Skip to main content

In Vivo Models for the Study of Animal and Human Papillomaviruses

  • Chapter
The Papillomaviruses
  • 719 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accardi R, Dong W, Smet A, Cui R, Hautefeuille A, Gabet AS, Sylla BS, Gissmann L, Hainaut P, Tommasino M. (2006). Skin human papillomavirus type 38 alters p53 functions by accumulation of deltaNp73. EMBO Rep. 7:334–340.

    PubMed  CAS  Google Scholar 

  • Akgul B, Pfefferle R, Marcuzzi GP, Zigrino P, Krieg T, Pfister H, Mauch C. (2006). Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp. Dermatol. 15:35–42.

    PubMed  Google Scholar 

  • Arbeit, J., Howley, P.M., and Hanahan, D. (1996). Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc. Natl. Acad. Sci. USA 93:2930–2935.

    PubMed  CAS  Google Scholar 

  • Arbeit, J., Munger, K., Howley, P.M., and Hanahan, D. (1993). Neurorpithelial carcinomas in mice transgenic with human papillomavirus type 16 E6/E7 ORFs. Am. J. Pathol. 142: 1187–1197.

    PubMed  CAS  Google Scholar 

  • Arbeit, J., Munger, K., Howley, P.M., and Hanahan, D. (1994). Progressive squamous epithelial neoplasia in K14-Human papillomavirus type 16 transgenic mice. J. Virol. 68:4358–4368.

    PubMed  CAS  Google Scholar 

  • Auborn, K.J., Woodworth, C., DiPaolo, J.A., and Bradlow, H.L. (1991). The interaction between HPV infection and estrogen metabolism in cervical carcinogenesis. International Journal of Cancer 49:867–869.

    CAS  Google Scholar 

  • Auewarakul, P., Gissmann, L., and Cid, A.A. (1994). Targeted expression of the E6 and E7 oncogenes of human papillomavirus type 16 in the epidermis of transgenic mice elicits generalized epidermal hyperplasia involving autocrine factors. Mol. Cell. Biol. 14:8250–8258.

    PubMed  CAS  Google Scholar 

  • Balsitis, S., Dick, F., Dyson, N., and Lambert, P.f.(2006). Critical roles for non-pRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis. Cancer res., (66):9393–9400.

    PubMed  CAS  Google Scholar 

  • Balsitis, S.J., Sage, J., Duensing, S., Munger, K., Jacks, T., and Lambert, P.F. (2003). Recapitulation of the effects of the HPV-16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol. Cell. Biol. 23:9094–9103.

    PubMed  CAS  Google Scholar 

  • Brake, T., Connor, J.P., Petereit, D.G., and Lambert, P.F. (2003). Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: Identification of minichromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Res 63:8173–8180.

    PubMed  CAS  Google Scholar 

  • Brake, T., and Lambert, P.F. (2005). Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in human papillomavirus-transgenic mouse model. Proc. Natl. Acad. Sci. U.S.A. 102 (7):2490–2495.

    Google Scholar 

  • Brandsma, J.L., Yang, Z.H., DiMaio, D., Barthold, S.W., Johnson, E., and Xiao, W. (1992). The putative E5 open reading frame of cottontail rabbit papillomavirus is dispensable for papilloma formation in domestic rabbits. J. Virol. 66:6204–6207.

    PubMed  CAS  Google Scholar 

  • Bregman, C.L., Hirth, R.S., Sundberg, J.P., and Christensen, E.F. (1987). Cutaneous neoplasms in dogs associated with canine oral papillomavirus vaccine. Veterinary Pathology 24:477–487.

    PubMed  CAS  Google Scholar 

  • Breitburd, F., Kirnbauer, R., Hubbert, N.L., Nonnenmacher, B., Trin-Dinh-Desmarquet,C., Orth, G., Schiller, J.T., and Lowy, D.R. (1995). Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J. Virol. 69:3959–3963.

