Advertisement

Ontologies pp 665-694 | Cite as

Ontology-Based User Profiles for Personalized Search

  • Susan Gauch
  • Mirco Speretta
  • Alexander Pretschner
Chapter
Part of the Integrated Series in Information Systems book series (ISIS, volume 14)

Abstract

As the number of Internet users and the number of accessible Web pages grows, it is becoming increasingly difficult for users to find documents that are relevant to their particular needs. Users who submit a query to a publicly available search engine must wade through hundreds of results, most of them irrelevant. The core of the problem is that, whether they are an eighth grade student or a Nobel Prize winner, the identical Web pages are selected and they are presented in the same way. In this chapter, we report on research that is aimed at providing search results tailored to individual users. In order to provide these personalized search results, the search engine exploits information about the user captured in automatically created user profiles. We compare a variety of mechanisms for automatically creating the user profiles, and discuss open issues in user profile creation, representation, and use.

Key words

ontology personalization user profiles Web search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [About 2005]
    About. http://www.about.com.Google Scholar
  2. [Aktas 04]
    Aktas M.S., Nacar M.A., Menczer F. Personalizing PageRank Based on Domain Profiles. In Proceedings 6 th SIGKDD Workshop on Web Mining and Web Usage Analysis 2004.Google Scholar
  3. [Almeida 04]
    Almeida R., Almeida V. A Community-Aware Search Engine. In Proceedings of the 13 th International Conference on the World Wide Web, May 2004Google Scholar
  4. [Armstrong 95]
    Armstrong R., Freitag D., Joachims T., Mitchell T. WebWatcher: A Learning Apprentice For The World Wide Web. In Proceedings of the AAAI Spring Symposium On Information Gathering 1995; 6–12.Google Scholar
  5. [Asnicar 97]
    Asnicar F., Tasso C. ifWeb: A Protoype of User Model-Based Intelligent Agent for Documentation Filtering and Navigation in the World Wide Web. In Proceedings of the 6 th International Conference on User Modeling June 1997.Google Scholar
  6. [Barrett 97]
    Barrett R., Maglio P., Kellem D. How to Personalize the Web. In Proceedings of ACM CHI’97, Atlanta, USA, 1997.Google Scholar
  7. [Beitzel 04]
    Beitzel S., Jensen E., Chowdhury A., Grossman A., Frieder O.: Hourly Analysis of a Very Large Topically Categorized Web Query Log. In Proceedings of the 27th Annual International ACM SIGIR Conference, Sheffield, July 2004.Google Scholar
  8. [Berners-Lee 01]
    Berners-Lee T., Hendler J., Lassila O. The Semantic Web. Scientific American May, 2001; 284(5): 34–43.CrossRefGoogle Scholar
  9. [Casasola 98]
    Casasola E. ProFusion Personal Assistant: An Agent for Personalized Information Filtering on the WWW. Master’s thesis. The University of Kansas, 1998.Google Scholar
  10. [Chaffee 00]
    Chaffee J., Gauch S. Personal Ontologies For Web Navigation. In Proceedings of the 9 th International Conference On Information Knowledge Management (CIKM) 2000; 227–234.Google Scholar
  11. [Challam 04]
    Challam V. Ontology-Based User Profiles for Contextual Search. Master’s thesis. The University of Kansas, 2004.Google Scholar
  12. [Chan 00]
    Chan P. Constructing Web User Profiles: A Non-Invasive Learning Approach. In: Web Usage Analysis and User Profiling, LNAI 1836, Springer-Verlag, 2000: 39–55.Google Scholar
  13. [Chen 98]
