Skip to main content

Protein Glycation and Cataract: A Conformational Disease

  • Chapter

Part of the book series: Protein Reviews ((PRON,volume 6))

Abstract

Increased glycation is associated with aging and complications of diabetes. So it is not surprising that glycation has been a subject of intensive study. Most emphasis is on long-lived proteins, mostly structural, because they are exposed to the sugars for a longer time than enzymes and other nonstructural proteins in most tissues. However, glycation is not specific and is not restricted to structural proteins. Besides leading to the functional impairment of modified proteins, glycation was shown to produce significant structural alterations, resulting in modified proteins with properties similar to those of “molten-globule” intermediates of protein folding and unfolding pathways. Evidence supporting the role of nonenzymic post-translational modification of lens proteins in cataract is overviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Seif, M. A. and Youssef, A. (2004). Evaluation of some biochemical changes in diabetic patients Clin. Chim. Acta 346:161–170.

    Article  CAS  Google Scholar 

  • Adachi, T., Ohta, H., Hayashi, K., Hirano, K. and Marklund, S. (1992). The site of nonenzymic glycation of human extracellular-superoxide dismutase in vitro. Free Radic. Biol. Med. 13: 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, M. U., Thorpe, S. R. and Baynes, J. W. (1986). Identification of Nδ-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 261: 4889–4894.

    PubMed  CAS  Google Scholar 

  • Ahmed, N., Thornalley, P. J., Dawczynski, J., Franke, S., Strobel, J. Stein, G. and Haik, G. M. (2003). Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci. 44: 5287–5292.

    Article  PubMed  Google Scholar 

  • Ajiboye, R. and Harding, J. J. (1989). The non-enzymic glycosylation of bovine lens proteins by glucosamine and its inhibition by aspirin, ibuprofen and glutathione. Exp. Eye Res. 49: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, N. H., Awasthi, Y. G., and Srivastava, S. K. (1980). Role of glycosylation in disulphide formation and cataractogenesis. Exp. Eye Res. 31: 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Arai, K., Iizuka, S., Tada, Y., Oikawa, K. and Taniguchi, N. (1987a). Increase in the glucosylated form of erythrocyte Cu-Zn superoxide dismutase in diabetes and close association of the non-enzymic glucosylation with the enzyme activity. Biochim. Biophys. Acta 924: 292–296.

    PubMed  CAS  Google Scholar 

  • Arai, K., Maguchi, S., Fujii, S., Ishibashi, H., Oikawa, K. and Taniguchi, N. (1987b). Glycation and inactivation of human Cu-Zn superoxide dismutase: identification of the in vitro glycated sites. J. Biol. Chem. 262: 16969–16972.

    PubMed  CAS  Google Scholar 

  • Araki, N., Ueno, N., Chakrabarti, B., Morino, Y. and Horiuchi, S. (1992). Immunochemical evidence for the presence of advanced glycation endproducts in human lens proteins and its positive correlation with ageing. J. Biol. Chem. 267: 10211–10214.

    PubMed  CAS  Google Scholar 

  • Argirov, O.K., Lin, B., Oleson, P. and Ortwerth, B. J. (2003). Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine. Biochim. Biophys. Acta 1620: 235–244.

    PubMed  CAS  Google Scholar 

  • Argirov, O.K., Lin, B. and Ortwerth, B. J. (2004). 2-Ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation endproduct in cataractous and aged human lenses. J. Biol. Chem. 279: 6487–6495.

    Article  PubMed  CAS  Google Scholar 

  • Argirova, M. and Argirov, O. (2003). Inhibition of ascorbic acid-induced modifications in lens proteins by peptides. J. Pep. Res. 9: 170–176.

    Article  CAS  Google Scholar 

  • Argirova, M. and Breipohl, W. (2002). Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbate and fructose. J. Biochem. Mol. Toxicol. 16: 140–145.

    Article  PubMed  CAS  Google Scholar 

  • Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A. and Bennett, D. A. (2004). Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol. 61: 661–666.

    Article  PubMed  Google Scholar 

  • Bax, B, Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L. and Slingsby, C. (1990). X-ray analysis of B2-crystallin and evolution of oligomeric lens proteins. Nature 347: 776–780.

