Skip to main content

Scripting Argumentative Knowledge Construction in Computer-Supported Learning Environments

  • Chapter

Part of the Computer-Supported Collaborative Learning book series (CULS,volume 6)

Abstract

Computer-supported collaborative learning (CSCL) environments may encourage learners to engage in argumentative knowledge construction. Argumentative knowledge construction means that learners work together to elaborate on concepts by constructing arguments and counterarguments. This is achieved through discourse with the goal of acquiring knowledge within a specific domain. However, learners may encounter problems relating to one of three dimensions of argumentative knowledge construction. First, learners seem to have difficulties in constructing arguments that contribute to solving the task. Second, learners’ arguments may lack important components such as data and warrants. Third, learners rarely build upon the arguments of their learning partners. Structuring argumentative knowledge construction with collaboration scripts is a promising instructional approach for facilitating specific process dimensions of argumentative knowledge construction. Little is known, however, about how to most effectively facilitate the acquisition of knowledge by directing collaboration scripts at specific dimensions of argumentative knowledge construction. This chapter will outline the theoretical background of argumentative knowledge construction and will then describe script components that target different dimensions of argumentative knowledge construction. The chapter will then discuss the empirical findings of two studies regarding the effects of these script components.

Keywords

  • Knowledge Construction
  • Attribution Theory
  • Social Mode
  • Epistemic Activity
  • Computer Support Collaborative Learn

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-36949-5_12
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-36949-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   269.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andriessen, J. E. B., Baker, M., & Suthers, D. (Eds.). (2003). Arguing to learn. Confronting cognitions in computer-supported collaborative learning environments. Dordrecht: Kluwer.

    Google Scholar 

  • Baker, M. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: confronting cognitions in computer-supported collaborative learning environments (Vol. 1, pp. 1–25). Dordrecht: Kluwer.

    Google Scholar 

  • Baker, M, & Lund, K. (1997). Promoting reflective interactions in a CSCL environment. Journal of Computer Assisted Learning, 13, 175–193.

    CrossRef  Google Scholar 

  • Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and individual knowledge construction. In L. B. Resnick (Ed), Knowing, learning, and instruction. Essays in the honour of Robert Glaser (pp. 393–451). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–181.

    CrossRef  Google Scholar 

  • Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64, 1–35.

    CrossRef  Google Scholar 

  • Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 61–91). Heerlen: Open Universiteit Nederland.

    Google Scholar 

  • Dufresne, R. J., Gerace, W. J., Thibodeau Hardiman, P., & Mestre, J. P. (1992). Constraining novices to perform expertlike problem analyses: Effects on schema acquisition. The Journal of the Learning Sciences, 2(3), 307–331.

    CrossRef  Google Scholar 

  • Fischer, F., Bruhn, J., Gräsel, C, & Mandl, H. (2002). Fostering collaborative knowledge construction with visualization tools. Learning and Instruction, 12, 213–232.

    CrossRef  Google Scholar 

  • Herrenkohl, L. R., & Guerra, M. R. (1998). Participant structures, scientific discourse, and student engagement in fourth grade. Cognition and Instruction, 16, 433–475.

    CrossRef  Google Scholar 

  • Jeong, H., & Chi, M. T. H. (1999). Constructing shared knowledge during collaboration and learning. Paper presented at the AERA Annual Meeting, Montreal, Canada.

    Google Scholar 

  • King, A. (1999). Discourse patterns for mediating peer learning. In A. M. O’Donnell & A. King (Eds.), Cognitive perspectives on peer learning (pp. 87–115). Mahwah, NJ: Lawrence Erlbaum Associates

    Google Scholar 

  • Kollar, I., Fischer, F., & Slotta, J. D. (2005). Internal and external collaboration scripts in web-based science learning at schools. In T. Koschman, D. Suthers, & T.W. Chan (Eds.), Computer Supported Collaborative Learning 2005: The Next 10 Years! (pp. 331–340). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287–315.

    CrossRef  Google Scholar 

  • Larson, C. O., Dansereau, D. F., O’Donnell, A. M., Hytecker, V. I., Lambiotte, J. G., & Rocklin, T. R. (1985). Effects of metacognitive and elaborative activity on cooperative learning and transfer. Contemporary Educational Psychology, 10, 342–348.

    CrossRef  Google Scholar 

  • Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43, 332–360.

