Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 6))

Abstract

At first sight, the lens of the eye would appear to be an ideal environment for amyloid fibril formation. The protein concentration is the highest of any tissue in the body, the proteins are very long-lived, present in slightly acidic conditions and subjected over time to extensive truncation and post-translational modification. In addition, it has been demonstrated that lens crystallins can readily be induced to form amyloid fibrils in vitro. The situation may be further exacerbated after the onset of age-related nuclear cataract, which is characterized by massive oxidation of cysteine and methionine residues, accompanied by protein unfolding. Despite this, there is as yet no evidence for amyloid fibril formation in either the aged or the cataract human lens. Paradoxically, the reason may have to do with the supramolecular ordered β-sheet array that crystallins adopt once they are packed into mature fiber cells. This extended matrix in normal lenses displays some of the classic features normally associated with amyloid, for example, staining with Congo red and thioflavine T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, N., Thornalley, P. J., Dawczynski, J., Franke, S., Strobel, J., Stein, G., and Haik, G. M. (2003). Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci 44: 5287–5292.

    Article  PubMed  Google Scholar 

  • Aquilina, J. A., Benesch, J. L., Ding, L. L., Yaron, O., Horwitz, J., and Robinson, C. V. (2004). Phosphorylation of alpha B-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279: 28675–28680.

    Article  PubMed  CAS  Google Scholar 

  • Argirov, O. K., Lin, B., and Ortwerth, B. J. (2004). 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses. J Biol Chem 279: 6487–6495.

    Article  PubMed  CAS  Google Scholar 

  • Barbazetto, I. A., Liang, J., Chang, S. H., Zheng, L., Spector, A., and Dillon, J. P. (2004). Oxygen tension in the rabbit lens and vitreous before and after vitrectomy. Exp Eye Res 78: 917–924.

    Article  PubMed  CAS  Google Scholar 

  • Bova, L. M., Sweeney, M. H., Jamie, J. F., and Truscott, R. J. (2001). Major changes in human ocular UV protection with age. Invest Ophthalmol Vis Sci 42: 200–205.

    PubMed  CAS  Google Scholar 

  • Chen, Y. C., Reid, G. E., Simpson, R. J., and Truscott, R. J. (1997). Molecular evidence for the involvement of alpha crystallin in the colouration/crosslinking of crystallins in age-related nuclear cataract. Exp Eye Res 65: 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Coghlan, S. D., and Augusteyn, R. C. (1977). Changes in the distribution of proteins in the aging human lens. Exp Eye Res 25: 603–611.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, P. G., Aquilina, J. A., Truscott, R. J., and Carver, J. A. (1994a). Supramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactions. Exp Eye Res 59: 607–616.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, P. G., Carver, J. A., Aquilina, J. A., Ralston, G. B., and Truscott, R. J. (1994b). A 1H NMR spectroscopic comparison of gamma S-and gamma B-crystallins. Exp Eye Res 59: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Delaye, M., and Tardieu, A. (1983). Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302: 415–417.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, C. M. (2004). Experimental investigation of protein folding and misfolding. Methods 34: 4–14.

    Article  PubMed  CAS  Google Scholar 

  • Dubbelman, M., Van der Heijde, G. L., Weeber, H. A., and Vrensen, G. F. (2003). Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res 43: 2363–2375.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, G., and Jacob, T. J. (1984). Calcium and the physiology of cataract. Ciba Found Symp 106: 132–152.

    PubMed  CAS  Google Scholar 

  • Dunn, J. A., McCance, D. R., Thorpe, S. R., Lyons, T. J., and Baynes, J. W. (1991). Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry 30: 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, J. A., Patrick, J. S., Thorpe, S. R., and Baynes, J. W. (1989). Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Biochemistry 28: 9464–9468.

    Article  PubMed  CAS  Google Scholar 

  • Frederikse, P. H., Garland, D., Zigler Jr. J. S., and Piatigorsky, J. (1996). Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid in mammalian lenses, and beta-amyloid has toxic effects on lens epithelial cells. J Biol Chem 271: 10169–10174.

    Article  PubMed  CAS  Google Scholar 

  • Frederiske, P. H. (2000). Amyloid-like protein structure in mammalian ocular lenses. Curr Eye Res 20: 462–468.

