Mitochondrial DNA Inheritance after SCNT

  • Stefan Hiendleder

Abstract

Mitochondrial biogenesis and function is under dual genetic control and requires extensive interaction between biparentally inherited nuclear genes and maternally inherited mitochondrial genes. Standard SCNT procedures deprive an oocytes’ mitochondrial DNA (mtDNA) of the corresponding maternal nuclear DNA and require it to interact with an entirely foreign nucleus that is again interacting with foreign somatic mitochondria. As a result, most SCNT embryos, -fetuses, and -offspring carry somatic cell mtDNA in addition to recipient oocyte mtDNA, a condition termed heteroplasmy. It is thus evident that somatic cell mtDNA can escape the selective mechanism that targets and eliminates intraspecific sperm mitochondria in the fertilized oocyte to maintain homoplasmy. However, the factors responsible for the large intra- and interindividual differences in heteroplasmy level remain elusive. Furthermore, heteroplasmy is probably confounded with mtDNA recombination. Considering the essential roles of mitochondria in cellular metabolism, cell signalling, and programmed cell death, future experiments will need to assess the true extent and impact of unorthodox mtDNA transmission on various aspects of SCNT success.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiendleder S, Zakhartchenko V, Wolf E. Mitochondria and the success of somatic cell nuclear transfer cloning: From nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination. Reprod Fertil Dev 2005; 17:69–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Mirkes PE. 2001 Warkany lecture: To die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratology 2002; 65:228–239.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhuyan PK, Young LL, Lindahl KF et al. Identification of the rat maternally transmitted minor histocompatibility antigen. J Immunol 1997; 158:3753–3760.PubMedGoogle Scholar
  4. 4.
    Sulijoadikusumo I, Horikoshi N, Usheva A. Another function for the mitochondrial ribosomal RNA: Protein folding. Biochemistry 2001; 40:11559–11564.PubMedCrossRefGoogle Scholar
  5. 5.
    Van Blerkom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: Relationship to microtubular organization, ATP content and competence. Hum Reprod 2000; 15:2621–2633.PubMedCrossRefGoogle Scholar
  6. 6.
    Boiani M, Gambles V, Schöler H. ATP levels in cloned mouse embryos. Cytogenet Genome Res 105:270–278.Google Scholar
  7. 7.
    Westermann B. Merging mitochondria matters: Cellular role and molecular machinery of mitochondrial fusion. EMBO Rep 2002; 3:527–531.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 2005; 14:R283–289.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 2005; 6:815–825.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson S, Bankier AT, Barrell BG et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290:457–465.PubMedCrossRefGoogle Scholar
  11. 11.
    GOBASE. The Organelle Genome Database. 2005, (http://www.bch.umontreal.ca/ogmp/projects/other/mt_list.html).Google Scholar
  12. 12.
    Hiendleder S, Wolf E. The mitochondrial genome in embryo technologies. Reprod Domest Anim 2003; 38:290–304.PubMedCrossRefGoogle Scholar
  13. 13.
    Hiendleder S, Kaupe B, Wassmuth R et al. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc Biol Sci 2002; 269:893–904.PubMedCrossRefGoogle Scholar
  14. 14.
    Lott MT, Brandon M, Brown MD et al. MITOMAP: A human mitochondrial genome database. 2003, (http://www.mitomap.org).Google Scholar
  15. 15.
    Cotter D, Guda P, Fahy E et al. MitoProteome: Mitochondrial protein sequence database and annotation system. Nucleic Acids Res 2004; 32 (Database issue):D463–467.PubMedCrossRefGoogle Scholar
  16. 16.
    Iborra FJ, Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells. BMC Biol 2004; 2:9.PubMedCrossRefGoogle Scholar
  17. 17.
    Hutchison IIIrd CA, Newbold JE, Potter SS et al. Maternal inheritance of mammalian mitochondrial DNA. Nature 1974; 251:536–538.PubMedCrossRefGoogle Scholar
  18. 18.
    Gyllensten U, Wharton D, Wilson AC. Maternal inheritance of mitochondrial DNA during back-crossing of two species of mice. J Hered 1985; 76:321–324.PubMedGoogle Scholar
  19. 19.
    May-Panloup P, Chretien MF, Savagner F et al. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod 2003; 18:550–556.PubMedCrossRefGoogle Scholar
  20. 20.
    May-Panloup P, Chretien MF, Jacques C et al. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod 2005; 20:593–597.PubMedCrossRefGoogle Scholar
  21. 21.