    Chen L., Sycara K. A Personal Agent for Browsing and Searching. In Proceedings of the 2 nd International Conference on Autonomous Agents 1998; 132–139.Google Scholar
  14. [Chesnais 95]
    Chesnais P., Mucklo M., Sheena J. The Fishwrap Personalized News System. In Proceedings of IEEE 2 nd International Workshop on Community Networking: Integrating Multimedia Services to the Home June 1995.Google Scholar
  15. [Chower 96a]
    Chower G., Nicholas C. Resource Selection in Café: an Architecture for Networked Information Retrieval. In Proceedings of SIGIR’96 Workshop on Networked Information Retrieval. Zurich, 1996.Google Scholar
  16. [Chower 96b]
    Chower G., Nicholas C. Meta-Data for Distributed Text Retrieval. In Proceedings of First IEEE Metadata Conference 1996.Google Scholar
  17. [Eklund02]
    Eklund P., Green S., Roberts N., Ontorama: Browsing an RDF ontology using a hyperbolic-like browser. In: The First International Symposium on CyberWorlds (CW2002). Theory and Pracitces, IEEE Press, November 2002.Google Scholar
  18. [Fensel99]
    Decker S., Erdmann M., Fensel D., Studer R. Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information. In: R. Meersman et al., editors, Database Semantics: Semantic Issues in Multimedia Systems. Kluwer Academic Publisher, 1999; 351–369.Google Scholar
  19. [Gauch 03]
    Gauch S., Chaffee J., Pretschner A. Ontology-Based User Profiles for Search and Browsing. Web Intelligence and Agent Systems 2003; 1(3–4):219–234.Google Scholar
  20. [Gauch 04]
    Gauch S., Madrid, J., Induri, S., Ravindran, D., and Chadlavada, S. KeyConcept: A Conceptual Search Engine, Information and Telecommunication Technology Center Technical Report, ITTC-FY2004-TR-8646-37, University of Kansas, 2004.Google Scholar
  21. [Google 2005]
    Google Search Engine. http://www.google.com.Google Scholar
  22. [Google APIs]
    Google Web API’s. http://www.google.com/apis/.Google Scholar
  23. [Göver 99]
    Göver N., Lalmas M., Fuhr N. A Probabilistic Description-Oriented Approach for Categorising Web Documents. In Proceedings of the 8 th International Conference on Information and Knowledge Management 1999; 475–482.Google Scholar
  24. [Guarino 99]
    Guarino N., Masolo C., Vetere G., OntoSeek: Content-Based Access to the Web. IEEE Intelligent Systems, May 1999; 14(3):70–80.CrossRefGoogle Scholar
  25. [Harman 96]
    Harman D. Evaluation Techniques and Measures. In Proceedings of the 4 th Text REtrieval Conference (TREC-4) 1996; A6–A14.Google Scholar
  26. [Haveliwala 02]
    Haveliwala T. Topic-sensitive PageRank. In: Lassner, D., De Roure, D., Iyengar, A., eds.: In Proceedings 11 th International World Wide Web Conference, ACM Press, 2002.Google Scholar
  27. [Heflin 99]
    Heflin J., Hendler J., Luke S. SHOE: A Knowledge Representation Language for Internet Applications. Technical Report CS-TR-4078 (UMIACS TR-99-71), University of Maryland at College Park, 1999 http://www.cs.umd.edu/projects/plus/SHOE/pubs/techrpt99.pdf.Google Scholar
  28. [Hsu 99]
    Hsu W., Lang S. Classification Algorithms for NETNEWS Articles. In Proceedings of the 8 th International Conference on Information and Knowledge Management 1999; 114–121.Google Scholar
  29. [Hyvönen]
    Hyvönen E., Saarela S., Viljanen K. Intelligent Image Retrieval and Browsing Using Semantic Web Techniques. A Case Study. Presented at the International SEPIA Conference at the Finnish Museum of Photography, Helsinki, September 2003.Google Scholar
  30. [Jansen 00]