    Article  Google Scholar 

  • Fu, S., Dean, R., Southan, M., and Truscott, R. (1998). The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem 273: 28603–28609.

    Article  PubMed  CAS  Google Scholar 

  • Garland, D. L., Duglas-Tabor, Y., Jimenez-Asensio, J., Datiles, M. B., and Magno, B. (1996). Nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and a new method of lens dissection. Exp Eye Res 62: 285–291.

    Article  PubMed  CAS  Google Scholar 

  • Garner, B., Davies, M. J., and Truscott, R. J. (2000). Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Exp Eye Res 70: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Garner, M. H., and Spector, A. (1980). Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci USA 77: 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Giblin, F. J., Padgaonkar, V. A., Leverenz, V. R., Lin, L. R., Lou, M. F., Unakar, N. J., Dang, L., Dickerson, J. E., Jr., and Reddy, V. N. (1995). Nuclear light scattering, disulfide formation and membrane damage in lenses of older guinea pigs treated with hyperbaric oxygen. Exp Eye Res 60: 219–235.

    Article  PubMed  CAS  Google Scholar 

  • Giblin, F. J. (2000). Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther 16: 121–135.

    PubMed  CAS  Google Scholar 

  • Glasser, A., and Campbell, M. C. (1998). Presbyopia and the optical changes in the human crystalline lens with age. Vision Res 38: 209–229.

    Article  PubMed  CAS  Google Scholar 

  • Glasser, A., Croft, M. A., and Kaufman, P. L. (2001). Aging of the human crystalline lens and presbyopia. Int Ophthalmol Clin 41: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, L. E., Muffat, J. A., Cherny, R. A., Moir, R. D., Ericsson, M. H., Huang, X., Mavros, C., Coccia, J. A., Faget, K. Y., Fitch, K. A., et al. (2003). Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361: 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Harding, J. J. (1991). Cataract Biochemistry, Epidemiology and Pharmacology, 1st ed (London, Chapman and Hall).

    Google Scholar 

  • Harding, J. J. (1998). Cataract, Alzheimer’s disease, and other conformational diseases. Curr Opin Ophthalmol 9: 10–13.

    Article  PubMed  CAS  Google Scholar 

  • Heys, K. R., Cram, S. L., and Truscott, R. J. W. (2004). Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vision 10: 956–963.

    Google Scholar 

  • Hood, B. D., Garner, B., and Truscott, R. J. (1999). Human lens coloration and aging. Evidence for crystallin modification by the major ultraviolet filter, 3-hydroxy-kynurenine O-beta-D-glucoside. J Biol Chem 274: 32547–32550.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, J. (1992). Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89: 10449–10453.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, J. (2003). Alpha-crystallin. Exp Eye Res 76: 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Huizinga, A., Bot, A. C. C., de Mull, F. F. M., Vrensen, G. F. J. M., and Greve, J. (1989). Local variation of absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy. Exp Eye Res 48: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R., and Slingsby, C. (2001). Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Bioch Mol Biol 36: 435–499.

    Article  CAS  Google Scholar 

  • Kelly, J. W. (1998). The alternative conformations of amyloidogenic proteins and their multistep assembly pathways. Curr Opin Struct Biol 8: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, T., and Takemoto, L. (1988). Characterization of disulfide-linked crystallins associated with human cataractous lens membranes. Invest Ophthalmol Vis Sci 29: 145–149.

    PubMed  CAS  Google Scholar 

  • Koretz, J. F., Cook, C. A., and Kaufman, P. L. (1997). Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus. Invest Ophthalmol Vis Sci 38: 569–578.

    PubMed  CAS  Google Scholar 

  • Kuck, J. F., Yu, N. T., and Askren, C. C. (1982). Total sulfhydryl by raman spectroscopy in the intact lens of several species: variations in the nucleus and along the optical axis during aging. Exp Eye Res 34: 23–37.

    Article  PubMed  CAS  Google Scholar 

  • Lampi, K. J., Ma, Z., Shih, M., Shearer, T. R., Smith, J. B., Smith, D. L., and David, L. L. (1997). Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens. J Biol Chem 272: 2268–2275.

    Article  PubMed  CAS  Google Scholar 

  • Lampi, K. J., Ma, Z., Hanson, S. R., Azuma, M., Shih, M., Shearer, T. R., Smith, D. L., Smith, J. B., and David, L. L. (1998). Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp Eye Res 67: 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Lapko, V. N., Smith, D. L., and Smith, J. B. (2003). Methylation and carbamylation of human gamma-crystallins. Protein Sci 12: 1762–1774.

