Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 6))

  • 1390 Accesses

Abstract

In the yeast Saccharomyces cerevisiae, two genetic elements, [PSI+] and [URE3], were discovered nearly 40 years ago (Cox, 1965; Lacroute, 1971). These traits do not obey Mendel’s laws. They were first considered to be due to a nonchromosomal nucleic acid. However, [PSI+] and [URE3] behavior differs significantly from that of DNA plasmids, RNA viruses, the mitochondrial genome, or RNA replicons. In addition, the genes encoding these traits are located in the nucleus of yeast cells (Schoun and Lacroute, 1969; Cox et al., 1988). The very unusual properties of [PSI+] and [URE3] led only 10 years ago to extend the prion hypothesis to the yeast Saccharomyces cerevisiae (Wickner, 1994). The term prion is meant for infectious protein that can lose for unknown reasons its normal function and that converts the functional polypeptide into a nonfunctional form. This chapter defines the genetic criteria that define a prion in yeast and relates the discovery of S. cerevisiae prions. The structural features of the soluble and insoluble forms of S. cerevisiae prions are detailed, and the mechanistic models for aggregation are presented. Finally, the mechanisms of maintenance and propagation of yeast prions, in particular the role played by molecular chaperones and the potential role of yeast prions, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigle, M., and Lacroute, F. (1975). Genetic aspects of [URE3] a non-Mendelian cytoplasmically inherited mutation in yeast. Mol. Gen. Genet. 136:327–335.

    Article  PubMed  CAS  Google Scholar 

  • Balbirnie, M., Grothe, R., and Eisenberg, D.S. (2001). An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA 98:2375–2380.

    Article  PubMed  CAS  Google Scholar 

  • Bessen, R.A., and Marsh, R.F. (1992). Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J. Gen. Virol. 73:329–334.

    Article  PubMed  Google Scholar 

  • Bousset, L., Belrhali, H., Janin, J., Melki, R., and Morera, S. (2001). Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 9:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Bousset, L., Thomson, N.H., Radford, S.E., and Melki, R. (2002). The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J. 21:2903–2911.

    Article  PubMed  CAS  Google Scholar 

  • Bousset, L., Briki, F., Doucet, J., and Melki, R. (2003). The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. J. Struct. Biol. 141:132–142.

    Article  PubMed  CAS  Google Scholar 

  • Bousset, L., Redeker, V., Decottignies, P., Dubois, S., Le Marechal, P., and Melki, R. (2004). Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p. Biochemistry 43:5022–5032.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, M.E. (1993). Scrapie strain variation and mutation. Br. Med. Bull. 49:822–838.

    PubMed  CAS  Google Scholar 

  • Cantor, C.R., and Schimmel, P.R. (2001). Biophysical Chemistry, twelfth printing. WH Freeman and Co. New York. pp. 409–431.

    Google Scholar 

  • Carrell, R.W., and Gooptu, B. (1998). Conformational changes and diseaseserpins, prions and Alzheimer’s. Curr. Opin. Struct. Biol. 8:799–809.

    Article  PubMed  CAS  Google Scholar 

  • Caughey, B., Raymond, G.J., and Bessen, R.A. (1998). Strain dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem. 273:32230–32235.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff, Y.O., Derkatch, I.L., and Inge-Vechtomov, S.G. (1993). Multicopy SUP35 gene induces de-novo appearance of psilike factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24:268–270.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., and Liebman, S.W. (1995). Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff, Y.O., Newnam, G.P., Kumar, J., Allen, K., and Zink, A.D. (1999). Evidence for a protein mutator in yeast: Role of Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol. Cell. Biol. 19:8103–8112.

    PubMed  CAS  Google Scholar 

  • Chien, P., and Weissman, J.S. (2001). Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410:223–227.

