Skip to main content

Folding and Misfolding as a Function of Polypeptide Chain Elongation

Conformational Trends and Implications for Intracellular Events

  • Chapter

Abstract

Protein folding in the intracellular environment is dictated by several driving interactions whose marvelous interplay is essential for maintaining the correct functioning of healthy living organisms. Physical forces directing polypeptide chains toward specific conformational ensembles start acting during ribosomeassisted biosynthesis, due to slow translation timescales.

Keywords

  • Chain Length
  • Polypeptide Chain
  • Chain Elongation
  • Secondary Structure Content
  • Short Chain Length

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-36063-8_10
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-36063-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. K. Myers and T. G. Oas, Mechanisms of fast protein folding, Annu. Rev. Biochem. 71, 783–815 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • W. A. Eaton, The physics of protein folding, Phys. World 12, 39–44 (1999).

    Google Scholar 

  • S. E. Radford, Protein folding: progress made and promises ahead, Trends Biochem. Sci. 25(12), 611–618 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • H. M. Dintzis, Assembly of the peptide chains of hemoglobin, P. Natl. Acad. Sci. USA 47(3), 247–261 (1961).

    CAS  CrossRef  Google Scholar 

  • R. E. Canfield and C. B. Anfinsen, Nonuniform labeling of egg white lysozyme, Biochemistry 2(5), 1073–1078 (1963).

    PubMed  CAS  CrossRef  Google Scholar 

  • D. C. Phillips, The hen egg-white lysozyme molecule, Proc. Natl. Acad. Sci. USA 57(3), 483–495 (1967).

    CrossRef  Google Scholar 

  • H. Taniuchi and C. B. Anfinsen, An experimental approach to the study of the folding of staphylococcal nuclease, J. Biol. Chem. 244(14), 3864–3875 (1969).

    PubMed  CAS  Google Scholar 

  • A. N. Schechter, R. F. Chen, and C. B. Anfinsen, Kinetics of folding of staphylococcal nuclease, Science 167(919), 886–887 (1970).

    PubMed  CAS  CrossRef  Google Scholar 

  • H. F. Epstein, A. N. Schechter, R. F. Chen, and C. B. Anfinsen, Folding of staphylococcal nuclease: kinetic studies of two processes in acid denaturation, J. Mol. Biol. 60(3), 499–508 (1971).

    PubMed  CAS  CrossRef  Google Scholar 

  • T. R. Hynes and R. O. Fox, The crystal structure of staphylococcal nuclease refined at 1.7 angstroms resolution, Proteins 10, 92–105 (1991).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. H. Carra, E. A. Anderson, and P. L. Privalov, Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants, Biochemistry 33(10842–10850) (1994).

    Google Scholar 

  • M. D. Jacobs and R. O. Fox, Staphylococcal nuclease folding intermediate characterized by hydrogen exchange and NMR spectroscopy, Proc. Natl. Acad. Sci. USA 91, 449–453 (1994).

    PubMed  CAS  CrossRef  Google Scholar 

  • W. F. Walkenhorst, S. M. Green, and H. Roder, Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease, Biochemistry 36, 5795–5808 (1997).

    PubMed  CAS  CrossRef  Google Scholar 

  • D. Shortle and A. K. Meeker, Residual structure in large fragments of staphylococcal nuclease: Effects of amino acid substitution, Biochemistry 28, 936–944 (1989).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. M. Flanagan, M. Kataoka, D. Shortle, and D. M. Engelman, Truncated staphylococcal nuclease is compact but disordered, Proc. Natl. Acad. Sci. USA 89, 748–752 (1992).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. Hirano, K. Mihara, Y. Yamazaki, H. Kamikubo, Y. Imamoto, and M. Kataoka, Role of C-terminal region of staphylococcal nuclease for foldability, stability, and activity, Proteins 49, 255–265 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • Y. Feng, L. Dongsheng, and J. Wang, Native-like partially folded conformations and folding process revealed in the N-terminal large fragments of staphylococcal nuclease: A study by NMR spectroscopy, J. Mol. Biol. 330, 821–837 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • P. A. Evans, R. A. Kautz, R. O. Fox, and C. M. Dobson, A magnetization-transfer nuclear magnetic resonance study of the folding of staphylococcal nuclease, Biochemistry 28, 362–370 (1989).

