Skip to main content

Discretetimemarkovdecisionprocesses: Average Criterion

  • Chapter
Markov Decision Processes With Their Applications

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 14))

  • 2920 Accesses

In this chapter, we study average optimality in the discrete time Markov decision processes with countable state space and measurable action sets. The average criterion differs from the discounted criterion. In the discounted criterion, the reward at period n should be discounted to period 0 by multiplying βn. Hence, the smaller the period n is, the more important the reward of period n in the criterion will be. The reverse is also true; that is, the larger the period n is, the less important the reward of period n in the criterion will be. Contrary to it, in the average criterion, the reward in any period accounts for nothing in the criterion. Here, only the future trend of the reward is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Discretetimemarkovdecisionprocesses: Average Criterion. In: Markov Decision Processes With Their Applications. Advances in Mechanics and Mathematics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36951-8_3

Download citation

Publish with us

Policies and ethics