    PubMed  CAS  Google Scholar 

  • Campo, M.S. (1987). Papillomas and cancer in cattle. Cancer Surveys 6:39–54.

    PubMed  CAS  Google Scholar 

  • Campo, M.S. (1997). Vaccination against papillomavirus in cattle. Clin. Dermatol. 15:275–283.

    PubMed  CAS  Google Scholar 

  • Campo, M.S., Grindlay, G.J., O’Neil, B.W., Chandrachud, L.M., McGarvie, G.M., and Jarrett, W.F. (1993). Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J. Gen. Virol. 74:945–953.

    PubMed  CAS  Google Scholar 

  • Campo, M.S., Moar, M.H., Laird, H.M., and Jarrett, W.F. (1981). Molecular heterogeneity and lesion site specificity of cutaneous bovine papillomaviruses. Virology 113:323–335.

    PubMed  CAS  Google Scholar 

  • Campo, M.S., O’Neil, B.W., Grindlay, G.J., Curtis, F., Knowles, G., and Chandrachud, L. (1997). A peptide encoding a B-cell epitope from the N-terminus of the capsid protein L2 of bovine papillomavirus-4 prevents disease. Virology 234:261–266.

    PubMed  CAS  Google Scholar 

  • Carraresi, L., Tripodi, S.A., Mulder, L.C., Bertini, S., Nuti, S., Schuerfeld, K., Cintorino, M., Bensi, G., Rossini, M., and Mora, M. (2001). Thymic hyperplasia and lung carcinomas in a line of mice transgenic for keratin 5-driven HPV16 E6/E7 oncogenes. Oncogene 20:8148–8153.

    PubMed  CAS  Google Scholar 

  • Chambers, V.C., and Evans, C.A. (1959). Canine oral papillomavirus. 1. Virus assay and observations on the various stages of the experimental infection. Cancer Res. 19:1188–1195.

    PubMed  CAS  Google Scholar 

  • Chen, D.Z., Qi, M., Auborn, K.J., and Carter, T.H. (2001). Indole-3-carbinol and diindolylmethane induce apoptosis of human cervical cancer cells and in murine HPV16transgenic preneoplastic cervical epithelium. J. Nutr. 131:3294–3302.

    PubMed  CAS  Google Scholar 

  • Chen, I., Safe, S., and Bjeldanes, L. (1996). Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem. Pharmacol. 51:1069–1076.

    CAS  Google Scholar 

  • Christensen, N.D., Kreider, J.W., Kan, N.C., and DiAngelo, S.L. (1991). The open reading frame L2 of cottontail rabbit papillomavirus contains antibody-inducing neutralizing epitopes. Virology 181:572–579.

    PubMed  CAS  Google Scholar 

  • Christensen, N.D., Reed, C.A., Cladel, N.M., Han, R., and Kreider, J.W. (1996). Immunization with viruslike particles induces long-term protection of rabbits against challenge with cottontail rabbit papillomavirus. J. Virol. 70:960–965.

    PubMed  CAS  Google Scholar 

  • Coussens, L., Hanahan, D., and Arbeit, J. (1996). Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am. J. Pathol. 149:1899–1917.

    PubMed  CAS  Google Scholar 

  • Cover, C.M., Hsieh, S.J., Tran, S.H., Hallden, G., Kim, G.S., Bjeldanes, L.F., and Firestone, G.L. (1998). Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J. Biol. Chem. 273:3838–3847.

    PubMed  CAS  Google Scholar 

  • Cram, E.J., Liu, B.D., Bjeldanes, L.F., and Firestone, G.L. (2001). Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. J. Biol. Chem. 276:22332–22340.

    PubMed  CAS  Google Scholar 

  • Crook, T., Wrede, D., and Vousden, K.H. (1991). p53 point mutations in HPV negative human cervical carcinoma cell lines. Oncogene 6:873–875.

