Skip to main content

Simulations of Protein Aggregation

A Review

  • Chapter
Misbehaving Proteins

Abstract

Protein aggregation is a cause or associated symptom of a number of neurodegenerative diseases including Alzheimer’s, Parkinson’s, Huntington’s, and the prion diseases. In this chapter we review recent efforts by others and by ourselves to simulate the aggregation of proteins into both amorphous aggregates (inclusion bodies) and ordered aggregates (fibrils). Since protein aggregation occurs on long timescales and involves many proteins, the detailed all-atom approaches that are often used to simulate the folding of isolated proteins are not entirely suitable for studying aggregation because they are too computationally intensive. Instead, a variety of simulation approaches, with concomitant compromises in system size or level of realism, are being used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. King, Deciphering the rules of protein folding, Chem. Eng. News 34, 32–54 (1989).

    Google Scholar 

  • J. W. Kelly, The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways, Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  PubMed  CAS  Google Scholar 

  • J. C. Rochet and P. T. Lansbury, Amyloid fibrilogenesis: Themes and variations, Curr. Opin. Struct. Biol. 10, 60–68 (2000).

    Article  PubMed  CAS  Google Scholar 

  • C. M. Dobson, The structural basis of protein folding and its links with human disease, Phil. Trans. R. Soc. Lond. B. 356, 133–145 (2001).

    Article  CAS  Google Scholar 

  • J. W. Kelly, Towards an understanding of amyloidogeneisis, Nat. Struct. Biol. 9, 323–325 (2002).

    Article  PubMed  CAS  Google Scholar 

  • E. Zerovnik, Amyloid-fibril formation, Eur. J. Biochem. 269, 3362–3371 (2002).

    Article  PubMed  CAS  Google Scholar 

  • B. S. Shastry, Neurodegenerative disorders of protein aggregation, Neurochem. Internatl. 43, 1–7 (2003).

    Article  CAS  Google Scholar 

  • R. L. Baldwin, Intermediates in protein folding reaction and the mechanism of protein folding, Annu. Rev. Biochem. 44, 453–475 (1975).

    Article  PubMed  CAS  Google Scholar 

  • P. S. Kim and R. L. Baldwin, Specific intermediates in the folding reaction of small proteins and the mechanism of protein foldings, Annu. Rev. Biochem. 51, 459–489 (1982).

    Article  PubMed  CAS  Google Scholar 

  • F. A. O. Marston, The purification of eukariotic polypeptides synthesized in E. coli, Biochemistry 240, 1–12 (1986).

    CAS  Google Scholar 

  • J. F. Kane and D. L. Hartley, Formation of recombinant protein inclusion-bodies in E. coli, Trends Biotechnol. 6, 95–101 (1988).

    Article  CAS  Google Scholar 

  • A. Mitraki and J. King, Protein folding intermediates and inclusion body formation, Biotech. 7, 690–697 (1989).

    Article  CAS  Google Scholar 

  • G. Georgiou and G. A. Bowden, Inclusion body formation and the recovery of aggregated recombinant protein, in ed. A. Prokop, R. K. Bajpas, and C. Ho, Recombinant DNA Technology and Applications (New York: McGraw Hill, 1990), 333–356.

    Google Scholar 

  • E. DeBernardez-Clark and G. Georgiou, Inclusion bodies and recovery of proteins from the aggregated state, ACS Symp. 470, 1–20 (1991).

    Article  CAS  Google Scholar 

  • M. Manning, K. Patel, and R. Borchardt, Stability of protein pharmaceuticals, Pharm. Res. 6, 903–918 (1989).

    Article  PubMed  CAS  Google Scholar 

  • H. R. Costantino, R. Langer, and A. M. Klibanov, Aggregation of lyophilized pharmaceutical protein, recombinant human albumnin: Effect of moisture and stabilization by experiments, Biotech. 13, 493–496 (1995).

    Article  CAS  Google Scholar 

  • K. M. Persson and V. Gekas, Factors influencing aggregation of macromolecules in solution, Proc. Biochem. 29, 89–98 (1994).

    Article  CAS  Google Scholar 

  • A. Aggeli, N. Boden, and S. Zhang, eds. Self-Assembling Peptide Systems in Biology, Medicine and Engineering (Dordrecht, Kluwer Academic Publishers: 2001).

    Google Scholar 

  • T. O. Yeates and J. E. Padilla, Design supramolecular protein assemblies, Curr. Opin. Struct. Biol. 12, 464–470 (2002).

    Article  PubMed  CAS  Google Scholar 

  • C. E. MacPhee and C. M. Dobson, Formation of mixed fibrils demonstrates the generic nature and potential utility of amyloid nanostructures, J. Am. Chem. Soc. 122, 12707–12713 (2000).

    Article  CAS  Google Scholar 

  • J. D. Hartgerink, E. Beniash, and S. I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science 294, 1685–1688 (2001).

    Article  Google Scholar 

  • Z. Megeed, J. Cappello, and H. Ghandehari, Genetically engineered silk-elastin protein polymers for controlled drug delivery, Adv. Drug Del. Rev. 54, 1075–1091 (2002).

    Article  CAS  Google Scholar 

  • T. Scheibel, R. Parthasarathy, G. J. Sawicki, X.-M. Lin, H. Jaeger, and S. L. Lindquist, Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition, Proc. Natl. Acad. Sci. USA 100, 4527–4532 (2003).

    Article  PubMed  CAS  Google Scholar 

  • D. C. Rapaport, Molecular dynamics simulation of polymer chains with excluded volume, J. Phys. A 11, L213–L217 (1978).

    Article  CAS  Google Scholar 

  • D. C. Rapaport, Molecular dynamics study of polymer chains, J. Chem. Phys. 71, 3299–3303 (1979).

    Article  CAS  Google Scholar 

  • A. Bellemans, J. Orbans, and D. V. Belle, Molecular dynamics of rigid and non-rigid necklaces of hard disks, Mol. Phys. 39, 781–782 (1980).

    Article  CAS  Google Scholar 

  • H. C. Andersen, Molecular dynamics simulation at constant temperature and/or pressure, J. Chem. Phys. 72, 2384–2393 (1980).