    Article  PubMed  CAS  Google Scholar 

  • Lou, M. F. (2000). Thiol regulation in the lens. J Ocul Pharmacol Ther 16: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Lund, A. L., Smith, J. B., and Smith, D. L. (1996). Modifications of the water-insoluble human lens alpha-crystallins. Exp Eye Res 63: 661–672.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Hanson, S. R., Lampi, K. J., David, L. L., Smith, D. L., and Smith, J. B. (1998). Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Exp Eye Res 67: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Masters, P. M., Bada, J. L., and Zigler, J. J. (1977). Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268: 71–73.

    Article  PubMed  CAS  Google Scholar 

  • McFall-Ngai, M. J., Ding, L. L., Takemoto, L. J., and Horwitz, J. (1985). Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp Eye Res 41: 745–758.

    Article  PubMed  CAS  Google Scholar 

  • McNulty, R., Wang, H., Mathias, R., Ortwerth, B. J., Truscott, R. J. W., and Bassnett, S. (2004). Regulation of tissue oxygen levels in the mammalian lens. J Physiol 559: 883–898.

    PubMed  CAS  Google Scholar 

  • Moffat, B. A., Landman, K. A., Truscott, R. J., Sweeney, M. H., and Pope, J. M. (1999). Age-related changes in the kinetics of water transport in normal human lenses. Exp Eye Res 69: 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Moffat, B. A., Atchison, D. A., and Pope, J. M. (2002). Explanation of the Lens Paradox. Optom Vis Sci 79: 148–150.

    Article  PubMed  Google Scholar 

  • Odani, H., Shinzato, T., Usami, J., Matsumoto, Y., Brinkmann Frye, E., Baynes, J. W., and Maeda, K. (1998). Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: evidence for increased oxidative stress in uremia. FEBS Lett 427: 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Palmquist, B. M., Philipson, B., and Barr, P. O. (1984). Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol 68: 113–117.

    PubMed  CAS  Google Scholar 

  • Parker, N. R., Jamie, J. F., Davies, M. J., and Truscott, R. J. W. (2004). Protein-bound kynurenine is a photosensitiser of oxidative damage. Free Radic Biol Med 37: 1479–1489.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, J. S., Thorpe, S. R., and Baynes, J. W. (1990). Nonenzymatic glycosylation of protein does not increase with age in normal human lenses. J Gerontol 45: B18–23.

    PubMed  CAS  Google Scholar 

  • Pirie, A. (1968). Color and solubility of the proteins of human cataracts. Invest Ophthalmol 7: 634–650.

    PubMed  CAS  Google Scholar 

  • Quinlan, R. A., Carter, J. M., Sandilands, A., and Prescott, A. R. (1996). The beaded filament of the eye lens—an unexpected key to intermediate filament structure and function. Trends Cell Biol 6: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Rathbun, W. B., and Bovis, M. G. (1986). Activity of glutathione peroxidase and glutathione reductase in the human lens related to age. Curr Eye Res 5: 381–385.

    PubMed  CAS  Google Scholar 

  • Rathbun, W. B., Bovis, M. G., and Holleschau, A. M. (1986). Species survey of glutathione peroxidase and glutathione reductase: search for an animal model of the human lens. Ophthalmic Res 18: 282–287.

    Article  PubMed  CAS  Google Scholar 

  • Rathbun, W. B., and Murray, D. L. (1991). Age-related cysteine uptake as rate-limiting in glutathione synthesis and glutathione half-life in the cultured human lens. Exp Eye Res 53: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Rathbun, W. B., Schmidt, A. J., and Holleschau, A. M. (1993). Activity loss of glutathione synthesis enzymes associated with human subcapsular cataract. Invest Ophthalmol Vis Sci 34: 2049–2054.

    PubMed  CAS  Google Scholar 

  • Reddy, V. N., and Giblin, F. J. (1984). Metabolism and function of glutathione in the lens. Ciba Found Symp 106: 65–87.

    PubMed  CAS  Google Scholar 

  • Reizer, J., Reizer, A., and Saier, M. H. J. (1993). The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28: 235–257.