    PubMed  CAS  Google Scholar 

  • Dong W, Kloz U, Accardi R, Caldeira S, Tong WM, Wang ZQ, Jansen L, A>Durst M, Sylla BS, Gissmann L, Tommasino M. (2005). Skin hyperproliferation and susceptibility to chemical carcinogenesis in transgenic mice expressing E6 and E7 of human papillomavirus type 38. J. Virol. 79:14899–14908.

    PubMed  CAS  Google Scholar 

  • Duensing, S., Duensing, A., Crum, C.P., and Munger, K. (2001a). Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61:2356–2360.

    CAS  Google Scholar 

  • Duensing, S., and Munger, K. (2003). Human Papillomavirus Type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77:12331–12335.

    PubMed  CAS  Google Scholar 

  • Dunn, L.A., Evander, M., Tindle, R.W., Bulloch, A.L., de Kluyver, R.L., Fernando, G.J., Lambert, P.F., and Frazer, I.H. (1997). Presentation of the HPV16E7 protein by skin grafts is insufficient to allow graft rejection in an E7-primed animal. Virology 235:94–103.

    PubMed  CAS  Google Scholar 

  • Dvoretzky, I., Shober, R., Chattopadhyay, S.K., and Lowy, D.R. (1980). A quantitative in vitro focus assay for bovine papilloma virus. Virology 103:369–375.

    PubMed  CAS  Google Scholar 

  • Dyson, N., Howley, P.M., Munger, K., and Harlow, E. (1989). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937.

    PubMed  CAS  Google Scholar 

  • Elson, D., Riley, R., Lacey, A., Thordarson, G., Talamantes, F., and Arbeit, J. (2000). Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. Cancer Res. 60:1267–1275.

    PubMed  CAS  Google Scholar 

  • Escalante-Alcalde, D., Recillas-Targa, F., Valencia, C., Santa-Olalla, J., Chavez, P., Marroquin, A., Gutierrez, X., Gariglio, P., and Covarrubias, L. (2000). Expression of E6 and E7 papillomavirus oncogenes in the outer root sheath of hair follicles extends the growth phase and bypasses resting at telogen. Cell Growth Differ. 11:527–539.

    PubMed  CAS  Google Scholar 

  • Foley, J.D., Rosenbaum, H., and Griep, A.E. (2004). Temporal regulation of VEID7-amino-4-trifluoromethylcoumarin cleavage activity and caspase-6 correlates with organelle loss during lens development. J. Biol. Chem. 279:32142–32150.

    PubMed  CAS  Google Scholar 

  • Foster, S.A., Demers, G.W., Etscheid, B.G., and Galloway, D.A. (1994). The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J. Virol. 68:5698–5705.

    PubMed  CAS  Google Scholar 

  • Frazer, I.H., Kluyver, R.D., Leggatt, G.R., Yang Guo, H., Dunn, L., White, O., Harris, C., Liem, A., and Lambert, P. (2001). Tolerance or immunity to a tumor antigen expressed in somatic cells can be determined by systemic proinflammatory signals at the time of first antigen exposure. J. Immunol. 167:6180–6187.

    PubMed  CAS  Google Scholar 

  • Gissmann, L., Boshart, M., Durst, M., Ikenberg, H., Wagner, D., and zur Hausen, H. (1984). Presence of human papillomavirus in genital tumors. Journal of Investigative Dermatology 83:26s–28s.

    PubMed  CAS  Google Scholar 

  • Goodwin, E.C., and DiMaio, D. (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA 97:12513–12518.

    PubMed  CAS  Google Scholar 

  • Goodwin, E.C., Yang, E., Lee, C.J., Lee, H.W., DiMaio, D., and Hwang, E.S. (2000). Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. USA 97:10978–10983.

    PubMed  CAS  Google Scholar 

  • Gordon, D.E., and Olson, C. (1968). Meningiomas and fibroblastic neoplasia in calves induced with the bovine papilloma virus. Cancer Research 28:2423–2431.