    Article  PubMed  CAS  Google Scholar 

  • Bensch, K. G., Fleming, J. E. and Lohmann, W. (1985). The role of ascorbic acid in senile cataract. Proc. Natl. Acad. Sci. USA 82: 7193–7196.

    Article  PubMed  CAS  Google Scholar 

  • Beranek, M., Drsata, J. and Palicka, V. (2001). Inhibitory effect of glycation on catalytic activity of alanine aminotransferase. Mol. Cell. Biochem. 218: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Beswick, H. T. and Harding, J. J. (1987). Conformational changes induced in lens α-and γ-crystallins by modification by glucose 6-phosphate. Implications for cataract. J. Biochem. 246: 761–769.

    CAS  Google Scholar 

  • Bidasee, K. R., Zhang, Y., Shao, C. H., et al. (2004). Diabetes increases formation of advanced glycation endproducts on sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 53: 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Biemel, K. M., Friedl, D. A. and Lederer, M. O. (2002). Identification and quantification of major Maillard cross-links in human serum albumin and lens protein. J. Biol. Chem. 277: 24907–24915.

    Article  PubMed  CAS  Google Scholar 

  • Blakytny, R. and Harding, J. J. (1992a). Glycation (non-enzymic glycosylation) inactivates glutathione reductase. J. Biochem. 288: 303–307.

    CAS  Google Scholar 

  • Blakytny, R. and Harding, J. J. (1992b). Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Exp. Eye Res. 54: 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Blakytny, R., Carver, J. A., Harding, J. J., Kilby, G. W. and Sheil, M. M. (1997). A spectroscopic study of bovine α-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity, and evidence for diglycation. Biochim. Biophys. Acta 1343: 299–315.

    Article  PubMed  CAS  Google Scholar 

  • Bouma, B., Kroon-Batenburg, L. M. J., Wu, Y.-P., Brunges, B., Posthuma, G., Kranenburg, O., de Groot, P., Voest, E. E. and Gebbink, M.F.B.J. (2003). Glycation induces formation of amyloid cross-beta structure in albumin. J. Biol. Chem. 278: 41810–41819.

    Article  PubMed  CAS  Google Scholar 

  • Bucala, R., Vlassara, H. and Cerami, A. (1991). Advanced glycation endproducts. In: Post-translational modification of proteins. (Eds. Harding, J. J. and Crabbe, M.J.C.) CRC Press, Boca, Raton. pp. 53–79.

    Google Scholar 

  • Bucala, R., Vlassara, H. and Cerami, A. (1994). Advanced glycation endproducts: role in diabetic and non-diabetic vascular disease. Drug Dev. Res. 32: 77–89.

    Article  CAS  Google Scholar 

  • Caballero, F. A., Gerez, E. N., Polo, C. F., Vazquez, E. S. and Batlle, A. (1998). Reducing sugars trigger-aminolevulinic dehydratase inactivation: evidence of in vitro aspirin prevention. Gen Pharmacol 31: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Castellani, R., Smith, M. A., Richey, P.L. and Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res. 737: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, R., Lin, B. and Ortwerth, B. J. (2002). Rate of formation of AGEs during ascorbate glycation and during aging in human lens tissue. Biochim. Biophys. Acta 1587: 65–74.

    PubMed  CAS  Google Scholar 

  • Cherian, M. and Abraham, E. C. (1995). Decreased molecular chaperone property of α-crystallins due to post-translational modifications. Biochem. Biophys. Res. Commun. 208, 675–679.

    Article  PubMed  CAS  Google Scholar 

  • Chiou, S.-H., Chylack, L. T., Tung, W. H. and Bunn, H. F. (1981). Nonenzymic glycosylation of bovine lens crystallins. Effect of aging. J. Biol. Chem. 256: 5176–5180.

    CAS  Google Scholar 

  • Christen, W.G., Manson, J. E., Glynn, R.J. et al. (1998). Low-dose aspirin and risk of cataract and subtypes in a randomized trial of US physicians. Ophthalmic Epidemiol. 5: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Cotlier, E. and Sharma, Y. G. (1981). Aspirin and senile cataracts in rheumatoid arthritis. Lancet I: 607.