    Article  CAS  Google Scholar 

  • S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner, A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  • S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, An all atom force field for simulations of proteins and nucleic acids, J. Comp. Chem. 7, 230–252 (1986).

    Article  CAS  Google Scholar 

  • B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. Stales, Swaminathan, and M. Karplus, CHARMM: A program for macromolecular energy minimization and dynamics calculation, J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  • M. Levitt, Molecular dynamics of native protein: I. Computer simulation trajectories, J. Mol. Biol. 168, 595–620 (1983).

    Article  PubMed  CAS  Google Scholar 

  • M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, Potential energy function and parameters for the simulations of the molecular dynamics of proteins and nucleic acids in solution, Comp. Phys. Commun. 91, 215–231 (1995).

    Article  CAS  Google Scholar 

  • P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, and A. T. Hagler, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase trimethoprim, a drug receptor system, Proteins: Struct. Funct. Genet. 4, 31–47 (1988).

    Article  CAS  Google Scholar 

  • F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Sheraga, Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem. 79, 2361–2381 (1975).

    Article  CAS  Google Scholar 

  • G. Nemethy, M. S. Pottle, and H. A. Sheraga, Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, hydrogen bond interaction for the naturally occurring amino acids, J. Phys. Chem. 87, 1883–1887 (1983).

    Article  CAS  Google Scholar 

  • Y. K. Kang, T. K. No, and H. A. Sheraga, Intrinsic torsional potential parameters for conformational analysis of peptides and proteins, J. Phys. Chem. 100, 15588–15598 (1996).

    Article  CAS  Google Scholar 

  • Y. Duan and P. A. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282, 740–744 (1998).

    Article  PubMed  CAS  Google Scholar 

  • H. Taketomi, Y. Ueda, and N. Go, Studies on protein folding, unfolding, and fluctuations by computer simulation. Effect of specific amino-acid sequence represented by specific inter-unit interactions, Int. J. Pept. Protein Res. 7, 445–459 (1975).

    Article  PubMed  CAS  Google Scholar 

  • M. Levitt and A. Warshel, Computer simulation of protein folding, Nature 253, 694–698 (1975).

    Article  PubMed  CAS  Google Scholar 

  • M. Levitt, A simplified representation of protein conformation for rapid simulation of protein folding, J. Mol. Biol. 104, 59–107 (1976).

    Article  PubMed  CAS  Google Scholar 

  • I. D. Kuntz, G. M. Crippen, P. A. Kollman, and D. Kimelman, Calculation of protein tertiary structure, J. Mol. Biol. 106, 983–994 (1976).

    Article  PubMed  CAS  Google Scholar 

  • S. Tanaka and H. A. Scheraga, Medium and long range interaction parameters between amino acids for predicting three dimensional structure of proteins, Macromolecules 9, 945–950 (1976).

    Article  PubMed  CAS  Google Scholar 

  • A. T. Hagler and B. Honig, On the formation of protein tertiary structure on a computer, Proc. Natl. Acad. Sci. USA 75, 554–558 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Y. Ueda, H. Taketomi, and N. Go, Studies on protein folding, unfolding, and fluctuations by computer simulation, Biopolymers 17, 1531–1548 (1978).

    Article  CAS  Google Scholar 

  • N. Go and H. Taketomi, Respective roles of short ranged and long ranged interactions in protein folding, Proc. Natl. Acad. Sci. USA 75, 559–563 (1978).

    Article  PubMed  CAS  Google Scholar 

  • N. Go and H. Taketomi, Studies on protein folding, unfolding and fluctuations by computer simulation, Int. J. Protein Res. 13, 235–252 (1979).

    Article  CAS  Google Scholar 

  • A. Kolinski, J. Skolnick, and R. Yaris, Monte Carlo simulations on an equilibrium globular protein folding model, Proc. Natl. Acad. Sci. USA 83, 7267–7271 (1986).

    Article  PubMed  CAS  Google Scholar 

  • A. Kolinski, J. Skolnick, and R. Yaris, Monte Carlo studies on equilibrium globular protein folding. 1. Homopolymeric lattice models of β-barrel proteins, Biopolymers 26, 937–962 (1987).

    Article  PubMed  CAS  Google Scholar 

  • J. Skolnick, A. Kolinski, and R. Yaris, Monte Carlo simulations of the folding ofgβ-barrel globular proteins, Proc. Natl. Acad. Sci. USA 85, 5057–5061 (1988).

    Article  PubMed  CAS  Google Scholar 

  • J. Skolnick, A. Kolinski, and R. Yaris, Monte Carlo studies on equilibrium globular proteins. II. β-barrel globular models, Biopolymers 28, 1059–1095 (1989).

    Article  PubMed  CAS  Google Scholar 

  • J. Skolnick and A. Kolinski, Computer simulations of globular protein folding and tertiary structure, Annu. Rev. Phys. Chem. 40, 207–235 (1989).

    PubMed  CAS  Google Scholar 

  • J. Skolnick, A. Kolinski, and R. Yaris, Dynamic Monte Carlo study of the folding of a six-stranded Freek key globular protein, Proc. Natl. Acad. Sci. USA 86, 1229–1233 (1989).

    Article  PubMed  CAS  Google Scholar 

  • J. Skolnick and A. Kolinski, Simulations of the folding of a globular protein, Science 250, 1121–1125 (1990).

    Article  PubMed  CAS  Google Scholar 

  • A. Godzik, J. Skolnick, and A. Kolinski, Simulations of the folding pathway of triose phosphate isomerase-type α/β barrel proteins, Proc. Natl. Acad. Sci. USA 89, 2629–2633 (1992).

    Article  PubMed  CAS  Google Scholar 

  • A. Godzik, J. Skolnick, and A. Kolinski, De novo and inverse folding predictions of protein structure and dynamics, J. Comp.-Aided Molec. Des. 7, 397–438 (1993).

    Article  CAS  Google Scholar 

  • A. Kolinski and J. Skolnick, Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme, Proteins: Struct. Funct. Genet. 18, 338–352 (1994).

    Article  CAS  Google Scholar 

  • A. Kolinski and J. Skolnick, Monte Carlo simulations of protein folding. II. Application to protein A, rop and crambin, Proteins: Struct. Funct. Genet. 18, 353–366 (1994).