    PubMed  CAS  Google Scholar 

  • Greenhalgh, D.A., Wang, X.J., Rothnagel, J.A., Eckhardt, J.N., Quintanilla, M.I., Barber, J.L., Bundman, D.S., Longley, M.A., Schlegel, R., and Roop, D.R. (1994). Transgenic mice expressing targeted HPV-18 E6 and E7 oncogenes in the epidermis develop verrucous lesions and spontaneous, rasHa-activated papillomas. Cell Growth & Differentiation 5:667–675.

    CAS  Google Scholar 

  • Griep, A., Herber, R., Jeon, S., Lohse, J., Dubielzig, R., and Lambert, P.F. (1993). Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J. Virol. 67:1373–1384.

    PubMed  CAS  Google Scholar 

  • Griep, A., Krawcek, J., Lee, D., Liem, A., Albert, D., Carabeo, R., Drinkwater, N., McCall, M., Sattler, C., Lasudry, J., and Lambert, P.F. (1998). Multiple genetic loci modify risk for retinoblastoma in transgenic mice. Invest. Ophth. Vis. Sci. 39:2723–2732.

    CAS  Google Scholar 

  • Grose, K.R., and Bjeldanes, L.F. (1992). Oligomerization of indole-3-carbinol in aqueous acid. Chem. Res. Toxicol. 5:188–193.

    PubMed  CAS  Google Scholar 

  • Gulliver, G.A., Herber, R.L., Liem, A., and Lambert, P.F. (1997). Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice. J. Virol. 71:5905–5914.

    PubMed  CAS  Google Scholar 

  • Herber, R., Liem, A., Pitot, H., and Lambert, P.F. (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70:1873–1881.

    PubMed  CAS  Google Scholar 

  • Hwang, E.S., Riese, D.D., Settleman, J., Nilson, L.A., Honig, J., Flynn, S., and DiMaio, D. (1993). Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J. Virol. 67:3720–3729.

    PubMed  CAS  Google Scholar 

  • Jarrett, W.F., Smith, K.T., O’Neil, B.W., Gaukroger, J.M., Chandrachud, L.M., Grindlay, G.J., McGarvie, G.M., and Campo, M.S. (1991). Studies on vaccination against papillomaviruses: Prophylactic and therapeutic vaccination with recombinant structural proteins. Virology 184:33–42.

    PubMed  CAS  Google Scholar 

  • Jeckel, S., Huber, E., Stubenrauch, F., and Iftner, T. (2002). A transactivator function of cottontail rabbit papillomavirus E2 is essential for tumor induction in rabbits. J. Virol. 76:11209–11215.

    PubMed  CAS  Google Scholar 

  • Jeon, S., Allen, H.B., and Lambert, P.F. (1995). Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69:2989–2997.

    PubMed  CAS  Google Scholar 

  • Jin, L., Qi, M., Chen, D.Z., Anderson, A., Yang, G.Y., Arbeit, J.M., and Auborn, K.J. (1999). Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer. Res. 59:3991–3997.

    PubMed  CAS  Google Scholar 

  • Kang, J.K., Kim, J.H., Lee, S.H., Kim, D.H., Kim, H.S., Lee, J.E., and Seo, J.S. (2000). Development of spontaneous hyperplastic skin lesions and chemically induced skin papillomas in transgenic mice expressing human papillomavirus type 16 E6/E7 genes. Cancer Lett. 160:177–183.

    PubMed  CAS  Google Scholar 

  • Keating, J.T., Ince, T., and Crum, C.P. (2001). Surrogate biomarkers of HPV infection in cervical neoplasia screening and diagnosis. Adv. Anat. Pathol. 8:83–92.

    PubMed  CAS  Google Scholar 

  • Kessis, T.D., Slebos, R.J., Nelson, W.G., Kastan, M.B., Plunkett, B.S., Han, S.M., Lorincz, A.T., Hedrick, L., and Cho, K.R. (1993). Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America 90:3988–3992.