    Google Scholar 

  • Drsata, J., Beranek, M., Pali, V. and Caron, C. (2002) Inhibition of aspartate aminotransferase by glycation in vitro under various conditions. J. Enz. Inhib. Med. Chem. 17: 31–36.

    Article  CAS  Google Scholar 

  • Dunn, J. A., Patrick, J. S., Thorpe, S. R. and Baynes, J. W. (1989). Oxidation of glycated protein: age-related accumulation of Nɛ-(carboxymethyl)lysine in lens proteins. Biochemistry 28: 9464–9468.

    Article  PubMed  CAS  Google Scholar 

  • Ederer, F., Hiller, R. and Taylor, H. R. (1981). Senile lens changes and diabetes in two population studies. Am. J. Ophthalmol. 91: 381–395.

    PubMed  CAS  Google Scholar 

  • Evcimen, N.D. and Nebioglu, S. (1996). Calmodulin glycation in diabetic rat lenses. Can. J. Physiol. Pharmacol. 74: 1287–1293.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, T., Suzuki, K., Tada, T., Yoshihara, Y., Hamaoka, R., Uchida, K., Matuo, Y., Sasaki, T., Hanafusa, T. and Taniguchi, N. (1998). Human erythrocyte bisphosphoglycerate mutase: Inactivation by glycation in vivo and in vitro. J. Biochem. 124: 1237–1244.

    PubMed  CAS  Google Scholar 

  • Ganea, E. (1988). Non-enzymic glycosylation of beta-galactosidase, alkalaine phosphatase, and glucose 6-phosphate dehydrogenase. Rev. Roum. Biochim. 25: 101–106.

    CAS  Google Scholar 

  • Ganea, E. (2004). Prevention of insulin glycation by metabolic and synthetic inhibitors. In: Cellular dysfunction in atherosclerosis and diabetes. (Simionescu, M, Sima, A. and Popov, D. Eds.) Romanian Academy Publishing House. pp. 205–214.

    Google Scholar 

  • Ganea, E. and Harding, J. J. (1995). Molecular chaperones protect against glycation-induced inactivation of glucose 6-phosphate dehydrogenase. Eur. J. Biochem. 231: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Ganea, E. and Harding, J. J. (1999). Glycation-inactivated pyruvate kinase can be protected by alpha-crystallin acting as a molecular chaperone in an enzyme-chaperone complex. Proc. Rom. Acad. Series B. 1: 39–44.

    CAS  Google Scholar 

  • Ganea, E. and Harding, J. J. (2000). α-Crystallin assists the renaturation of glyceraldehyde-3-phosphate dehydrogenase. J. Biochem. 345: 467–472.

    Article  CAS  Google Scholar 

  • Garner, M. H. and Spector, A. (1986). ATP hydrolysis kinetics by Na,K-ATPase in cataract. Exp. Eye Res. 42: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, L. E., Muffat, J. A., Cherny, R. A., Moir, R. D., Ericsson, M. H., Huang, X., Mavros, C., Coccia, J. A., Faget, K. Y., Fitch, K. A., Masters, C. L., Tanzi, R. E., Chylack, L. T. and Bush, A. I. (2003). Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361: 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Harding, J. J. (1972). Conformational changes in human lens proteins in cataract. J. Biochem. 129: 97–100.

    CAS  Google Scholar 

  • Harding, J. J. (1985). Nonenzymatic post-translational modification of proteins in vivo. Advan. Protein Chem. 37: 247–334.

    Article  CAS  Google Scholar 

  • Harding, J. J. and van Heyningen, R. (1986). Do aspirin-like drugs protect against cataract? Lancet 1: 1111–1113.

    PubMed  Google Scholar 

  • Harding, J. J. and van Heyningen, R. (1988). Drugs, including alcohol, that act as risk factors for cataract, and possible protection against cataract by aspirin-like analgesics and cyclopenthiazide. Br. J. Ophthalmol. 72: 809–814.