    Article  CAS  Google Scholar 

  • M. Vieth, M. Kolinski, C. L. Brooks, and J. Skolnick, Prediction of the quaternary structure of coiled coils. Applications to mutants of the GCN4 leucine zipper, J. Mol. Biol. 251, 448–467 (1995).

    Article  PubMed  CAS  Google Scholar 

  • K. F. Lau and K. A. Dill, A lattice statistical mechanics model of the conformational and sequence spaces of proteins, Macromolecules 22, 3986–3997 (1989).

    Article  CAS  Google Scholar 

  • H. S. Chan and K. A. Dill, Intrachain loops in polymers: Effects of excluded volume, J. Chem. Phys. 90, 492–509 (1989).

    Article  CAS  Google Scholar 

  • H. S. Chan and K. A. Dill, Compact polymers, Macromolecules 22, 4559–4573 (1989).

    Article  CAS  Google Scholar 

  • H. S. Chan and K. A. Dill, The effects of internal constraints on the configuration of chain molecules, J. Chem. Phys. 92, 3118–3135 (1990).

    Article  CAS  Google Scholar 

  • H. S. Chan and K. A. Dill, Origins of structure in globular proteins, Proc. Natl. Acad. Sci. USA 87, 6388–6392 (1990).

    Article  PubMed  CAS  Google Scholar 

  • K. F. Lau and K. A. Dill, Theory for mutability in biogenesis, Proc. Natl. Acad. Sci. USA 87, 638–642 (1990).

    Article  PubMed  CAS  Google Scholar 

  • K. A. Dill, Dominant forces in protein folding, Biochemistry 29, 7133–7155 (1990).

    Article  PubMed  CAS  Google Scholar 

  • H. S. Chan and K. A. Dill, Sequence space soup of proteins and copolymers, J. Chem. Phys. 95, 3775–3787 (1991).

    Article  CAS  Google Scholar 

  • H. S. Chan and K. A. Dill, Transition states and folding dynamics of proteins and heteropolymers, J. Chem. Phys. 100, 9238–9257 (1994).

    Article  Google Scholar 

  • R. Miller, C. A. Danko, M. J. Fasolka, A. Balazs, H. S. Chan, and K. A. Dill, Folding kinetics of proteins and copolymers, J. Chem. Phys. 96, 768–780 (1992).

    Article  CAS  Google Scholar 

  • E. I. Shakhnovich and A. M. Gutin, Engineering of stable and fast-folding sequences of model proteins, Proc. Natl. Acad. Sci. USA 90, 7195–7199 (1993).

    Article  PubMed  CAS  Google Scholar 

  • N. D. Socci and J. N. Onuchic, Folding kinetics of proteinlike heteropolymers, J. Chem. Phys. 101, 1519–1528 (1994).

    Article  CAS  Google Scholar 

  • H. Li, Helling, T. R., C., and N. Wingreen, Energency of preferred structures in a simple model of protein folding, Science 273, 666–669 (1996).

    Article  PubMed  CAS  Google Scholar 

  • E. M. O'Toole and A. Z. Panagiotopoulos, Monte carlo simulation of folding transitions of simple model proteins using a chain growth algorithm, J. Chem. Phys. 97, 8644–8652 (1992).

    Article  Google Scholar 

  • E. M. O'Toole and A. Z. Panagiotopoulos, Effect of sequence and intermolecular interactions on the number and nature of low-energy states for simple model proteins, J. Chem. Phys. 98, 3185–3190 (1993).

    Article  Google Scholar 

  • E. M. O'Toole, R. Venkataramani, and A. Z. Panagiotopoulos, Simple lattice model of proteins incorporating directional bonding and structured solvent, AIChE J. 41, 954–958 (1995).

    Article  Google Scholar 

  • E. Shakhnovich, G. G. Farztdinov, G. Gutin, and M. Karplus, Protein folding bottlenecks: A lattice Monte Carlo simulation, Phys. Rev. Lett. 67, 1665–1668 (1991).

    Article  PubMed  CAS  Google Scholar 

  • E. Shakhnovich, Proteins with selected sequences fold into unique native conformation, Phys. Rev. Lett. 72, 3907–3910 (1994).

    Article  PubMed  CAS  Google Scholar 

  • A. Sali, E. Shakhnovich, and M. Karplus, How does a protein fold? Nature 369, 248–251 (1994).

    Article  PubMed  CAS  Google Scholar 

  • A. Sali, E. Shakhnovich, and M. Karplus, Kinetics of protein folding—a lattice model study of the requirements for folding to the native state, J. Mol. Biol. 235, 1614–1636 (1994).

    Article  PubMed  CAS  Google Scholar 

  • D. A. Hinds and M. Levitt, Exploring conformational space with a simple lattice model for protein structure, J. Mol. Biol. 243, 668–682 (1994).

    Article  PubMed  CAS  Google Scholar 

  • C. Wilson and S. Doniach, A computer model to dynamically simulate protein folding: Studies with crambin, Proteins: Struct. Funct. Genet. 6, 193–209 (1989).

    Article  CAS  Google Scholar 

  • J. D. Honeycutt and D. Thirumalai, Metastability of the folded states of globular proteins, Proc. Natl. Acad. Sci. USA 87, 3526–3529 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Z. Guo and D. Thirumalai, Kinetics of protein folding: Nucleation mechanism, time scales and pathways, Biopolymers 36, 83–102 (1995).

    Article  CAS  Google Scholar 

  • T. Veitshans, D. Klimov, and D. Thirumalai, Protein folding kinetics: Timescales, pathways and energy landscapes in terms of sequence-dependent properties, Folding Des. 2, 1–22 (1996).

    Article  Google Scholar 

  • Z. Guo and D. Thirumalai, Kinetics and thermodynamics of folding of a de novo designed four-helix bundle, J. Mol. Biol, 263, 323–343 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Z. Guo and D. Thirumalai, The nucleation-collapse mechanism in protein folding: Evidence for the non-uniqueness of the folding nucleus, Folding Des. 2, 377–391 (1997).

    Article  CAS  Google Scholar 

  • D. K. Klimov, M. R. Betancourt, and D. Thirumalai, Virtual atom representation of hydrogen bonds in minimal off-lattice models of alpha-helices: Effect on stability, cooperativity, and kinetics, Folding Des. 3, 481–496 (1998).