    Google Scholar 

  • Kirnbauer, R., Chandrachud, L.M., O’Neil, B.W., Wagner, E.R., Grindlay, G.J., Armstrong, A., McGarvie, G.M., Schiller, J.T., Lowy, D.R., and Campo, M.S. (1996). Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology 219:37–44.

    PubMed  CAS  Google Scholar 

  • Kondoh, G., Hayasaka, N., Li, Q., Nishimune, Y., and Hakura, A. (1995). An in vivo model for receptor tyrosine kinase autocrine/paracrine activation: Auto-stimulated KIT receptor acts as a tumor promoting factor in papillomavirus-induced tumorigenesis. Oncogene 10:341–347.

    PubMed  CAS  Google Scholar 

  • Kondoh, G., Murata, Y., Aozasa, K., Yutsudo, M., and Hakura, A. (1991). Very high incidence of germ cell tumorigenesis (seminomagenesis) in human papillomavirus type 16 transgenic mice. Journal of Virology 65:3335–3339.

    PubMed  CAS  Google Scholar 

  • Kondoh, G., Nishimune, Y., Nishizawa, Y., Hayasaka, N., Matsumoto, K., and Hakura, A. (1994). Establishment and further characterization of a line of transgenic mice showing testicular tumorigenesis at 100{%} incidence. Journa of Urology.152:2151–2154.

    CAS  Google Scholar 

  • Lacey, M., Alpert, S., and Hanahan, D. (1986). Bovine papillomavirus genome elicits skin tumours in transgenic mice. Nature 322:609–612.

    PubMed  CAS  Google Scholar 

  • Lambert, P.F., Baker, C.C., and Howley, P.M. (1988). The genetics of bovine papillomavirus type 1. Annual Review of Genetics 22:235–258.

    PubMed  CAS  Google Scholar 

  • Lambert, P.F., Pan, H., Pitot, H., Liem, A., Jackson, M., and Griep, A. (1993). Epidermal cancer associated with expression of human papillomavirus type 16 E6 and E7 oncogenes in the skin of transgenic mice. Proc. Natl. Acad. Sci. USA 90:5583–5587.

    PubMed  CAS  Google Scholar 

  • Law, M.F., Lowy, D.R., Dvoretzky, I., and Howley, P.M. (1981). Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 78:2727–2731.

    Google Scholar 

  • Leggatt, G.R., Dunn, L.A., De Kluyver, R.L., Stewart, T., and Frazer, I.H. (2002). Interferon-gamma enhances cytotoxic T lymphocyte recognition of endogenous peptide in keratinocytes without lowering the requirement for surface peptide. Immunol. Cell. Biol. 80:415–424.

    PubMed  CAS  Google Scholar 

  • Lin, Y.L., Borenstein, L.A., Ahmed, R., and Wettstein, F.O. (1993). Cottontail rabbit papillomavirus L1 protein-based vaccines: Protection is achieved only with a full-length, nondenatured product. J. Virol. 67:4154–4162.

    PubMed  CAS  Google Scholar 

  • Lin, Y.L., Borenstein, L.A., Selvakumar, R., Ahmed, R., and Wettstein, F.O. (1992). Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology 187:612–619.

    PubMed  CAS  Google Scholar 

  • Lindgren, V., Sippola, T.M., Skowronski, J., Wetzel, E., Howley, P.M., and Hanahan, D. (1989). Specific chromosomal abnormalities characterize fibrosarcomas of bovine papillomavirus type 1 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 86:5025–5029.

    Google Scholar 

  • Matsumoto, K., Leggatt, G.R., Zhong, J., Liu, X., de Kluyver, R.L., Peters, T., Fernando, G.J., Liem, A., Lambert, P.F., and Frazer, I.H. (2004). Impaired antigen presentation and effectiveness of combined active/passive immunotherapy for epithelial tumors. J. Natl. Cancer Inst. 96:1611–1619.