    Article  PubMed  CAS  Google Scholar 

  • Harding, J. J., Egerton, M. and Harding, R. S. (1989). Protection against cataract by aspirin, paracetamol and ibuprofen. Acta. Ophthalmol. 67: 518–524.

    CAS  Google Scholar 

  • Harding, J. J. (1991). Cataract: Biochemistry, Epidemiology and Pharmacology. Chapman and Hall, London.

    Google Scholar 

  • Harding, J. J. (1993). Alzheimer disease (AD), modified proteins, and aspirin. Alzheimer Dis. Assoc Disorders 7: 55–58.

    Article  CAS  Google Scholar 

  • Harding, J. J., Egerton, M., van Heyningen, R. and Harding, R. S. (1993). Diabetes, glaucoma, sex and cataract: analysis of combined data from two case-control studies. Br. J. Ophthalmol. 77: 2–6.

    Article  PubMed  CAS  Google Scholar 

  • Harding, J. J. (1997). Alzheimer disease and cataract: common threads. Alzheimer Dis. Assoc. Disorders 11: 123.

    Article  CAS  Google Scholar 

  • Harding, J. J. (2001). Can drugs or micronutrients prevent cataract? Drugs Ageing 18: 473–486.

    Article  CAS  Google Scholar 

  • Harding, J. J. and Ganea, E. (2006). Protection against glycation and similar post-translational modifications of proteins. Biochem. Biophys. Acta. 1764: 1436–1446.

    PubMed  CAS  Google Scholar 

  • Heath, M. M., Rixon, K. C. and Harding, J. J. (1996). Glycation-induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha-crystallin. Biochim. Biophys. Acta 13115: 176–184.

    Google Scholar 

  • Hipkiss, A. R., Michaelis, J. and Syrris, P. (1995). Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential antiprotein-cross-linking agent. FEBS Lett. 371: 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Hook, D. W. A. and Harding, J. J. (1997). Inactivation of glyceraldehyde 3-phosphate dehydrogenase by sugars, prednisolone-21-hemisuccinate, cyanate and other small molecules. Biochim. Biophys. Acta 1362: 232–242.

    PubMed  CAS  Google Scholar 

  • Hook, D. W. A. and Harding, J. J. (1998). Protection of enzymes by α-crystallin acting as a molecular chaperone. Int. J. Biol. Macromol. 22: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, J. (1992). α-Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U.S.A. 89: 10449–53.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, A., Takahashi, M., Fujii, J., Myint, T., Kaneto, H., Suzuki, K., Yamasaki, Y., Kamada, T. and Taniguchi, N. (1996). Glycation and inactivation of sorbitol dehydrogenase in normal and diabetic rats. J. Biochem. 318: 119–123.

    CAS  Google Scholar 

  • Ishibashi, T., Murata, T., Hangai, M., Nagai, R., Horiuchi, S., Lopez, P. F., Hinton, D. R. and Ryan, S.J. (1998). Advanced glycation endproducts in age-related macular degeneration. Arch. Ophthalmol. 116: 1629–1632.

    PubMed  CAS  Google Scholar 

  • Jakus, V. and Rietbrock, N. (2004). Advanced glycation end-products and the progress of diabetic vascular complications. Physiol. Res. 53: 131–142.

    PubMed  CAS  Google Scholar 

  • Januszewski, A.S., Alderson, A. L., Metz, T. O., Thorpe, S. R. and Baynes, J. W. (2003). Role of lipids in chemical modification of proteins and development of complications in diabetes. Biochem. Soc. Trans. 31: 1414–1416.

    Article  Google Scholar 

  • Kaneto, H., Fujii, J., Myint, T., et al. (1996) Reducing sugars trigger oxidative modification and apoptosis in pancreatic β-cells by provoking oxidative stress through the glycation reaction. J. Biochem. 320: 855–863.