    PubMed  CAS  Google Scholar 

  • Rochet, J.-C., and Lansbury, P. T. J. (2000). Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10: 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Roy, D., and Spector, A. (1976). Absence of low-molecular-weight alpha crystallin in nuclear region of old human lenses. Proc Natl Acad Sci USA 73: 3484–3487.

    Article  PubMed  CAS  Google Scholar 

  • Sandilands, A., Hutcheson, A. M., Long, H. A., Prescott, A. R., Vrensen, G., Loster, J., Klopp, N., Lutz, R. B., Graw, J., Masaki, S., et al. (2002). Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. EMBO J 21: 6005–6014.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A., Chiesa, R., Sredy, J., and Garner, W. (1985). cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sci USA 82: 4712–4716.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, M. H., and Truscott, R. J. (1998). An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp Eye Res 67: 587–595.

    Article  PubMed  CAS  Google Scholar 

  • Takemoto, L., and Boyle, D. (1998). Deamidation of specific glutamine residues from alpha-A crystallin during aging of the human lens. Biochemistry 37: 13681–13685.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, H. (2003). Eye care for the future: the Weisenfeld lecture. Invest Ophthalmol Vis Sci 44: 1413–1418.

    Article  PubMed  Google Scholar 

  • Truscott, R. J., Marcantonio, J. M., Tomlinson, J., and Duncan, G. (1990). Calcium-induced opacification and proteolysis in the intact rat lens. Invest Ophthalmol Vis Sci 31: 2405–2411.

    PubMed  CAS  Google Scholar 

  • Truscott, R. J. (2000). Age-related nuclear cataract: a lens transport problem. Ophthalmic Res 32: 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Truscott, R. J. W., and Augusteyn, R. C. (1977a). Changes in human lens proteins during nuclear cataract formation. Exp Eye Res 24: 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Truscott, R. J. W., and Augusteyn, R. C. (1977b). Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta 492: 43–52.

    PubMed  CAS  Google Scholar 

  • Truscott, R. J. W., and Augusteyn, R. C. (1977c). The state of sulphydryl groups in normal and cataractous human lenses. Exp Eye Res 25: 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Truscott, R. J. W. (2005). Age-related nuclear cataract: oxidation is the key. Exp Eye Res 80: 709–725.

    Article  PubMed  CAS  Google Scholar 

  • Uversky, V. N., and Fink, A. L. (2004). Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochem Biophys Acta 1698: 131–153.

    PubMed  CAS  Google Scholar 

  • Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., and Fink, A. L. (2002). Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 517: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • van Heyningen, R. (1971a). Fluorescent derivatives of 3-hydroxy-L-kynurenine in the lens of man, the baboon and the grey squirrel. Biochem J 123: 30–31.

    Google Scholar 

  • van Heyningen, R. (1971b). Fluorescent glucoside in the human lens. Nature 230: 393–394.

    Article  PubMed  Google Scholar 

  • Vazquez, S., Aquilina, J. A., Jamie, J. F., Sheil, M. M., and Truscott, R. J. (2002). Novel protein modification by kynurenine in human lenses. J Biol Chem 277: 4867–4873.

    Article  PubMed  CAS  Google Scholar 

  • Weale, R. A. (1981). Human ocular aging and ambient temperature. Br J Ophthalmol 65: 869–870.

    PubMed  CAS  Google Scholar 

  • Wistow, G., and Piatigorsky, J. (1987). Recruitment of enzymes as lens structural proteins. Science 236: 1554–1556.

    Article  PubMed  CAS  Google Scholar 

  • Wistow, G. J., Mulders, J. W., and de Jong, W. W. (1987). The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature 326: 622–624.

    Article  PubMed  CAS  Google Scholar 

  • Wood, A. M., and Truscott, R. J. W. (1993). UV filters in human lenses: tryptophan catabolism. Exp Eye Res 56: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Wood, A. M., and Truscott, R. J. W. (1994). Ultraviolet filter compounds in human lenses: 3-hydroxykynurenine glucoside formation. Vision Res 34: 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Yamin, G., Glaser, C. B., Uversky, V. N., and Fink, A. L. (2003). Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J Biol Chem 278: 27630–27635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Truscott, R.J.W. (2007). Eye Lens Proteins and Cataracts. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36534-3_21

Download citation

Publish with us

Policies and ethics