    PubMed  CAS  CrossRef  Google Scholar 

  • G. Jing, B. Zhou, L. Xie, L. Li-jun, and Z. Liu, Comparative studies of the conformation of the N-terminal fragments of staphylococcal nuclease R in solution, Biochim. Biophys. Acta 1250, 189–196 (1995).

    PubMed  Google Scholar 

  • B. Zhou, K. Tian, and G. Jing, An in vitro peptide folding model suggests the presence of the molten globule state during nascent peptide folding, Protein Eng. 13(1), 35–39 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • K. Tian, B. Zhou, F. Geng, and G. Jing, Folding of SNase R begins early during synthesis: the conformational feature of two short N-terminal fragments of staphylococcal nuclease R, Int. J. Biol. Macromol. 23, 199–206 (1998).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. Bycroft, A. Matouschek, J. T. Kellis, L. Serrano, and A. R. Fersht, Detection and characterization of a folding intermediate in barnase by NMR, Nature 346, 488–490 (1990).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. L. Neira and A. R. Fersht, Exploring the folding funnel of a polypeptide chain by biophysical studies on protein fragments, J. Mol. Biol. 285, 1309–1333 (1999).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. Sancho, J. L. Neira, and A. R. Fersht, An N-terminal fragment of barnase has residual helical structure similar to that in a refolding intermediate, J. Mol. Biol. 224, 749–758 (1992).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. Ludvigsen, H. Shen, M. Kjaer, J. C. Madsen, and F. M. Pouslen, Refinement of three-dimensional solution structure of barley serine protease inhibitor 2 and comparison with the structures in crystals, J. Mol. Biol. 222, 621–635 (1991).

    PubMed  CAS  CrossRef  Google Scholar 

  • C. A. McPhalen and M. N. James, Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds, Biochemistry 26(1), 261–269 (1987).

    PubMed  CAS  CrossRef  Google Scholar 

  • G. de Prat Gay, J. Ruiz-Sanz, J. L. Neira, L. S. Itzhaki, and A. R. Fersht, Folding of a nascent polypeptide chain in vitro: Cooperative formation of structure in a protein module, Proc. Natl. Acad. Sci. USA 92, 3683–3686 (1995).

    PubMed  CrossRef  Google Scholar 

  • L. S. Itzhaki, J. L. Neira, J. Ruiz-Sanz, G. de Prat Gay, and A. R. Fersht, Search for nucleation sites in smaller fragments of chymotrypsin inhibitor 2, J. Mol. Biol. 254, 289–304 (1995).

    PubMed  CAS  CrossRef  Google Scholar 

  • G. de Prat Gay and A. R. Fersht, Generation of a family of protein fragments for structure-folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue, Biochemistry 33, 7957–7963 (1994).

    PubMed  CAS  CrossRef  Google Scholar 

  • G. de Prat Gay, J. Ruiz-Sanz, J. L. Neira, F. J. Corrales, D. E. Otzen, A. G. Ladurner, and A. R. Fersht, Conformational pathway of the polypeptide chain of chymotrypsin inhibitor-2 growing from its N terminus in vitro. Parallels with the protein folding pathway, J. Mol. Biol. 254, 968–979 (1995).

    PubMed  CrossRef  Google Scholar 

  • G. de Prat Gay, J. Ruiz-Sanz, B. Davis, and A. R. Fersht, The structure of the transition state for the association of two fragments of the barley chymotrypsin inhibitor 2 to generate native-like protein: Implications for mechanism of protein folding, P. Natl. Acad. Sci. USA 91, 10943–10946 (1994).