    CAS  Google Scholar 

  • Kasai, K., Nakamura, T., Kase, N., et al. (1983). Increased glycosylation of proteins from cataractous lenses in diabetes. Diabetologia 25: 36–38.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, L., Sander, B., Dalgaard, P. and Larsen, M. (2004). Lens fluorescence and metabolic control in type I diabetic patients: a 14 year follow up study. Br. J. Ophthalmol. 88: 1169–1172.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T., Ikeda, K., Takamatsu, J., et al. (1996). Identification of advanced glycation endproducts of the Maillard reaction in Pick’s disease. Neurosci. Lett. 219: 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, M. S., Mrudula, T., Mitra, N. and Reddy, G. B. (2004a). Enhanced degradation and decreased stability of eye lens α-crystallin upon methylglyoxal modification. Exp. Eye Res. 79: 577–583.

    Article  CAS  Google Scholar 

  • Kumar, M. S., Reddy, P. Y., Surolia, I. and Reddy, G.B. (2004b). Effect of dicarbonyl browning on α-crystallin chaperonelike activity: physiological significance and caveats of in vitro aggregation assays. J. Biochem. 379: 273–282.

    Article  CAS  Google Scholar 

  • Kyselova, Z., Stefek, M. and Bauer, V. (2004). Pharmacological prevention of diabetic cataract. J. Diabetes Complications 18: 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Leske, M. C., Wu, S., Hennis, A., et al. (1999). Diabetes, hypertension, and central obesity as cataract risk factors in a black population. Ophthalmology 106: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Leoncini, G., Maresca, M. and Bonsignore, A. (1980). The effect of methylglyoxal on the glycolytic enzymes. FEBS Lett. 117: 17–18.

    Article  PubMed  CAS  Google Scholar 

  • Liang, J. N. and Chylack, L. T. (1987). Spectroscopic study on the effects of nonenzymis glycosylation on human α-crystallin. Invest. Ophthalmol. Vis. Sci. 28: 790–794.

    PubMed  CAS  Google Scholar 

  • Liang, J.N. and Rossi, M. T. (1990). In vitro non-enzymatic glycation and formation of browning products in the bovine lens α-crystallin. Exp. Eye Res. 50: 367–371.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, M., Sperduto, R. D., Angra, S. K., et al. (1989). India-US case-control study of age-related cataracts. Arch. Ophthalmol. 107: 670–676.

    PubMed  CAS  Google Scholar 

  • Monnier, V. M., Stevens, V. J. and Cerami, A. (1979). Non-enzymatic glycosylation, sulphydryl oxidation, and aggregation of lens proteins in experimental sugar cataracts. J. Exp. Med. 150: 1098–1107.

    Article  PubMed  CAS  Google Scholar 

  • Monnier, V. M., Stevens, V. J. and Cerami, A. (1981). Maillard reactions involving proteins and carbohydrates in vivo: relevance to diabetes mellitus and ageing. Prog. Fd. Nutr. Sci. 5: 315–327.

    CAS  Google Scholar 

  • Monnier, V. M., Vishwanath, V., Frank, K. E., Elmets, C. A., Dauchot, P. and Kohn, R. R. (1986). Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N. Engl. J. Med. 314: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Monnier, V. M., Sell, D. R., Miyata, S., Nagaraj, R. H., Odetti, P. and Lapolla, A. (1992). Advanced Maillard reaction products as markers for tissue damage in diabetes and uraemia: relevance to diabetic nephropathy. Acta Diabetol. 29: 130–135.

    Article  CAS  Google Scholar 

  • Monnier, V. M. (2003). Intervention against the Maillard reaction in vivo. Arch. Biochem. Biophys. 419: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Muench, G., Luth, H. J., Wong, A., Arendt, T., Hirsch, E., Ravid, R. and Riederer, P. (2000). Crosslinking of α-synuclein by advanced glycation endproducts-an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat. 20: 253–257.

    Article  Google Scholar 

  • Morgan, P. E., Dean, R. T. and Davies, M. J. (2002). Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products Arch. Biochem. Biophys. 403: 259–269.

    Article  CAS  Google Scholar 

  • Najmudin, S., Nalini, V., Driessen, H. P. C., Slingsby, C. Blundell, T. L. Moss, D. S., and Lindley, P. F. (1993). Structure of the bovine eye lens protein γB(γII) crystallin at 1.47 A. Acta Cryst. D49: 223–233.