    Article  CAS  Google Scholar 

  • Y. Zhou and M. Karplus, Folding thermodynamics of a model three-helix-bundle protein, Proc. Natl. Acad. Sci. USA 94, 14429–14432 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Y. Zhou and M. Karplus, Folding of a model three-helix bundle protein: A thermodynamic and kinetic analysis, J. Mol. Biol. 293, 917–951 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Y. Zhou and M. Karplus, Interpreting the folding kinetics of helical proteins, Nature 401, 400–403 (1999).

    PubMed  CAS  Google Scholar 

  • Z. Guo and C. L. Brooks, Thermodynamics of protein folding: A statistical mechanical study of a small all-beta protein, Biopolymers 42, 745–757 (1997).

    Article  PubMed  CAS  Google Scholar 

  • J. E. Shea, Y. D. Nochmovitz, Z. Guo, and C. L. Brooks, Exploring the space of protein folding hamiltonians: The balance of forces in a minimalist beta-barrel protein, J. Chem. Phys. 109, 2895–2903 (1998).

    Article  CAS  Google Scholar 

  • H. Nymeyer, A. E. Garcia, and J. N. Onuchic, Folding funnels and frustration in off-lattice minimalist protein landscapes, Proc. Natl. Acad. Sci. USA 95, 5921–5928 (1998).

    Article  PubMed  CAS  Google Scholar 

  • C. Clementi, H. Nymeyer, and J. N. Onuchich, Topological and energetic factors: What determines the structural details of the transition state ensemble and ‘en-route’ intermediates for protein folding? An investigation for small globular proteins, J. Mol. Biol. 298, 937–953 (2000).

    Article  PubMed  CAS  Google Scholar 

  • N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, and E. I. Shakhnovich, Discrete molecular dynamics studies of the folding of a protein-like model, Folding Des. 3, 577–587 (1998).

    Article  CAS  Google Scholar 

  • G. F. Berriz and E. I. Shakhnovich, Characterization of the folding kinetics of a three-helix bundle protein via a minimalist Langevin model, J. Mol. Biol. 310, 673–685 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Z. Miyazawa and R. L. Jernigan, Equilibrium folding and unfolding pathways for a model protein, Biopolymers 21, 1333–1363 (1982).

    Article  PubMed  CAS  Google Scholar 

  • A. Rey and J. Skolnick, Comparison of lattice Monte Carlo dynamics and Brownian dynamics folding pathways of alpha-helical hairpins, Chem. Phys. 158, 199–219 (1991).

    Article  CAS  Google Scholar 

  • F. Ding, N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, and E. Shakhnovich, Direct molecular dynamics observation of protein folding transition state ensemble, Biophys. J. 83, 3525–3532 (2002).

    PubMed  CAS  Google Scholar 

  • F. Ding, N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, and E. Shakhnovich, Molecular dynamics simulation of the sh3 domain aggregation suggests a generic amyloidogenesis mechanism, J. Mol. Biol. 324, 851–857 (2002).

    Article  PubMed  CAS  Google Scholar 

  • A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, Calculation of protein backbone geometry from α–carbon coordinates based on peptide-group dipole alignment, Prot. Sci. 2, 1697–1714 (1993).

    CAS  Google Scholar 

  • A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, Prediction of protein conformation on the basis of a search for compact structures: Test on avian pancreatic polypeptide, Prot. Sci. 2, 1715–1731 (1993).

    CAS  Google Scholar 

  • A. Liwo, S. Oldziej, R. Kazmierkiewicz, M. Groth, and C. Czaplewski, Design of a knowledge-based force field for off-lattice simulations of protein structure, Acta Biochim. Polon. 44, 527–547 (1997).

    PubMed  CAS  Google Scholar 

  • A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, A united-residue force field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data, J. Comp. Chem. 18, 849–873 (1997).

    Article  CAS  Google Scholar 

  • A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. Oldziej, and H. A. Scheraga, A united-residue force field for off-lattice protein-structure simulations. II. Parameterization of short-range interactions and determination of weights of energy terms by z-score optimization, J. Comp. Chem. 18, 874–887 (1997).

    Article  CAS  Google Scholar 

  • A. Liwo, R. Kazmierkiewicz, C. Czaplewski, M. Groth, S. Oldziej, R. J. Wawak, S. Rackovsky, M. R. Pincus, and H. A. Scheraga, United-residue force field for off-lattice protein-structure simulations: III. Origins of backbone hydrogen-bonding cooperativity in united-residue potentials, J. Comp. Chem. 19, 259–276 (1998).

    Article  CAS  Google Scholar 

  • C. Hardin, Z. Luthey-Schulten, and P. G. Wolynes, Backbone dynamics, fast folding, and secondary structure formation in helical proteins and peptides, Proteins: Struct. Funct. Genet. 34, 281–294 (1999).

    Article  CAS  Google Scholar 

  • C. Hardin, M. P. Eastwood, M. Prentiss, Z. Luthey-Schulten, and P. G. Wolynes, Folding funnels: The key to robust protein structure prediction, J. Comp. Chem. 23, 138–146 (2002).

    Article  CAS  Google Scholar 

  • A. Wallqvist and M. Ullner, A simplified amino acid potential for use in structure predictions of proteins, Proteins: Struct. Funct. Genet. 18, 267–280 (1994).

    Article  CAS  Google Scholar 

  • S. Takada, Z. Luthey-Schulten, and P. G. Wolynes, Folding dynamics with non-additive forces: A simulation study of a designed helical protein and a random heteropolymer, J. Chem. Phys. 110, 11616–11629 (1999).

    Article  CAS  Google Scholar 

  • S. Sun, N. Luo, R. L. Ornstein, and R. Rein, Protein structure prediction based on statistical potential, Biophys. J. 62, 104–106 (1992).

    PubMed  CAS  Google Scholar 

  • S. Sun, Reduced representation model of protein structure prediction: Statistical potential and algorithms, Prot. Sci. 2, 762–785 (1993).

    CAS  Google Scholar 

  • S. Sun, P. D. Thomas, and K. A. Dill, A simple protein folding algorithm using a binary code and secondary structure constraints, Prot. Eng. 8, 769–778 (1995).