    PubMed  CAS  Google Scholar 

  • McCaffrey, J., Yamasaki, L., Dyson, N.J., Harlow, E., and Griep, A.E. (1999). Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol. Cell. Biol. 19:6458–6468.

    PubMed  CAS  Google Scholar 

  • Melero, I., Singhal, M.C., McGowan, P., Haugen, H.S., Blake, J., Hellstrom, K.E., Yang, G., Clegg, C.H., and Chen, L. (1997). Immunological ignorance of an E7encoded cytolytic T-lymphocyte epitope in transgenic mice expressing the E7 and E6 oncogenes of human papillomavirus type 16. J. Virol. 71:3998–4004.

    PubMed  CAS  Google Scholar 

  • Meyers, C., and Wettstein, F.O. (1991). The late region differentially regulates the in vitro transformation by cottontail rabbit papillomavirus DNA in different cell types. Virology 181:637–646.

    PubMed  CAS  Google Scholar 

  • Moar, M.H., Campo, M.S., Laird, H.M., and Jarrett, W.F. (1981). Unintegrated viral DNA sequences in a hamster tumor induced by bovine papilloma virus. J. Virol. 39: 945–949.

    Google Scholar 

  • Morgenbesser, S.D., Williams, B.O., Jacks, T., and DePinho, R.A. (1994). p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371:72–74.

    PubMed  CAS  Google Scholar 

  • Munger, K. (2002) The role of human papillomaviruses in human cancers. Front. Biosci. 7:d641–649.

    Google Scholar 

  • Nasseri, M., Meyers, C., and Wettstein, F.O. (1989). Genetic analysis of CRPV pathogenesis: The L1 open reading frame is dispensable for cellular transformation but is required for papilloma formation. Virology 170:321–325.

    PubMed  CAS  Google Scholar 

  • Nasseri, M., and Wettstein, F.O. (1984). Differences exist between viral transcripts in cottontail rabbit papillomavirus-induced benign and malignant tumors as well as non-virus-producing and virus-producing tumors. J. Virol. 51:706–712.

    PubMed  CAS  Google Scholar 

  • Nguyen, M., Song, S., Liem, A., Androphy, E., Liu, Y., and Lambert, P.F. (2002a). A mutant of human papillomavirus type 16 E6 deficient in binding alpha-helix partners displays reduced oncogenic potential in vivo. J. Virol. 76:13039–13048.

    CAS  Google Scholar 

  • Nguyen, M.L., Nguyen, M.M., Lee, D., Griep, A.E., and Lambert, P.F. (2003a). The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J. Virol. 77:6957–6964.

    CAS  Google Scholar 

  • Nguyen, M.M., Nguyen, M.L., Caruana, G., Bernstein, A., Lambert, P.F., and Griep, A.E. (2003b). Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol. Cell. Biol. 23:8970–8981.

    CAS  Google Scholar 

  • Nguyen, M.M., Potter, S.J., and Griep, A.E. (2002b). Deregulated cell cycle control in lens epithelial cells by expression of inhibitors of tumor suppressor function. Mech. Dev. 112:101–113.

    CAS  Google Scholar 

  • Olson, C., Gordon, D.E., Robl, M.G., and Lee, K.P. (1969). Oncogenicity of bovine papilloma virus. Archives of Environmental Health 19:827–837.

    PubMed  CAS  Google Scholar 

  • Olson, C., Pamukcu, A.M., Brobst, D.F., Kowolczk, T., Satter, E.J., and Proce, J.M. (1959). A urinary bladder tumor induced by a bovine cutaneous papilloma agent. Cancer Res. 19:779–783.

    PubMed  CAS  Google Scholar 

  • Pan, H., and Griep, A. (1994a). Altered cell cycle regultion in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor suppressor gene function in development. Genes Dev. 8:1285–1299.