    Article  PubMed  CAS  Google Scholar 

  • Chien, P., DePace, A.H., Collins, S.R., and Weissman, J.S. (2003). Generation of prion transmission barriers by mutational control of amyloid conformations. Nature 424:948–951.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, T.G. (1982). in The Molecular and Cellular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (Strathern, JN, Jones EW, Broach JR, eds), Vol 2, pp. 39–99, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Coschigano, P.M., and Magasanik, B. (1991). The URE2 gene product of S. cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione-S-transferases. Mol. Cell. Biol. 11:822–832.

    PubMed  CAS  Google Scholar 

  • Courchesne, W.E., and Magasanik, B. (1988). Regulation of nitrogen assimilation in S. cerevisiae: Roles of the URE2 and GLN3 genes. J. Bacteriol. 170:708–713.

    PubMed  CAS  Google Scholar 

  • Cox, B.S. (1965). PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521.

    Google Scholar 

  • Cox, B.S., Tuite, M.F., and McLaughlin, C.S. (1988). The Psi factor of yeast: A problem in inheritance. Yeast 4:159–179.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B.S., Ness, F., and Tuite, M.F. (2003). Analysis of the generation and segregation of propagons: entities that propagate the [PSI_] prion in yeast. Genetics 165:23–33.

    PubMed  CAS  Google Scholar 

  • Davies, S.W., Beardsall, K., Turmaine, M., DiFiglia, M., Aronin, N., and Bates, G.P. (1998). Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet 351:131–133.

    Article  PubMed  CAS  Google Scholar 

  • DePace, A.H., and Weissman, J.S. (2002). Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat. Struct. Biol. 9:389–396.

    PubMed  CAS  Google Scholar 

  • Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G., and Liebman, S.W. (1996). Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386.

    PubMed  CAS  Google Scholar 

  • Derkatch, I.L., Bradley, M.E., Zhou, P., Chernoff, Y.O., and Liebman, S.W. (1997). Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519.

    PubMed  CAS  Google Scholar 

  • Derkatch, I.L., Bradley, M.E., Masse, S.V., Zadorsky, S.P., Polozkov, G.V., Inge-Vechtomov, S.G., and Liebman, S.W. (2000). Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J. 19:1942–1952.

    Article  PubMed  CAS  Google Scholar 

  • Derkatch, I.L., Bradley, M.E., Hong, J.Y., and Liebman, S.W. (2001). Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, C.M. (1999). Protein misfolding, evolution and disease. Trends. Biochem. Sci. 24:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Fay, N., Inoue, Y., Bousset, L., Taguchi, H., and Melki, R. (2003). Assembly of the yeast prion Ure2p into protein fibrils: Thermodynamic and kinetic characterization. J. Biol. Chem. 278:30199–30205.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Bellot, E., Guillemet, E., and Cullin, C. (2000). The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J. 19:3215–3222.

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek, D.C. (1988). Transmissible and non-transmissible amyloidoses: Autocatalyticv post-translational conversion of host precursor proteins to β-pleated conformations. J. Neuroimmunol. 20:95–110.

    Article  PubMed  CAS  Google Scholar 

  • Glover, J.R., and Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Glover, J.R., Kowal, A.S., Schirmer, E.C., Patino, M.M., Liu, J.J., and Lindquist, S. (1997). Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, C., Marco, S., Thimonier, J., Duplan, L., Laurine, E., Chauvin, J.P., Michel, B., Peyrot, V., and Verdier, J.M. (2001). Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer’s disease. EMBO J. 20:3313–3321.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, J.S. (1967). Self-replication and scrapie. Nature 215:1043–1044.

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne, D.C., and Mortimer, R.K. (1968) Genetic mapping of nonsense suppressors in yeast. Genetics 60:735–742.

    PubMed  CAS  Google Scholar 

  • Huntington, J.A., Pannu, N.S., Hazes, B., Read, R.J., Lomas, D.A., and Carrell, R.W. (1999). A 2.6Å structure of a serpin polymer and implications for conformational disease. J. Mol. Biol. 293:449–455.