    Jansen B.J., Spink A., Saracevic T. Real life, real users, and real needs: a study and analysis of user queries on the web. Information Processing and Management 2000; 36(2):207–227.CrossRefGoogle Scholar
  31. [Jeh 03]
    Jeh G., Widom J. Scaling personalized Web search. In Proceedings 12 th International World Wide Web Conference 2003.Google Scholar
  32. [Joachims 97]
    Joachims T., Freitag D., Mitchell T. WebWatcher: A Tour Guide for the World Wide Web. In Proceedings of IJCAI’97 August 1997.Google Scholar
  33. [Joachims 98]
    Joachims T. Text Catehorization with Support Vector Machines: Learning with Many Relevant Features. In Proceedings of the European Conference on Machine Learning, Springer, 1998.Google Scholar
  34. [Joachims 02]
    Joachims T.: Optimizing Search Engines using Clickthrough Data. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2002.Google Scholar
  35. [Kamba 95]
    Kamba T., Bharat K., Albers M. The Krakatoa Chronicle — An Interactive, Personalized Newspaper on the Web. In Proceedings of the 4 th International WWW Conference 1995; 159–170.Google Scholar
  36. [KeyConcept 03]
    KeyConcept Project. http://www.ittc.ku.edu/keyconcept.Google Scholar
  37. [Knight 99]
    Knight K., Luk S. Building a Large Knowledge Base for Machine Translation. In Proceedings of American Association of Artificial Intelligence Conference (AAAI) 1999; 773–778.Google Scholar
  38. [Konstan 97]
    Konstan J., Miller B., Maltz D., Herlocker J., Gordon L., Riedl J. GroupLens: Applying Collaborative Filtering To Usenet News. Communications of the ACM 1997; 40(3): 77–87.CrossRefGoogle Scholar
  39. [Krovetz 92]
    Krovetz R., Croft B. W. Lexical Ambiguity and Information Retrieval. ACM Transactions on Information Systems 1992; 10(2):115–141.CrossRefGoogle Scholar
  40. [Kurki 99]
    Kurki T., Jokela S., Sulonen R., Turpeinen M. Agents in Delivering Personalized Content Based on Semantic Metadata. In Proceedings of the 1999 AAAI Spring Symposium Workshop on Intelligent Agents in Cyberspace 1999; 84–93.Google Scholar
  41. [Labrou 99]
    Labrou Y, Finin T. Yahoo! As An Ontology — Using Yahoo! Categories To Describe Documents. In Proceedings of the 8 th International Conference On Information Knowledge Management (CIKM) 1999; 180–187.Google Scholar
  42. [Lam 96]
    Lam W., Mukhopadhyay S., Mostafa J., Palakal M. Detection of Shifts in User Interests for Personalized Information Filtering. In Proceedings of ACM SIGIR’96, Zurich, Switzerland, 1996.Google Scholar
  43. [Larkey 98]
    Larkey L. S. Automatic Essay Grading Using Text Categorization Techniques. In Proceedings of the 21 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval 1998; 90–95.Google Scholar
  44. [Lieberman 95]
    Lieberman H. Letizia: An Agent That Assists Web Browsing. In Proceedings of the 14 th International Joint Conference On Artificial Intelligence 1995; 924–929.Google Scholar
  45. [Lieberman 97]
    Lieberman H. Autonomous Interface Agents. In Proceedings of the ACM Conference on Computers and Human Interaction (CHI’97) May 1997.Google Scholar
  46. [Liu 02]
    Liu F., Yu C., Meng W. Personalized web search by mapping user queries to categories. In Proceedings CIKM’02 2002; 558–565.Google Scholar
  47. [Luke 97]
    Luke S., Spector L., Rager D., Hendler J. Ontology-Based Web Agents. In Proceedings of the First International Conference on Autonomous Agents (AA’97) 1997.Google Scholar
  48. [Lycos 02]
    Lycos. http://www.lycos.com.Google Scholar
  49. [Malone 87]
    Malone T., Grant K., Turbak F., Brobst S., Cohen M. Intelligent Information Sharing Systems. Communications of the ACM 1987; (30): 390–402.CrossRefGoogle Scholar