    CAS  Google Scholar 

  • Pan, H., and Griep, A. (1995a). Temporally distinct patterns of p53-dependent and p53independent apoptosis during mouse lens development. Genes Dev. 9:2157–2169.

    CAS  Google Scholar 

  • Pan, H., and Griep, A.E. (1994b). Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor suppressor gene function in development. Genes Dev. 8:1285–1299.

    CAS  Google Scholar 

  • Pan, H., and Griep, A.E. (1995b). Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9:2157–2169.

    CAS  Google Scholar 

  • Peh, W.L., Brandsma, J.L., Christensen, N.D., Cladel, N.M., Wu, X., and Doorbar, J. (2004). The viral E4 protein is required for the completion of the cottontail rabbit papillomavirus productive cycle in vivo. J. Virol. 78:2142–2151.

    PubMed  CAS  Google Scholar 

  • Pfister, H., Gross, G., and Hagedorn, M. (1979). Characterization of human papillomavirus 3 in warts of a renal allograft patient. Journal of Investigative Dermatology 73:349–353.

    PubMed  CAS  Google Scholar 

  • Riley, R., Duensing, S., Brake, T., Munger, K., Lambert, P.F., and Arbeit, J. (2003). Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 63:4862–4871.

    PubMed  CAS  Google Scholar 

  • Rous, P., and Beard, J.W. (1934). A virus induced mammalian growth with the characteristics of a tumor (the Shope rabbit papillomavirus). 1. The growth on implantation within a favorable host. J. Exp. Med. 60:701–722.

    PubMed  CAS  Google Scholar 

  • Sasagawa, T., Kondoh, G., Inoue, M., Yutsudo, M., and Hakura, A. (1994). Cervical/vaginal dysplasias of transgenic mice harbouring human papillomavirus type 16 E6-E7 genes. Journal of General Virology.

    Google Scholar 

  • Schaeffer, A., Nguyen, M., Liem, A., Lee, D., Montagna, C., Lambert, P.F., Ried, T., and Difilippantonio, M. (2004). E7 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res. 64:538–546.

    PubMed  CAS  Google Scholar 

  • Schaper ID, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V, Smyth N, Fuchs P, Pfister H. (2005). Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res. 65:1394–400.

    PubMed  CAS  Google Scholar 

  • Scheffner, M., Munger, K., Byrne, J.C., and Howley, P.M. (1991). The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proceedings of the National Academy of Sciences of the United States of America 88:5523–5527.

    Google Scholar 

  • Schreiber,K., Cannon,R.E., Karrison,T., Beck- Engeser,G., Huo,D., Tennant,R.W., Jensen, H., Kast, W.M., Krausz, T., Meredith, S.C., et al. (2004). Strong synergy between mutant ras and HPV16 E6/E7 in the development of primary tumors. Oncogene 23:3972–3979.

    PubMed  CAS  Google Scholar 

  • Schwarz, E., Freese, U.K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen. H. (1985). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114.

    PubMed  CAS  Google Scholar 

  • Shope, R.E. (1935). Serial transmission of the virus of infectious papillomatosis in domestic rabbits. Proc. Soc. Exp. Biol. Med. 32:830–832.

    Google Scholar 

  • Shope, R.E. (1937). Immunization of rabbits to infectious papillomatosis. J. Exp. Med. 65:607–624.

    Google Scholar 

  • Sippola, T.M., Hanahan, D., and Howley, P.M. (1989). Cell-heritable stages of tumor progression in transgenic mice harboring the bovine papillomavirus type 1 genome. Molecular & Cellular Biology 9:925–934.

    Google Scholar 

  • Song, S., Gulliver, G.A., and Lambert, P.F. (1998). Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53dependent and p53-independent pathways. Proc. Natl. Acad. Sci. USA 95:2290–2295.