    Article  CAS  Google Scholar 

  • S. Sun, Reduced representation approach to protein tertiary structure prediction: Statistical potential and simulated annealing, J. Theor. Biol. 172, 13–32 (1995).

    Article  PubMed  CAS  Google Scholar 

  • A. Irback, F. Sjunnesson, and S. Wallin, Three-helix-bundle protein in a Ramachandran model, Proc. Natl. Acad. Sci. USA 97, 13614–13618 (2000).

    Article  PubMed  CAS  Google Scholar 

  • A. Irback, F. Sjunnesson, and S. Wallin, Hydrogen bonds, hydrophobicity forces and the character of the collapse transition, J. Biol. Phys. 27, 169–179 (2001).

    Article  CAS  Google Scholar 

  • G. Favrin, A. Irback, and S. Wallin, Folding of a small helical protein using hydrogen bonds and hydrophobicity forces, Proteins: Struct. Funct. Genet., 47, 99–105 (2002).

    Article  CAS  Google Scholar 

  • P. Derreumaux, From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential, J. Chem. Phys. 111, 2301–2310 (1999).

    Article  CAS  Google Scholar 

  • F. Forcellino and P. Derreumaux, Computer simulations aimed at structure prediction of supersecondary motifs in proteins, Proteins: Struct. Funct. Genet. 45, 159–166 (2001).

    Article  CAS  Google Scholar 

  • K. K. Koretke, Z. Luthey-Schulten, and P. G. Wolynes, Self-consistently optimized energy functions for protein structure prediction by molecular dynamics, Proc. Natl. Acad. Sci. USA 95, 2932–2937 (1998).

    Article  PubMed  CAS  Google Scholar 

  • A. Kolinski, M. Milik, and J. Skolnick, Static and dynamic properties of a new lattice model of polypeptide chains, J. Chem. Phys. 94, 3978–3985 (1991).

    Article  CAS  Google Scholar 

  • A. Kolinski and J. Skolnick, Discretized model of proteins. I. Monte Carlo study of cooperativity in homopolymers, J. Chem. Phys. 97, 9412–9426 (1992).

    Article  CAS  Google Scholar 

  • A. Kolinski, M. Milik, J. Rycombel, and J. Skolnick, A reduced model of short range interactions in polypeptide chains, J. Chem. Phys. 103, 4312–4323 (1995).

    Article  CAS  Google Scholar 

  • J. Skolnick, A. Kolinski, and A. R. Ortiz, Monsster: A method for folding globular proteins with a small number of distance restraints, J. Mol. Biol. 265, 217–241 (1997).

    Article  PubMed  CAS  Google Scholar 

  • A. Kolinski and J. Skolnick, Assembly of protein structure from sparse experimental data: An efficient Monte Carlo model, Proteins: Struct. Funct. Genet. 32, 475–494 (1998).

    Article  CAS  Google Scholar 

  • A. Kolinski, L. Jaroszewski, P. Rotkiewicz, and J. Skolnick, An efficient Monte Carlo model of protein chains. Modeling the short range correlations between side group centers of mass, J. Phys. Chem. B 102, 4628–4637 (1998).

    Article  CAS  Google Scholar 

  • J. Skolnick, A. Kolinski, and A. R. Ortiz, Reduced protein models and their application to the protein folding problem, J. Biomol. Struct. Dynam. 16, 381–396 (1998).

    CAS  Google Scholar 

  • J. Skolnick, A. Kolinski, and A. R. Ortiz, Derivation of protein-specific pair potentials based on weak sequence fragment similarity, Proteins: Struct. Funct. Genet. 38, 3–16 (2000).

    Article  CAS  Google Scholar 

  • H. Lu and J. Skolnick, A distance-dependent atomic knowledge-based potential for improved protein structure selection, Proteins: Struct. Funct. Genet. 44, 223–232 (2001).

    Article  CAS  Google Scholar 

  • D. Kihara, H. Lu, A. Kolinski, and J. Skolnick, Touchstone: An ab initio protein structure prediction method that uses threading-based tertiary restraints, Proc. Natl. Acad. Sci. USA 98, 10125–10130 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Y. Zhang, D. Kihara, and J. Skolnick, Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding, Proteins: Struct. Funct. Genet. 48, 192–201 (2002).

    Article  CAS  Google Scholar 

  • A. Sikorski, A. Kolinski, and J. Skolnick, Computer simulations of protein folding with a small number of distance restraints, Acta Biochim. Polon. 49, 683–692 (2002).

    PubMed  CAS  Google Scholar 

  • G. Giugliarelli, C. Micheletti, J. R. Banavar, and A. Maritan, Compactness, aggregation, and prionlike behavior of protein: A lattice model study, J. Chem. Phys. 113, 5072–5077 (2000).

    Article  CAS  Google Scholar 

  • P. M. Harrison, H. S. Chan, S. B. Prusiner, and F. E. Cohen, Thermodynamics of model prions and its implications for the problem of prion protein folding, J. Mol. Biol. 286, 593–606 (1999).

    Article  PubMed  CAS  Google Scholar 

  • P. M. Harrison, H. S. Chan, S. B. Prusiner, and F. E. Cohen, Conformational propagation with prion-like characteristics in a simple model of protein folding, Prot. Sci. 10, 819–835 (2001).

    Article  CAS  Google Scholar 

  • S. Y. Patro and T. M. Przybycien, Simulations of kinetically irreversible protein aggregate structure, Biophys. J. 66, 1274–1289 (1994).

    PubMed  CAS  Google Scholar 

  • S. Y. Patro and T. M. Przybycien, Simulations of reversible protein aggregate and crystal structure, Biophys. J. 70, 2888–2902 (1996).

    PubMed  CAS  Google Scholar 

  • R. A. Broglia, G. Tiana, P. S., H. E. Roman, and E. Vigezzi, Folding and aggregation of designed proteins, Proc. Natl. Acad. Sci. USA 95, 12930–12933 (1998).

    Article  PubMed  CAS  Google Scholar 

  • S. Miyazawa and R. Jernigan, Estimation of effective interresidue contact energies from protein crystal structures: Quasichemical approximation, Macromolecules 18, 534–552 (1985).