    CAS  Google Scholar 

  • Niwa, T. and Tsukushi, S. (2001). 3-Deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone. Kidney Int. 59,Suppl. 78: S37–S41.

    Article  Google Scholar 

  • Obayashi, H., Nakano, K., Shigeta, H., et al. (1996). Formation of crossline as a fluorescent advanced glycation endproduct in vitro and in vivo. Biochem. Biophys. Res Commun. 226: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Oda, A., Bannai, C., Yamaoka, T., Katori, T. Matsushima, T., and Yamashita, K. (1994). Inactivation of Cu, Zn-superoxide dismutase by in vitro glycosylation and in erythrocytes of diabetic patients. Horm. Metab. Res. 26: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Oimomi, M., Maeda, Y., Hata, F., et al. (1988). Glycation of cataractous lens in non-diabetic senile subjects and in diabetic patients. Exp. Eye Res. 46: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Okada, M., Murakami, Y. and Miyamoto, E. (1997). Glycation and inactivation of aspartate aminotransferase in diabetic rat tissues. J. Nutr. Sci. Vitaminol. 43: 463–469.

    PubMed  CAS  Google Scholar 

  • Ortwerth, B. J., Slight, S. H., Prabhakaram, M., Sun, Y. and Smith, J. B. (1992). Site-specific glycation of lens crystallins by ascorbic acid. Biochim. Biophys. Acta 1117: 207–215.

    PubMed  CAS  Google Scholar 

  • Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A. P., Hofman, A. and Breteler, M. M. B. (1999). Diabetes mellitus and the risk of dementia. Neurology 53: 1937–1942.

    PubMed  CAS  Google Scholar 

  • Pande, A., Garner, W. H. and Spector, A. (1979). Glucosylation of human lens protein and cataractogenesis. Biochem. Biophys. Res. Commun. 89: 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  • Paul, R.G., Avery, N. C., Slatter, D.L., Sims, T. J. and Bailey, A. J. (1998). Isolation and characterization of advanced glycation end products derived from the in vitro reaction of ribose and collagen. J. Biochem. 330: 1241–1248.

    CAS  Google Scholar 

  • Pennington, J. and Harding, J. J. (1994). Identification of the site of glycation of γ-II-crystallin by (14C)-fructose. Biochim. Biophys. Acta 1226: 163–167.

    PubMed  CAS  Google Scholar 

  • Perry, R. E., Swamy, M. S. and Abraham, E.C. (1987). Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabeteic rats. Exp. Eye Res. 44: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Plater, M. L., Goode, D. and Crabbe, M. J. C. (1997). Ibuprofen protects α-crystallin against post-translational modification by preventing protein crosslinking. Ophthalmic Res. 29: 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Prabhakaram, M., Katz, M. L. and Ortwerth, B. J. (1996). Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes. Mech. Ageing Dev. 91: 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Raza, K. and Harding, J. J. (1991). Non-enzymic modification of lens proteins by glucose and fructose: effects of ibuprofen. Exp. Eye Res. 52: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Seidler, N. W. and Kowalewski, C. (2003). Methylglyoxal-induced glycation affects protein topography. Arch. Biochem. Biophys. 410: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Shilton, B. H. and Walton D. J. (1991). Sites of glycation of human and horse liver alcohol dehydrogenase in vivo. J. Biol. Chem. 266: 5587–5592.

    PubMed  CAS  Google Scholar 

  • Singh, R., Barden, A., Mori, T. and Beilin, L. (2001). Advanced glycation endproducts: a review. Diabetologia 44: 129–146.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S-D., Stern, D., Sayre, L. M., Monnier, V. M. and Perry, G. (1994). Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91: 5710–5714.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, V. J., Rouzer, C. A., Monnier, V. M. and Cerami, A. (1978). Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc. Natl. Acad. Sci. USA 75: 2918–2922.

    Article  PubMed  CAS  Google Scholar 

  • Sulochana, K. N., Punitham, R. and Ramakrishnan, S. (1998). Beneficial effect of lysine and amino acids on cataractogenesis in experimental diabetes through possible anti-glycation of lens proteins. Exp. Eye Res. 67: 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Swamy, M. S. and Abraham, E. C. (1987). Lens protein composition, glycation and high molecular weight aggregation in aging rats. Invest. Ophthalmol. Vis. Sci. 28: 1693–1701.

