr. Opin. Neurobiol. 3:291–298.

    Article  PubMed  CAS  Google Scholar 

  • Wisden, W., Seeburg, P.H., and Monyer, H. (2000). AMPA, kainite and NMDA ionotropic glutamate receptor expression-an in situ hybridization atlas. In: Bjöorklund, A., and Hökfelt, T. (eds), Handbook of Chemical Neuroanatomy. Elsevier, Amsterdam, pp. 99–143.

    Google Scholar 

  • Wollmuth, L.P., Kuner, T., Seeburg, P.H., and Sakmann, B. (1996). Differential contribution of the NR1-and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J. Physiol. (Lond.) 491:779–797.

    CAS  Google Scholar 

  • Wong-Riley, M.T. (1989). Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends. Neurosci. 12:94–101.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T., and Welt, C. (1980). Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc. Natl. Acad. Sci. USA 77:2333–2337.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, T.A. (1990). Peripheral alteration and somatosensory development. In: E.J. Coleman (ed.) Development of Sensory Systems in Mammals, Wiley, New York, pp. 461–516.

    Google Scholar 

  • Woolsey, T.A., and Van der Loos, H. (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17:205–242.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G.Y., and Cline, H.T. (1998). Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279: 222–226.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z-L., Thomas, S.A. Villacres, E.C. Xia, Z. Simmons, M.L. Chavkin, C. Palmiter, R.D. and Storm, D.R. (1995). Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA. 92: 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X., Zhang, L., Wang, A.P., Araneda, R.C., Lin, Y., Zukin, R.S., and Bennett, M.V.L. (1999). Mutation of structural determinants lining the N-methyl-D-aspartate receptor channel differentially affects phencyclidine block and spermine potentiation and block. Neuroscience 93:125–134.

    Article  PubMed  CAS  Google Scholar 

  • Zou D.J., and Cline, H.T. (1999). Postsynaptic calcium/calmodulin-dependent protein kinase II is required to limit elaboration of presynaptic and postsynaptic neuronal arbors. J. Neurosci. 19: 8909–8918.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Erzurumlu, R.S., Iwasato, T. (2006). Patterning of the Somatosensory Maps with NMDA Receptors. In: Erzurumlu, R., Guido, W., Molnár, Z. (eds) Development and Plasticity in Sensory Thalamus and Cortex. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-38607-2_10

Download citation

Publish with us

Policies and ethics