    Article  CAS  Google Scholar 

  • S. Istrail, R. Schwartz, and J. King, Lattice simulation of aggregation funnels for protein folding, J. Comp. Biol. 6, 143–162 (1999).

    CAS  Google Scholar 

  • D. Bratko and H. W. Blanch, Competition between protein folding and aggregation: A three-dimensional lattice-model simulation, J. Chem. Phys. 114, 561–569 (2001).

    Article  CAS  Google Scholar 

  • R. I. Dima and D. Thirumalai, Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics, Prot. Sci. 11, 1036–1049 (2002).

    Article  CAS  Google Scholar 

  • K. Leonhard, J. M. Prausnitz, and C. J. Radke, Solvent-amino acid interaction energies in 3-d-lattice mc simulations of model proteins. Aggregation thermodynamics and kinetics, Phys. Chem. Chem. Phys. 5, 5291–5299 (2003).

    Article  CAS  Google Scholar 

  • N. Combe and D. Frenkel, Phase behavior of a lattice protein model, J. Chem. Phys. 118, 9015–9022 (2003).

    Article  CAS  Google Scholar 

  • L. Toma and S. Toma, A lattice study of multimolecular ensembles of protein models. Effect of sequence on the final state: Globules, aggregates, dimers, fibrillae, Biomacromolecules 1, 232–238 (2000).

    Article  PubMed  CAS  Google Scholar 

  • P. Gupta, A. Voegler, and C. K. Hall, Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model, Prot. Sci. 7, 2642–2652 (1998).

    CAS  Google Scholar 

  • H. D. Nguyen and C. K. Hall, Effect of rate of chemical or thermal renaturation on refolding and aggregation of a single lattice protein, Biotechnol. Bioeng. 80, 823–834 (2002).

    Article  PubMed  CAS  Google Scholar 

  • P. Gupta and C. K. Hall, Computer-simulation of protein refolding pathway and intermediates, AIChE J. 41, 985–990 (1995).

    Article  CAS  Google Scholar 

  • P. Gupta and C. K. Hall, Effect of solvent conditions upon refolding pathways and intermediates for a simple lattice protein, Biopolymers 42, 399–409 (1997).

    Article  CAS  Google Scholar 

  • J. London, C. Skrzynia, and M. E. Goldberg, Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea, Eur. J. Biochem. 47, 409–415 (1974).

    Article  PubMed  CAS  Google Scholar 

  • S. Tandon and P. Horowitz, Detergent-assisted refolding of guanidinium chloride-denatured rhodanese, J. Biol. Chem. 261, 15615–15618 (1986).

    PubMed  CAS  Google Scholar 

  • D. Brems, Solubility of different folding conformers of bovine growth hormone, Biochemistry 4541–4546 (1988).

    Google Scholar 

  • B. Fischer, B. Perry, I. Summer, and P. Goodenough, A novel sequential procedure to enhance the renaturation of recombinant protein from E. coli inclusion bodies, Protein Eng. 5, 593–596 (1992).

    Article  PubMed  CAS  Google Scholar 

  • S. Katoh, Y. Sezai, T. Yamaguchi, Y. Katoh, H. Yagi, and D. Nohara, Refolding of enzymes in a fed-batch operation, Proc. Biochem. 35, 297–300 (1999).

    Article  CAS  Google Scholar 

  • H. Yoshii, T. Furuta, T. Yonehara, D. Ito, Y. Y. Linko, and P. Linko, Refolding of denatured/reduced lysozyme at high concentration with diafiltration, Biosci. Biotechnol. Biochem. 64, 1159–1165 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Y. Maeda, H. Koga, H. Yamada, T. Ueda, and T. Imoto, Effective renaturation of reduced lysozyme by gentle removal of urea, Prot. Eng. 8, 201–205 (1995).

    Article  CAS  Google Scholar 

  • E. DeBernardez-Clark and D. Hevehan, Oxidative renaturation of lysozyme at high concentrations, Biotech. Bioeng. 54, 221–230 (1997).

    Article  Google Scholar 

  • H. Jang, C. K. Hall, and Y. Zhou, Folding thermodynamics of model four-strand antiparallel β-sheet proteins, Biophys. J. 82, 646–659 (2002).

    Article  PubMed  CAS  Google Scholar 

  • H. Jang, C. K. Hall, and Y. Zhou, Protein folding pathways and kinetics: Molecular dynamics simulations of β-strand motifs, Biophys. J. 83, 819–835 (2002).

    Article  PubMed  CAS  Google Scholar 

  • H. Jang, C. K. Hall, and Y. Zhou, Thermodynamics and stability of β-sheet complex: Molecular dynamics simulations on simplified off-lattice protein models, Prot. Sci. 13, 40–53 (2004).

    Article  CAS  Google Scholar 

  • H. Jang, C. K. Hall, and Y. Zhou, Assembly and kinetic folding pathways of a tetrameric β-sheet complex: Molecular dynamics simulations on simplified off-lattice protein models, Biophys. J. 86, 31–49 (2004).

    PubMed  CAS  Google Scholar 

  • L. Li, T. A. Darden, L. Bartolotti, D. Kominos, and L. G. Pedersen, An atomic model for the pleated beta-sheet structure of abeta amyloid protofilaments, Biophys. J. 76, 2871–2878 (1999).

    PubMed  CAS  Google Scholar 

  • M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, Common core structure of amyloid fibrils by synchotron x-ray diffraction, J. Mol. Biol. 273, 729–739 (1997).

    Article  PubMed  CAS  Google Scholar 

  • W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  CAS  Google Scholar 

  • A. R. George and D. R. Howlett, Computationally derived structural models of the beta-amyloid found in Alzheimer's disease plaques and the interaction with possible aggregation inhibitors, Biopolymers 50, 733–741 (1999).

    Article  PubMed  CAS  Google Scholar 

  • B. Ma and R. Nussinov, Molecular dynamics simulations of alanine rich β-sheet oligomers: Insight into amyloid formation, Prot. Sci. 11, 2335–2350 (2002).

    Article  CAS  Google Scholar 

  • B. Ma and R. Nussinov, Stabilities and conformations of Alzheimer's β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, and Aβ10-35):Sequence effects, Proc. Natl. Acad. Sci USA 99, 14126–14131 (2002).