    PubMed  CAS  Google Scholar 

  • Swamy, M. S. and Abraham, E. C. (1989). Inhibition of lens crystallin glycation and high molecular weight aggregate formation by aspirin in vitro and in vivo. Invest. Ophthalmol. Vis. Sci. 30: 1120–1126.

    PubMed  CAS  Google Scholar 

  • Swamy-Mruthinti, S. (2001). Glycation decreases calmodulin binding to lens transmembrane protein MIP. Biochim. Biophys. Acta 1536: 64–72.

    PubMed  CAS  Google Scholar 

  • Swamy-Mruthinti, S., Green, K. and Abraham, E. C. (1996). Inhibition of cataracts in moderately diabetic rats by aminoguanidine. Exp Eye Res. 62: 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Thornalley, P. J. (2003). Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 419: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, S. R. and Baynes, J. W. (2003). Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25: 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Uversky, V. N. and Fink, A. L. (2004). Conformational restraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta. 1698: 131–153.

    PubMed  CAS  Google Scholar 

  • Van Boekel, M. A. M., Hoogakker, S. E., Harding, J. J. and de Jong, W. W. (1996). The influence of some post-translational modifications on the chaperone-like activity of α-crystallin. Ophthalmol. Res. 28(Suppl 1): 32–38.

    Article  Google Scholar 

  • Van Heyningen, R. (1969). The metabolism of D-glyceraldehyde by the lens. J. Biochem. 112: 211–220.

    Google Scholar 

  • Van Heyningen, R. and Harding, J. J. (1986). Do aspirin-like analgesics protect against cataract? Lancet I: 1111–1113.

    Article  Google Scholar 

  • Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K. and Cerami, A. (1994). Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 91: 4766–4770.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, N. G., Thorpe, S. R. and Baynes, J. W. (1985). Glycation of amino groups in protein. J. Biol. Chem. 260: 10629–10636.

    PubMed  CAS  Google Scholar 

  • Wilker, S. C., Chellan, P., Arnold, B. M. and Nagaraj, R. H. (2001). Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine. Anal. BioChem. 290: 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Wistow, G., Turnell, B., Summers, L., Slingsby, C., Moss, D., Miller, L., Lindley, P. F. and Blundell, T. L. (1983). X-ray analysis of the eye lens protein γ-crystallin at 1.9 A resolution. J. Mol. Biol. 170: 175–202.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, Y., Ejiri, Y. and Tanaka, K. (2002). Glycation by ascorbic acid causes loss of activity of ribulose-1,5-biphosphate carboxylase/oxygenase and its increased susceptibility to proteases. Plant Cell Physiol. 43: 1334–1341.

    Article  PubMed  CAS  Google Scholar 

  • Yan, H. and Harding, J. J. (1997). Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. J. Biochem. 328: 599–605.

    CAS  Google Scholar 

  • Yan, H. and Harding, J. J. (1999). Inactivation and loss of antigenicity of esterase by sugars and a steroid. Biochim. Biophys. Acta. 1454: 183–190.

    PubMed  CAS  Google Scholar 

  • Yan, H. and Harding, J. J. (2003). γ-Crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions. J. Biochem. 374: 677–685.

    Article  CAS  Google Scholar 

  • Yan, S.-D., Chen, X., Schmidt, A.-M., Brett, J., Godman, G., Zou, Y.-S., Scott, C. W., Caputo, C., Frappier, T., Smith, M. A., Perry, G., Yen, S.-H. and Stern, D. (1994). Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91: 7787–7791.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H-R., Smith, J. B., Jiang, X-Y, and Abraham, E. C. (1996). Sites of glycation of βB2-crystallin by glucose and fructose. Biochem. Biophys. Res. Commun. 229: 128–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harding, J.J. (2007). Protein Glycation and Cataract: A Conformational Disease. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36534-3_25

Download citation

Publish with us

Policies and ethics