    Article  PubMed  CAS  Google Scholar 

  • Inge-Vechtomov, S.G., and Andrianova, V.M. (1970). Recessive super-suppressors in yeast. Genetika 6:103–115.

    Google Scholar 

  • Inoue, Y., Kishimoto, A., Hirao, J., Yoshida, M., and Taguchi, H. (2001). Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276:35227–35230.

    Article  PubMed  CAS  Google Scholar 

  • Jarret, J.T., and Lansbury, P.T. (1993) Seeding “one-dimensional-crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058.

    Article  Google Scholar 

  • Jiang, Y., Li, H., Zhu, L., Zhou, J.M., and Perrett, S. (2004). Amyloid nucleation and hierarchical assembly of Ure2p fibrils: Role of asparagine/glutamine repeat and nonrepeat regions of the prion domain. J. Biol. Chem. 279:3361–3369.

    Article  PubMed  CAS  Google Scholar 

  • Jones, G.W., and Masison, D.C. (2003). Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics 163:495–506.

    PubMed  CAS  Google Scholar 

  • King, C.Y. (2001). Supporting the structural basis of prion strains: Induction and identification of [PSI] variants. J. Mol. Biol. 307:1247–1260.

    Article  PubMed  CAS  Google Scholar 

  • King, C.Y. and Diaz-Avalos, R. (2004). Protein-Only transmission of three yeast Prion strains. Nature 428:319–323.

    Article  PubMed  CAS  Google Scholar 

  • Krzewska, J. and Melki, R. (2006). Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J. 25:822–833.

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov, V.V., and Ter-Avanesyan, M.D. (1998). Structure and replication of yeast prions. Cell 94:13–16.

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov, V.V., Ter-Avanesyan, M.D., Telckov, M.V., Surguchov, A.P., Smirnov, V.N., and Inge-Vechtomov, S.G. (1988). Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Lacroute, F. (1971). Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106:519–522.

    PubMed  CAS  Google Scholar 

  • Li, L., and Lindquist, S.L. (2000). Creating a protein-based element of inheritance. Science 287:661–664.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.J., and Lindquist, S.L. (1999). Oligopeptide-repeat expansions modulate “protein-only” inheritance in yeast. Nature 400:573–576.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.J., Sondheimer, N., and Lindquist, S.L. (2002). Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc. Natl. Acad. Sci. USA 99:16446–16453.

    Article  PubMed  CAS  Google Scholar 

  • Lomas, D.A., and Carrell, R.W. (2002). Serpinopathies and the conformational dementias. Nat. Rev. Genet. 3:759–768.

    Article  PubMed  CAS  Google Scholar 

  • Lund, P.M., and Cox, B.S. (1981). Reversion analysis of [psi] mutations in Saccharomyces cerevisiae. Genet. Res. 37:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Maddelein, M.L., and Wickner, R.B. (1999). Two prion inducing regions of Ure2p are non-overlapping. Mol. Cell. Biol. 19:4516–4524.

    PubMed  CAS  Google Scholar 

  • Magasanik, B. (1992). in The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae (Jones, EW, Pringle JR, and Broach JR, eds), Vol 2, 2nd Ed., pp. 283–317, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Masison, D.C., and Wickner, R.B. (1995). Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prioncontaining cells. Science 270:93–95.

    Article  PubMed  CAS  Google Scholar 

  • Michelitsch, M.D., and Weissman, J.S. (2000). A census of glutamine/asparagine-rich regions: Implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97:11910–11915.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, A.P., and Magasanik, B. (1984). Regulation of glutamine-repressible gene products by GLN3 function in S. cerevisiae. Mol. Cell. Biol. 4:2758–2766.

    PubMed  CAS  Google Scholar 

  • Moriyama, H., Edskes, H.K., and Wickner, R.B. (2000). [URE3] prion propagation in Saccharomyces cerevisiae: Requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20:8916–8922.