    Article  PubMed  CAS  Google Scholar 

  • D. Zanuy, B. Ma, and R. Nussinov, Short peptide amyloid organization: Stabilities and conformations of the islet amyloid peptide NFGAIL, Biophys. J. 84, 1884–1894 (2003).

    Article  PubMed  CAS  Google Scholar 

  • D. Zanuy and R. Nussinov, The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22–27 and 22–29, J. Mol. Biol. 329, 565–584 (2003).

    Article  PubMed  CAS  Google Scholar 

  • A. Lakdawala, D. Morgan, D. Liotta, D. Lynn, and J. Snyder, Dynamics and fluidity of amyloid fibrils: A model of fibrous protein aggregates, J. Am. Chem. Soc., 124, 15150–15151 (2002).

    Article  PubMed  CAS  Google Scholar 

  • D. M. Morgan, D. G. Lynn, A. S. Lakdawala, J. P. Snyder, and D. C. Liotta, Amyloid structure: Models and theoretical considerations in fibrous aggregates, J. Chin. Chem. Soc. 49, 459–466 (2002).

    CAS  Google Scholar 

  • W. Hwang, D. M. Marini, R. D. Kamm, and S. Zhang, Supramolecular structure of helical ribbons self-assembled from a β-sheet peptide, J. Chem. Phys. 118, 389–397 (2003).

    Article  CAS  Google Scholar 

  • K. Kuwata, T. Matumoto, H. Cheng, K. Nagayama, T. James, and H. Roder, NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126, Proc. Natl. Acad. Sci. USA 100, 14790–14795 (2003).

    Article  PubMed  CAS  Google Scholar 

  • J. Gsponer, U. Haberthur, and A. Caflisch, The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion sup35, Proc. Natl. Acad. Sci. USA 100, 5154–5159 (2003).

    Article  PubMed  CAS  Google Scholar 

  • P. P. Mager, Molecular simulation of the amyloid β-peptide Aβ(1–42) of Alzheimer's disease, Mol. Sim. 20, 201–222 (1998).

    Article  CAS  Google Scholar 

  • A. Fernandez and M. D. L. Boland, Solvent environment conducive to protein aggregation, FEBS Lett. 529, 298–302 (2002).

    Article  PubMed  CAS  Google Scholar 

  • D. K. Klimov and D. Thirumalai, Dissecting the assembly of Aβ(16–22) amyloid peptides into antiparallel beta sheets, Structure 11, 295–307 (2003).

    Article  PubMed  CAS  Google Scholar 

  • A. V. Smith and C. K. Hall, A-helix formation: Discontinuous molecular dynamics on an intermediate resolution model, Protein: Struct. Funct. Genet. 44, 344–360 (2001).

    Article  CAS  Google Scholar 

  • A. V. Smith and C. K. Hall, Assembly of a tetrameric α-helical bundle: Computer simulations on an intermediate-resolution protein model, Proteins: Struct. Funct. Genet. 44, 376–391 (2001).

    Article  CAS  Google Scholar 

  • S. P. Ho and W. F. DeGrado, Design of a 4-helix bundle protein: Synthesis of peptides which self-associate into a helical protein, J. Am. Chem. Soc. 109, 6751–6758 (1987).

    Article  CAS  Google Scholar 

  • L. Regan and W. F. DeGrado, Characterization of a helical protein designed from first principles, Science 241, 976–978 (1988).

    Article  PubMed  CAS  Google Scholar 

  • D. P. Raleigh, S. F. Betz, and W. F. DeGrado, A de novo designed protein mimics the native state of natural proteins, J. Am. Chem. Soc. 117, 7558–7559 (1995).

    Article  CAS  Google Scholar 

  • S. F. Betz, J. W. Bryson, and W. F. DeGrado, Native-like and structurally characterized designed α-helices bundles, Curr. Opin. Struct. Biol. 5, 457–463 (1995).

    Article  PubMed  CAS  Google Scholar 

  • A. V. Smith and C. K. Hall, Protein refolding versus aggregation: Computer simulations on an intermediate resolution model, J. Mol. Biol. 312, 187–202 (2001).

    Article  PubMed  CAS  Google Scholar 

  • B. Forood, E. Perez-Paya, R. A. Houghten, and S. E. Blondelle, Structural characterization and 5′-mononucleotide binding of polyalanine β-sheet complexes, J. Mol. Recognit. 9, 488–493 (1996).

    Article  PubMed  Google Scholar 

  • H. D. Nguyen, A. J. Marchut, and C. K. Hall, Effects of the solvent on the conformational transition of polyalanines, Protein Sci. 13, 2909–2924 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Y. Sugita and Y. Okamoto, Replica exchange molecular dynamics method for protein folding, Chem. Phys. Letts. 314, 141–151 (1999).

    Article  CAS  Google Scholar 

  • Y. Zhou, C. K. Hall, J. M. Wichert, and M. Karplus, Equilibrium thermodynamics of homopolymers and clusters: Molecular dynamics and monte carlo simulations of systems with square-well interactions, J. Chem. Phys. 107, 10691–10708 (1997).

    Article  CAS  Google Scholar 

  • A. M. Ferrenberg and R. H. Swendsen, Optimized Monte Carlo data analysis, Phys. Rev. Lett. 63, 1195–1198 (1989).

    Article  PubMed  CAS  Google Scholar 

  • R. Ingwall, H. Scheraga, N. Lotan, A. Berger, and E. Katchalski, Conformational studies of poly-L-alanine in water, Biopolymers 6, 331–368 (1968).

    Article  PubMed  CAS  Google Scholar 

  • K. Platzer, V. Ananthanarayanan, R. Andreatta, and H. Scheraga, Helix-coil stability constants for the naturally occurring amino acids in water. IV. Alanine parameters from random poly(hydroxypropyl-glutamine-co-L-alanine), Macromolecules 5, 177–187 (1972).

    Article  CAS  Google Scholar 

  • A. Shoji, T. Ozaki, T. Fujito, K. Deguchi, S. Ando, and I. Ando, 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled L-alanine residue by 15N NMR. 2. Secondary structure reflected in alpha2-2, J. Am. Chem. Soc. 112, 4693–4697 (1990).