    Tamassia M, Nuttinck F, May-Panloup P et al. In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biol Reprod 2004; 71:697–704.PubMedCrossRefGoogle Scholar
  22. 22.
    Barritt JA, Kokot M, Cohen J et al. Quantification of human ooplasmic mitochondria. Reprod Biomed Online 2002; 4:243–247.PubMedCrossRefGoogle Scholar
  23. 23.
    Gyllensten U, Wharton D, Josefsson A et al. Paternal inheritance of mitochondrial DNA in mice. Nature 1991; 352:255–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaneda H, Hajashi JI, Takahama S et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995; 92:4542–4546.PubMedCrossRefGoogle Scholar
  25. 25.
    Sutovsky P, Moreno RD, Ramalho-Santos J et al. Ubiquitin tag for sperm mitochondria. Nature 1999; 402:371–372.PubMedCrossRefGoogle Scholar
  26. 26.
    Sutovsky P, Van Leyen K, McCauley T et al. Degradation of paternal mitochondria after fertilization: Implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod Biomed Online 2004; 8:24–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. New Engl J Med 2002; 347:576–580.PubMedCrossRefGoogle Scholar
  28. 28.
    Kraytsberg Y, Schwartz M, Brown TA et al. Recombination of human mitochondrial DNA. Science 2004; 304:981.PubMedCrossRefGoogle Scholar
  29. 29.
    Zsurka G, Kraytsberg Y, Kudina T et al. Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nat Genet 2005; 37:873–877.PubMedCrossRefGoogle Scholar
  30. 30.
    Evans MJ, Gurer C, Loike JD et al. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet 1999; 23:90–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Loi P, Ptak G, Barboni B et al. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 2001; 19:962–964.PubMedCrossRefGoogle Scholar
  32. 32.
    Steinborn R, Schinogl P, Zakhartchenko V et al. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat Genet 2000; 25:255–257.PubMedCrossRefGoogle Scholar
  33. 33.
    Do JT, Lee JW, Lee BY et al. Fate of donor mitochondrial DNA in cloned bovine embryos produced by microinjection of cumulus cells. Biol Reprod 2002; 67:555–560.PubMedCrossRefGoogle Scholar
  34. 34.
    Steinborn R, Schinogl P, Wells DN et al. Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 2002; 162:823–829.PubMedGoogle Scholar
  35. 35.
    Hiendleder S, Zakhartchenko V, Wenigerkind H et al. Heteroplasmy in bovine fetuses produced by intra-and inter-subspecific somatic cell nuclear transfer: Neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood. Biol Reprod 2003; 68:159–166.PubMedCrossRefGoogle Scholar
  36. 36.
    Takeda K, Akagi S, Kaneyama K et al. Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol Reprod Dev 2003; 64:429–437.PubMedCrossRefGoogle Scholar
  37. 37.
    Han ZM, Chen DY, Li JS et al. Mitochondrial DNA heteroplasmy in calves cloned by using adult somatic cell. Mol Reprod Dev 2004; 67:207–214.PubMedCrossRefGoogle Scholar
  38. 38.
    Theoret CL, Dore M, Mulon PY et al. Short-and long-term skin graft survival in cattle clones with different mitochondrial haplotypes. Theriogenology 2006; 65:1465–1479.PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang Y, Liu SZ, Zhang YL. The fate of mitochondria in Ibex-hirus reconstructed early embryos. Acta Biochim Biophys Sin 2004; 36:371–374.PubMedCrossRefGoogle Scholar
  40. 40.
    St John JC, Moffatt O, D’Souza N. Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev 2005; 72:450–460.PubMedCrossRefGoogle Scholar
  41. 41.
    Takeda K, Tasai M, Iwamoto M et al. Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol Reprod Dev 2006; 73:306–312.PubMedCrossRefGoogle Scholar
  42. 42.
    Inoue K, Ogonuki N, Yamamoto Y et al. Tissue-specific distribution of donor mitochondrial DNA in cloned mice produced by somatic cell nuclear transfer. Genesis 2004; 39:79–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Polejaeva IA, Chen SH, Vaught TD et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 2000; 407:86–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Battersby BJ, Loredo-Osti JC, Shoubridge EA. Nuclear genetic control of mitochondrial DNA segregation. Nat Genet 2003; 33:183–186.PubMedCrossRefGoogle Scholar
  45. 45.
    Loftus RT, MacHugh DE, Bradley DG et al. Evidence for two independent domestications of cattle. Proc Natl Acad Sci USA 1994; 91:2757–2761.PubMedCrossRefGoogle Scholar
  46. 46.