    PubMed  CAS  Google Scholar 

  • Song, S., and Lambert, P.F. (1999). Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am. J. Pathol. 155:1121–1127.

    PubMed  CAS  Google Scholar 

  • Song, S., Liem, A., Miller, J.A., and Lambert, P.F. (2000). Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 267:141–150.

    PubMed  CAS  Google Scholar 

  • Song, S., Pitot, H.C., and Lambert, P.F. (1999). The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73:5887–5893.

    PubMed  CAS  Google Scholar 

  • Strati, K., Pitot, H.C. and Lambert, P.F. Identification of Biomarkers that Distinguish HPV-positive versus HPV-negative Head and Neck Cancers in a Mouse Model. (2006). Proc. Natl. Acad. Sci., U.S.A., 103:14152–14157.

    PubMed  CAS  Google Scholar 

  • Suzich, J.A., Ghim, S.J., Palmer, H.F., White, W.I., Tamura, J.K., Bell, J.A., Newsome, J.A., Jenson, A.B., and Schlegel, R. (1995). Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl. Acad. Sci. USA 92:11553–11557.

    PubMed  CAS  Google Scholar 

  • Um, S.J., Kim, E.J., Hwang, E.S., Kim, S.J., Namkoong, S.E., and Park, J.S. (2000). Antiproliferative effects of retinoic acid/interferon in cervical carcinoma cell lines: Cooperative growth suppression of IRF-1 and p53. Int. J. Cancer 85:416–423.

    PubMed  CAS  Google Scholar 

  • Wells, S.I., Francis, D.A., Karpova, A.Y., Dowhanick, J.J., Benson, J.D., and Howley, P.M. (2000). Papillomavirus E2 induces senescence in HPV-positive cells via pRB-and p21(CIP)-dependent pathways. Embo. J. 19:5762–5771.

    PubMed  CAS  Google Scholar 

  • Werness, B.A., Levine, A.J., and Howley, P.M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79.

    PubMed  CAS  Google Scholar 

  • Wu, X., Xiao, W., and Brandsma, J.L. (1994). Papilloma formation by cottontail rabbit papillomavirus requires E1 and E2 regulatory genes in addition to E6 and E7 transforming genes. J. Virol. 68:6097–6102.

    PubMed  CAS  Google Scholar 

  • Yee, C., Krishnan, H.I., Baker, C.C., Schlegel, R., and Howley, P.M. (1985). Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. American Journal of Pathology 119:361–366.

    PubMed  CAS  Google Scholar 

  • Young, M., Farrell, L., Lambert, P.F., Awasthi, P., and Colburn, N. (2002). Protection against human papillomavirus type 16-E7 oncogene-induced tumorigenesis by in vivo expression of dominant negative c-jun. Mol. Carcinogen 34:72–77.

    CAS  Google Scholar 

  • Yuan, F., Chen, D.Z., Liu, K., Sepkovic, D.W., Bradlow, H.L., and Auborn, K. (1999). Anti-estrogenic activities of indole-3-carbinol in cervical cells: Implication for prevention of cervical cancer. Anticancer Res. 19:1673–1680.

    PubMed  CAS  Google Scholar 

  • Yuan, H., Estes, P.A., Chen, Y., Newsome, J., Olcese, V.A., Garcea, R.L., and Schlegel, R. (2001). Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J. Virol. 75:7848–7853.

    PubMed  CAS  Google Scholar 

  • Zeltner, R., Borenstein, L.A., Wettstein, F.O., and Iftner, T. (1994). Changes in RNA expression pattern during the malignant progression of cottontail rabbit papillomavirusinduced tumors in rabbits. J. Virol. 68:3620–3630.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambert, P.F., Griep, A.E. (2007). In Vivo Models for the Study of Animal and Human Papillomaviruses. In: Garcea, R.L., DiMaio, D. (eds) The Papillomaviruses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36523-7_11

Download citation

Publish with us

Policies and ethics