  50. [McKeown 03]
    McKeown K., Elhadad N., Hatzivassiloglou V. Leveraging a common representation for personalized search and summarization in a medical digital library. In Proceedings of the 3 rd ACM/IEEE-CS joint conference on Digital libraries 2003; 159–170.Google Scholar
  51. [Mladenic 98]
    Mladenić D. Personal WebWatcher: Design and Implementation. Technical Report IJS-DP-7472, J. Stefan Institute, Department for Intelligent Systems, Ljubljana, Slovenia, 1998.Google Scholar
  52. [Montebello 98]
    Montebello M., Gray W., Hurley S. A Personable Evolvable Advisor for WWW Knowledge-Based Systems. In Proceedings of the 1998 International Database Engineering and Application Symposium (IDEAS’98) July 1998; 224–233.Google Scholar
  53. [Moukas 96]
    Moukas A. Amalthaea: Information Discovery And Filtering Using A Multiagent Evolving Ecosystem. In Proceedings of the Conference on the Practical Application of Intelligent Agents and MultiAgent Technology 1996: http://moux.www.media.mit.edu/people/moux/papers/PAAM96.Google Scholar
  54. [Nichols 97]
    Nichols D. Implicit Rating and Filtering. In Proceedings of the 5 th DELOS Workshop on Filtering and Collaborative Filtering November 1997.Google Scholar
  55. [NuSOAP]
    NuSOAP Library. http://dietrich.ganx4.com/nusoap.Google Scholar
  56. [Oard 96]
    Oard D., Marchionini G. A Conceptual Framework for Text Filtering. Technical Report EE-TR-96-25 CAR-TR-830 CLIS-TR-9602 CS-TR-3643. University of Maryland, May 1996.Google Scholar
  57. [ODP 04]
    The Open Directory Project (ODP). http://dmoz.org.Google Scholar
  58. [Pazzani 96]
    Pazzani M., Muramatsu J., Billsus D. Syskill & Webert: Identifying Interesting Web Sites. In Proceedings of the 13 th National Conference On Artificial Intelligence 1996; 54–61.Google Scholar
  59. [Pearce 97]
    Pearce C., Miller E. The TellTale dynamic hypertext environment: Approaches to scalability. In: Advances in Intelligent Hypertext, Lecture Notes in Computer Science. Springer-Verlag, 1997.Google Scholar
  60. [Pitkow 02]
    Pitkow J., Schütze H., Cass T. et all. Personalized search. CACM 2002; 45(9):50–55.Google Scholar
  61. [ProFusion 02]
    ProFusion. http://www.profusion.com.Google Scholar
  62. [Pretschner 99a]
    Pretschner A.. Ontology Based Personalized Search. Master’s thesis. University of Kansas, June 1999.Google Scholar
  63. [Pretschner 99b]
    Pretschner A., Gauch S. Ontology Based Personalized Search. In Proceedings of the 11 th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) November 1999; 391–398.Google Scholar
  64. [Pulijala 04]
    Pulijala A., Gauch S. Hierarchical Text Classification. International Conference on Cybernetics and Information Technologies, Systems and Applications: CITSA 2004 Orlando, FL, July 21–25, 2004.Google Scholar
  65. [Richardson 02]
    Richardson M., Domingos P. The intelligent surfer: Probabilistic combination of link and content information in PageRank. In: Advances in Neural Information Processing Systems 14, Cambridge, MA, MIT Press 2002; 1441–1448.Google Scholar
  66. [Rucker 97]
    Rucker J., Polanco M. J. Siteseer: Personalized Navigation For The Web. Communications of the ACM 1997; 40(3): 73–75.CrossRefGoogle Scholar
  67. [Ruiz 99]
    Ruiz M., Srinivasan P. Hierarchical Neural Networks For Text Categorization. In Proceedings of the 22 nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval August 1999; 281–282.Google Scholar
  68. [Sakagami 97]