    Luikart G, Gielly L, Excoffier L et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci USA 2001; 98:5927–5932.PubMedCrossRefGoogle Scholar
  47. 47.
    Giuffra E, Kijas J, Amarger V et al. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 2000; 154:1785–1791.PubMedGoogle Scholar
  48. 48.
    Lanza RP, Cibelli JB, Diaz F et al. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2000; 2:79–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen DY, Wen DC, Zhang YP et al. Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos. Biol Reprod 2002; 67:637–642.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang CX, Han ZM, Wen DC et al. In vitro development and mitochondrial fate of macaca-rabbit cloned embryos. Mol Reprod Dev 2003; 65:396–401.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang CX, Kou ZH, Wang K et al. Quantitative analysis of mitochondrial DNAs in macaque embryos reprogrammed by rabbit oocytes. Reproduction 2004; 127:201–205.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen Y, He ZX, Liu A et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res 2003; 13:251–263.PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang Y, Chen T, Wang K et al. Different fates of donor mitochondrial DNA in bovine-rabbit and cloned bovine-rabbit reconstructed embryos during preimplantation development. Front Biosci 2006; 11:1425–1432.PubMedCrossRefGoogle Scholar
  54. 54.
    Jiang Y, Chen T, Nan CL et al. In vitro culture and mtDNA fate of ibex-rabbit nuclear transfer embryos. Zygote 2005; 13:233–240.PubMedCrossRefGoogle Scholar
  55. 55.
    Chang KH, Lim JM, Kang SK et al. Blastocyst formation, karyotype, and mitochondrial DNA of interspecies embryos derived from nuclear transfer of human cord fibroblasts into enucleated bovine oocytes. Fertil Steril 2003; 80:1380–1387.PubMedCrossRefGoogle Scholar
  56. 56.
    Li Y, Dai Y, Du W et al. Cloned endangered species takin (Budorcas taxicolor) by inter-species nuclear transfer and comparison of the blastocyst development with yak (Bos grunniens) and bovine. Mol Reprod Dev 2006; 73:189–195.PubMedCrossRefGoogle Scholar
  57. 57.
    Sansinena M, Lynn J, Denniston R et al. Ooplasmic transfer after interspecies nuclear transfer: Presence of foreign mitochondria, pattern of migration and effect on embryo development. Reprod Fert Dev 2005; 17:182.CrossRefGoogle Scholar
  58. 58.
    Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 2004; 21:1081–108.PubMedCrossRefGoogle Scholar
  59. 59.
    Parfait B, Rustin P, Munnich A et al. Coamplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem Biophys Res Commun 1998; 247:57–59.PubMedCrossRefGoogle Scholar
  60. 60.
    Sorenson MD, Fleischer RC. Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proc Natl Acad Sci USA 1996; 93:15239–15243.PubMedCrossRefGoogle Scholar
  61. 61.
    Hiendleder S, Lewalski H, Wassmuth R et al. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J Mol Evol 1998; 47:441–448.PubMedCrossRefGoogle Scholar
  62. 62.
    Tully LA, Parsons TJ, Steighner RJ et al. A sensitive denaturing gradient-Gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 2000; 67:432–443.PubMedCrossRefGoogle Scholar
  63. 63.
    Hiendleder S, Bebbere D, Zakhartchenko V et al. Maternal-fetal transplacental leakage of mitochondrial DNA in bovine nuclear transfer pregnancies: Potential implications for offspring and recipients. Cloning Stem Cells 2004; 6:150–156.PubMedCrossRefGoogle Scholar
  64. 64.
    Jansen RP. Germline passage of mitochondria: Quantitative considerations and possible embryo-logical sequelae. Hum Reprod 2000; 15(Suppl 2):112–128.PubMedGoogle Scholar
  65. 65.
    Takeda K, Tasai M, Iwamoto M et al. Microinjection of cytoplasm or mitochondria derived from somatic cells affects parthenogenetic development of murine oocytes. Biol Reprod 2005; 72:1397–1404.PubMedCrossRefGoogle Scholar
  66. 66.
    Tecirlioglu RT, Cooney MA, Lewis IM et al. Comparison of two approaches to nuclear transfer in the bovine: Hand-made cloning with modifications and the conventional nuclear transfer technique. Reprod Fertil Dev 2005; 17:573–585.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Stefan Hiendleder
    • 1
  1. 1.Department of Animal ScienceThe University of AdelaideRoseworthyAustralia

Personalised recommendations