    Article  PubMed  CAS  Google Scholar 

  • Newnam, G.P., Wegrzyn, R.D., Lindquist, S.L., and Chernoff, Y.O. (1999). Antagonistic interaction between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19:1325–1333.

    PubMed  CAS  Google Scholar 

  • Osherovich, L.Z., and Weissman, J.S. (2001). Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell 106:183–194.

    Article  PubMed  CAS  Google Scholar 

  • Parham, S.N., Resende, C.G. and Tuite, M.F. (2001). Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20:2111–2119.

    Article  PubMed  CAS  Google Scholar 

  • Patino, M.M., Liu, J.J., Glover, J.R., and Lindquist, S. (1996). Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M.F. (1999). Glutamine repeats and neurodegenerative diseases: Molecular aspects. Trends. Biochem. Sci. 24:58–63.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M.F., Pope, B.J., Owen, D., Wanker, E.E., and Scherzinger, E. (2002). Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid β-peptide of amyloid plaques. Proc. Natl. Acad. Sci. USA 99:5596–5600.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B. (1991). Molecular biology of prion diseases. Science 252:1515–1522.

    Article  PubMed  CAS  Google Scholar 

  • Rai, R., Genbauffe, F., Lea, H.Z., and Cooper, T.G. (1987). Transcriptional regulation of the DAL5 gene in S. cerevisiae. J. Bacteriol. 169:3521–3524.

    PubMed  CAS  Google Scholar 

  • Schlumpberger, M., Wille, H., Baldwin, M.A., Butler, D.A., Herskowitz, I., and Prusiner, S.B. (2000). The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Prot. Sci. 9:440–451.

    CAS  Google Scholar 

  • Schlumpberger, M., Prusiner, S.B., and Herskowitz, I. (2001). Induction of distinct [URE3] yeast prion strains. Mol. Cell. Biol. 21:7035–7046.

    Article  PubMed  CAS  Google Scholar 

  • Schoun, J., and Lacroute, F. (1969). Etude physiologique d’une mutation permettant l’incorporation d’acide ureidosuccinique chez la levure. C. R. Acad. Sci. 269:1412–1414.

    CAS  Google Scholar 

  • Schubert, U., Anton, L.C., Gibbs, J., Norbury, C.C., Yewdell, J.W., and Bennink, J.R. (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774.

    Article  PubMed  CAS  Google Scholar 

  • Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., Moslehi, J.J., Serpell, L., Arnsdorf, M.F., and Lindquist, S.L. (2000). Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289: 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  • Shorter, J., and Lindquist, S. (2006). Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol. Cell. 23:425–438.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., Helms, C., and Sherman, F. (1979). Mutation of the non-Mendelian suppressor, Psi+, in yeast by hypertonic media. Proc. Natl. Acad. Sci. USA 76:1952–1956.

    Article  PubMed  Google Scholar 

  • Sipe, J.D., and Cohen, A.S. (2000). History of the amyloid fibril. J. Struct. Biol. 130:88–98.

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer, N., and Lindquist, S. (2000). Rnq1: An epigenetic modifier of protein function in yeast. Mol. Cells 5:63–172.

    Google Scholar 

  • Sondheimer, N., Lopez, N., Craig, E.A., and Lindquist, S. (2001). The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20:2435–2442.

    Article  PubMed  CAS  Google Scholar 

  • Stansfield, I., Jones, K.M., Kushnirov, V.V., Dagkesamanskaya, A.R., Poznyakovski, A.I., Paushkin, S.V., Nierras, C.R., Cox, B.S., Ter-Avanesyan, M.D., and Tuite, M.F. (1995). The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14:4365–4373.

    PubMed  CAS  Google Scholar 

  • Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., and Blake, C.C. (1997). Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273:729–739.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. (2004). Conformational variations in an infections protein determine prion strain differences. Nature 428:323–328.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K.L., Cheng, N., Williams, R.W., Steven, A.C., and Wickner, R.B. (1999). Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343.