    Article  CAS  Google Scholar 

  • H. Kimura, T. Ozaki, H. Sugisawa, K. Deguchi, and A. Shoji, Conformational study of solid polypeptides by 1h combined rotation and multiple pulse spectroscopy nmr. 2. Amide proton chemical shift, Macromolecules 31, 7398–7403 (1998).

    Article  CAS  Google Scholar 

  • D. Lee and A. Ramamoorthy, Determination of the solid-state conformations of polyalanine using magic-angle spinning NMR spectroscopy, J. Phys. Chem. B 103, 271–275 (1999).

    Article  CAS  Google Scholar 

  • S. E. Blondelle, B. Forood, R. A. Houghten, and E. Perez-Paya, Polyalanine-based peptides as models for self-associated β-pleated-sheet complexes, Biochemistry 36, 8393–8400 (1997).

    Article  PubMed  CAS  Google Scholar 

  • R. Warrass, J. Wieruszeski, C. Boutillon, and G. Lippens, High-resolution magic angle spinning NMR study of resin-bound polyalanine peptides, J. Am. Chem. Soc. 112, 1789–1795 (2000).

    Article  CAS  Google Scholar 

  • Y. Levy, J. Jortner, and O. M. Becker, Solvent effects on the energy landscapes and folding kinetics of polyalanine, Proc. Natl. Acad. Sci. USA 98, 2188–2193 (2001).

    Article  PubMed  CAS  Google Scholar 

  • F. Ding, J. M. Borreguero, S. V. Buldyrey, H. E. Stanley, and N. V. Dokholyan, Mechanism for the alpha-helix to beta-hairpin transition, Proteins: Struct. Funct. Genet. 53, 220–228 (2003).

    Article  CAS  Google Scholar 

  • H. D. Nguyen and C. K. Hall, Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides, Proc. Natl. Acad. Sci. USA 101, 16174–16179 (2004).

    Article  CAS  Google Scholar 

  • T. L. Benzinger, D. M. Gregory, T. S. Burkoth, H. Miller-Auer, D. G. Lynn, R. E. Botto, and S. C. Meredith, Propagating structure of Alzheimer's beta-amyloid(10–35) is parallel beta-sheet with residues in exact register, Proc. Natl. Acad. Sci. USA 95, 13407–13412 (1998).

    Article  PubMed  CAS  Google Scholar 

  • O. N. Antzutkin, J. J. Balbach, R. D. Leapman, N. W. Rizzo, J. Reed, and R. Tycko, Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils, Proc. Natl. Acad. Sci. USA 97, 13045–13050 (2000).

    Article  PubMed  CAS  Google Scholar 

  • J. Balbach, A. Petkova, N. Oyler, O. Antzutkin, D. Gordon, S. Meredith, and R. Tycko, Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance, Biophys. J. 83, 1205–1216 (2002).

    Article  PubMed  CAS  Google Scholar 

  • J. Harper, C. Lieber, and P. Lansbury Jr., Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein, Chem. Biol. 4, 951–959 (1997).

    Article  PubMed  CAS  Google Scholar 

  • J. Jarvis, D. Craik, and M. Wilce, X-ray diffraction studies of fibrils formed from peptide fragments of transthyretin, Biochem. Biophys. Res. Commun. 192, 991–998 (1993).

    Article  PubMed  CAS  Google Scholar 

  • L. Serpell, M. Sunde, M. Benson, G. Tennent, M. Pepys, and P. Fraser, The protofilament substructure of amyloid fibrils, J. Mol. Biol. 300, 1033–1039 (2000).

    Article  PubMed  CAS  Google Scholar 

  • H. D. Nguyen and C. K. Hall, Kinetics of fibril formation by polyalanines, J. Biol. Chem. (published online Dec 10, 2004).

    Google Scholar 

  • Y. Uratani, S. Asakura, and K. Imahori, A circular dichroism study of Salmonella flagellin: Evidence for conformational change on polymerization, J. Mol. Biol. 67, 85–98 (1972).

    Article  PubMed  CAS  Google Scholar 

  • G. H. Beaven, W. B. Gratzer, and H. G. Davies, Formation and structure of gels and fibrils from glucagon, Eur. J. Biochem. 11, 37–42 (1969).

    Article  PubMed  CAS  Google Scholar 

  • J. Hofrichter, P. D. Ross, and W. A. Eaton, Kinetics and mechanism of deoxyhemoglobin s gelation: A new approach to understanding sickle cell disease, Proc. Natl. Acad. Sci. USA 71, 4864–4868 (1974).

    Article  PubMed  CAS  Google Scholar 

  • S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie, Science 216, 136–144 (1982).

    Article  PubMed  CAS  Google Scholar 

  • J. S. Griffith, Self-replication and scrapie, Nature 215, 1043–1044 (1967).

    Article  PubMed  CAS  Google Scholar 

  • T. R. Serio, A. G. Cashikar, A. S. Kowal, G. J. Sawicki, J. J. Moslehi, L. Serpell, M. F. Arnsdorf, and S. L. Lindquist, Nucleated conformational conversion and the replication of conformational information by a prion determinant, Science 289, 1317–1321 (2000).

    Article  PubMed  CAS  Google Scholar 

  • J. T. Jarrett and P. T. S. Lansbury, Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  PubMed  CAS  Google Scholar 

  • D. Wilkins, C. Dobson, and M. Gross, Biophysical studies of the development of amyloid fibrils from a peptide fragment of cold-shock protein B, Eur. J. Biochem. 267, 2609–2616 (2000).

    Article  PubMed  CAS  Google Scholar 

  • J. Green, C. Goldsbury, J. Kistler, G. Cooper, and U. Aebi, Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation, J. Biol. Chem. 279, 12206–12212 (2004).

    Article  PubMed  CAS  Google Scholar 

  • H. D. Nguyen and C. K. Hall, Phase diagrams describing fibrillization by polyalanine peptides, Biophys. J. 87, 4122–4134 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hall, C.K., Nguyen, H.D., Marchut, A.J., Wagoner, V. (2006). Simulations of Protein Aggregation. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_3

Download citation

Publish with us

Policies and ethics