    CrossRef  Google Scholar 

  • Mäkitalo, K., Weinberger, A., Häkkinen, P., Järvelä, S., & Fischer, F. (2005). Epistemic cooperation scripts in online learning environments: Fostering learning by reducing uncertainty in discourse? Computers in Human Behavior, 21(4), 603–622.

    CrossRef  Google Scholar 

  • Mandl, H., Gruber, H., & Renkl, A. (1996). Communities of practice toward expertise: Social foundation of university instruction. In P. B. Baltes & U. Staudinger (Eds.), Interactive minds. Life-span perspectives on the social foundation of cognition (pp. 394–411). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Marttunen, M., & Laurinen, L. (2001). Learning of argumentation skills in networked and face-to-face environments. Instructional Science, 29, 127–153.

    CrossRef  Google Scholar 

  • Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability and knowledge levels. Cognition and Instruction, 14, 139–178.

    CrossRef  Google Scholar 

  • O’Donnell, A. N., & Dansereau, D. F. (1992). Scripted cooperation in student dyads: A method for analyzing and enhancing academic learning and performance. In R. Hertz-Lazarowitz & N. Miller (Eds.), Interactions in cooperative groups. The theoretical anatomy of group learning (pp. 120–141). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Palincsar, A. S., & Herrenkohl, L. R. (1999). Designing collaborative contexts: Lessons from three research programs. In A. M. O’Donnell & A. King (Eds.), Cognitive perspectives on peer learning (pp. 151–177). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pea, R. D. (1994). Seeing what we build together: Distributed multimedia learning environments for transformative communications. Special Issue: Computer support for collaborative learning. Journal of the Learning Sciences, 3(3), 285–299.

    CrossRef  Google Scholar 

  • Reiser, B. J. (2002). Why scaffolding should sometimes make tasks more difficult for learners. In G. Stahl (Ed.), Proceedings of the Computer Support for Collaborative Learning: Foundations for a CSCL Community-CSCL 2002 (pp. 255–264). Boulder, CO: Lawrence Erlbaum Associates.

    Google Scholar 

  • Renkl, A. (1997). Lernen durch Lehren-Zentrale Wirkmechanismen beim kooperaliven Lernen [Learning through leaching-central mechanisms in cooperative learning]. Wiesbaden: Deutscher Universitäts-Verlag.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1996). Computer support for knowledge-building communities. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 249–268). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Teasley, S. (1997). Talking about reasoning: How important is the peer in peer collaboration? In L. B. Resnick, R. Säljö, C. Pontecorvo, & B. Burge (Eds.), Discourse, tools and reasoning: Essays on situated cognition (pp. 361–384). Berlin: Springer.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Voss, J. F., & van Dyke, J. A. (2001). Argumentation in psychology: Background comments. Discourse Processes, 32(2&3), 89–111.

    CrossRef  Google Scholar 

  • Weinberger, A. (2003). Scripts for computer-supported collaborative learning. Effects of social and epistemic collaboration scripts on collaborative knowledge construction. Doctoral thesis. Ludwig-Maximilian University, Munich. Available at: http://edoc.ub.unimuenchen.de/archive/00001120/01/Weinberger_Armin.pdf.

    Google Scholar 

  • Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer-supported collaborative learning. Instructional Science, 33(1), 1–30.

    CrossRef  Google Scholar 

  • Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46, 71–95.

    CrossRef  Google Scholar 

  • Weinberger, A., Reiserer, M., Ertl, B, Fischer, F., & Mandl, H. (2005). Facilitating collaborative knowledge construction in computer-mediated learning with cooperation scripts. In R. Bromme, F. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication-and how they may be overcome (pp. 15–37). Boston: Kluwer.

    CrossRef  Google Scholar 

  • Weinberger, A., Stegmann, K., & Fischer, F. (2005). Computer-supported collaborative learning in higher education: Scripts for argumentative knowledge construction in distributed groups. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Computer Supported Collaborative Learning 2005: The Next 10 Years! (pp. 717–726). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92, 548–573.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weinberger, A., Stegmann, K., Fischer, F., Mandl, H. (2007). Scripting Argumentative Knowledge Construction in Computer-Supported Learning Environments. In: Fischer, F., Kollar, I., Mandl, H., Haake, J.M. (eds) Scripting Computer-Supported Collaborative Learning. Computer-Supported Collaborative Learning, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36949-5_12

Download citation