    Article  PubMed  CAS  Google Scholar 

  • Telling, G.C., Scott, M., Mastrianni, J., Gabizon, R., Torchia, M., Cohen, F.E., DeArmond, S.J., and Prusiner, S.B. (1995). Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Ter-Avanesyan, M.D., Kushnirov, V.V., Dagkesamanskaya, A.R., Didichenko, S.A., Chernoff, Y.O., Inge-Vechtomov, S.G., and Smirnov, V.N. (1993). Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7:683–692.

    Article  PubMed  CAS  Google Scholar 

  • Ter-Avanesyan, M.D., Dagkesamanskaya, A.R., Kushnirov, V.V., and Smirnov, V.N. (1994). The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-mendelian determinant [psi+] in the yeast saccharomyces cerevisiae. Genetics 137:1339–1343.

    Google Scholar 

  • Thual, C., Komar, A.A., Bousset, L., Fernandez-Bellot, E., Cullin, C., and Melki, R. (1999). Structural characterization of saccharomyces cerevisiae prion-like protein Ure2. J. Biol. Chem. 274:13666–13674.

    Article  PubMed  CAS  Google Scholar 

  • Thual, C., Bousset, L., Komar, A. A, Walter, S., Buchner, J., Cullin, C., and Melki, R. (2001). Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p. Biochemistry 40:1764–1773.

    Article  PubMed  CAS  Google Scholar 

  • True, H.L., and Lindquist, S.L. (2000). A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483.

    Article  PubMed  CAS  Google Scholar 

  • Tuite, M.F., Mundy, C.R., and Cox, B.S. (1981). Agents that cause a high frequency of genetic change from [psi+] to [psi-] in S. cerevisiae. Genetics 98:691–711.

    PubMed  CAS  Google Scholar 

  • Tuite, M.F. (2000). Yeast prions and their prion-forming domain. Cell 100:289–292.

    Article  PubMed  CAS  Google Scholar 

  • Umland, T.C., Taylor, K.L., Rhee, S., Wickner, R.B., and Davies, D.R. (2001). The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p. Proc. Natl. Acad. Sci. USA 98:1459–1464.

    Article  PubMed  CAS  Google Scholar 

  • Uptain, S.M., Sawicki, G.J., Caughey, B., and Lindquist, S. (2001). Strains of [PSI+] are distinguished by their efficiencys of prion-mediated conformational conversion. EMBO J. 20:6236–6245.

    Article  PubMed  CAS  Google Scholar 

  • Westermark, P., Benson, M.D., Buxbaum, J.N., Cohen, A.S., Frangione, B., Ikeda, S., Masters, C.L., Merlini, G., Saraiva, M.J., and Sipe, J.D. (2002). Amyloid fibril protein nomenclature2002. Amyloid 9:197–200.

    PubMed  CAS  Google Scholar 

  • Wickner, R.B. (1994). Evidence for a prion analog in S. cerevisiae: the [URE3] non-Mendelian genetic element as an altered URE2 protein. Science 264:566–569.

    Article  PubMed  CAS  Google Scholar 

  • Xu, S., Bevis, B., and Arnsdorf, M.F. (2001). The assembly of amyloidogenic yeast Sup35 as assessed by scanning (atomic) force microscopy: An analogy to linear colloidal aggregation? Biophys. J. 81:446–454.

    Article  PubMed  CAS  Google Scholar 

  • Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L., and Philippe, M. (1995). Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14:4065–4072.

    PubMed  CAS  Google Scholar 

  • Zurdo, J., Guijarro, J.I., and Dobson, C.M. (2001). Preparation and characterization of purified amyloid fibrils. J. Am. Chem. Soc. 123:8141–8142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krzewska, J., Melki, R. (2007). The Yeast Prion Proteins Sup35p and Ure2p. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36534-3_8

Download citation

Publish with us

Policies and ethics