    Sakagami H., Kamba T. Learning Personal Preferences on Online Newspaper Articles From User Behaviors. In Proceedings of the 6 th International WWW Conference 1997; 291–300.Google Scholar
  69. [Salton 89]
    G. Salton. Automatic Text Processing. Addison-Wesley, 1989. ISBN 0-201-12227-8.Google Scholar
  70. [Sebastiani 02]
    Sebastiani F. Machine Learning in Automated Text Categorization. ACM Computing Surveys 2002; 34(1):1–47.CrossRefGoogle Scholar
  71. [Shavlik 98]
    Shavlik J., Eliassi-Rad T. Intelligent Agents for Web-Based Tasks: An Advice-Taking Approach. In Working Notes of the AAAI/ICML-98 Workshop on Learning for text categorization. Madison, WI, 1998.Google Scholar
  72. [Shavlik 99]
    Shavlik J., Calcari S., Eliassi-Rad T., Solock J. An Instructable, Adaptive Interface for Discovering and Monitoring Information on the World Wide Web. In Proceedings of the 1999 International Conference on Intelligent User Interfaces. Redondo Beach, CA, 1999.Google Scholar
  73. [Sheth 94]
    Sheth B. A Learning Approach to Personalized Information Filtering. Master’s thesis. Massachusetts Institute of Technology, 1994.Google Scholar
  74. [Sorensen 95]
    Sorensen H., McElligott M. PSUN: A Profiling System for Usenet News. In Proceedings of CIKM’95 Workshop on Intelligent Information Agents December 1995.Google Scholar
  75. [Stefani 98]
    Stefani A., Strappavara C. Personalizing Access to Web Sites: The SiteIF Project. In Proceedings of the 2 nd Workshop on Adaptive Hypertext and Hypermedia HYPERTEXT’98 June 1998.Google Scholar
  76. [Sugiyama 04]
    Sugiyama K., Hatano K., Yoshikawa M. Adaptive web search based on user profile constructed without any effort from users. In Proceedings 13 th Intl. Conf. on World Wide Web 2004; 675–684.Google Scholar
  77. [Tanudjaja 02]
    Tanudjaja F., Mui L. Persona: A Contextualized and Personalized Web Search. Proc 35 th Hawaii Intl. Conf. on System Sciences 2002.Google Scholar
  78. [Trajkova 04]
    Trajkova J., Gauch S. Improving Ontology-Based User Profiles. In Proceedings of RIAO 2004, University of Avignon (Vaucluse), France, April 26–28, 2004; 380–389.Google Scholar
  79. [Vivacqua 99]
    Vivacqua A. Agents for Expertise Location. In Proceedings of the 1999 AAAI Spring Symposium Workshop on Intelligent Agents in Cyberspace 1999; 9–13.Google Scholar
  80. [W3C 04]
    Web-Ontology (WebOnt) Working Group. http://www.w3.org/2001/sw/WebOnt/ 2004.Google Scholar
  81. [Widyantoro 01]
    Widyantoro D. H., Ioerger T. R., Yen J. Learning User Interest Dynamics with a Three-Descriptor Representation. Journal of the American Society of Information Science and Technology (JASIST) 2001; 52(3):212–225.CrossRefGoogle Scholar
  82. [Yan 95]
    Yan T., García-Molina H. SIFT — A Tool for Wide-Area Information Dissemination. In Proceedings of USENIX Technical Conference 1995; 177–186.Google Scholar
  83. [Yang 99]
    Yang Y., Liu X. A Re-Examination Of Text Categorization Methods. In Proceedings of the 22 nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval August 1999; 42–49.Google Scholar
  84. [Yahoo 2005]
    Yahoo! Search Engine. http://www.yahoo.com.Google Scholar
  85. [Zhu 99]
    Zhu X, Gauch S., Gerhard L., Kral N., Pretschner A. Ontology-Based Web Site Mapping For Information Exploration. In Proceedings of the 8 th International Conference On Information Knowledge Management (CIKM) 1999; 188–194.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Susan Gauch
    • 1
  • Mirco Speretta
    • 1
  • Alexander Pretschner
    • 2
  1. 1.University of KansasUSA
  2. 2.ETH-ZurichZurich

Personalised recommendations