    CAS  CrossRef  Google Scholar 

  • G. de Prat Gay, Spectroscopic characterization of the growing polypeptide chain of the barley chymotrypsin inhibitor-2, Arch. Biochem. Biophys. 335(1), 1–7 (1996).

    PubMed  CrossRef  Google Scholar 

  • P. A. Jennings and P. E. Wright, Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin, Science 262(5135), 892–896 (1993).

    PubMed  CAS  CrossRef  Google Scholar 

  • C. C. Chow, C. Chow, V. Rhagunathan, T. Huppert, E. Kimball, and S. Cavagnero, The chain length dependence of apomyoglobin folding: structural evolution from misfolded sheets to native helices, Biochemistry 42(23), 7090–7099 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. T. Reymond, G. Merutka, H. J. Dyson, and P. E. Wright, Folding propensities of peptide fragments of myoglobin, Protein Sci. 6, 706–716 (1997).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. P. Waltho, V. A. Feher, G. Merutka, H. J. Dyson, and P. E. Wright, Peptide models of protein-folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G-helice and H-helice of myoglobin, Biochemistry 32(25), 6337–6347 (1993).

    PubMed  CAS  CrossRef  Google Scholar 

  • C. Hetz and C. Soto, Protein misfolding and disease: the case of prion disorders, Cell. Mol. Life Sci. 60(1), 133–143 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • E. Zerovnik, Amyloid-fibril formation—Proposed mechanisms and relevance to conformational disease, Eur. J. Biochem. 269(14), 3362–3371 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • A. J. Thompson and C. J. Barrow, Protein conformational misfolding and amyloid formation: Characteristics of a new class of disorders that include Alzheimer's and prion diseases, Curr. Med. Chem. 9(19), 1751–1762 (2002).

    PubMed  CAS  Google Scholar 

  • C. M. Dobson, Principles of protein folding, misfolding and aggregation, Sem. Cell Dev. Biol. 15(1), 3–16 (2004).

    CAS  CrossRef  Google Scholar 

  • C. M. Dobson, Protein misfolding diseases: Getting out of shape, Nature 418(6899), 729–730 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. Fandrich, M. A. Fletcher, and C. M. Dobson, Amyloid fibrils from muscle myoglobin—Even an ordinary globular protein can assume a rogue guise if conditions are right, Nature 410(6825), 165–166 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • H. J. Dyson and P. E. Wright, Insights into protein folding by NMR, Annu. Rev. Phys. Chem. 47, 369–395 (1996).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. L. Tasayco and J. Carey, Ordered self-assembly of polypeptide fragments to form native-like dimeric Trp repressor, Science 255(5044), 594–597 (1992).

    PubMed  CAS  CrossRef  Google Scholar 

  • X.-M. Yang, W.-F. Yu, J.-H. Li, J. Fuchs, J. Rizo, and M. L. Tasayco, NMR evidence for the reassembly of an αvβ domain after cleavage of an α-helix: implications for protein design, J. Am. Chem. Soc. 120, 7985–7986 (1998).

    CAS  CrossRef  Google Scholar 

  • G. R. Parr and H. Taniuchi, Ordered complexes of cytochrome c fragments. Kinetics of formation of the reduced (ferrous) forms, J. Biol. Chem. 256(1), 125–132 (1981).

    PubMed  CAS  Google Scholar 

  • M. Juillerat and H. Taniuchi, Conformational dynamics of a biologically-active 3-fragments complex of horse cytochrome c, Proc. Natl. Acad. Sci. USA 79(6), 1825–1829 (1982).

    PubMed  CAS  CrossRef  Google Scholar 

  • H. Taniuchi, Formation of randomly paired disulfide bonds in des-(121–124)-ribonuclease after reduction and reoxidation, J. Biol. Chem. 245(20), 5459–5468 (1970).

    PubMed  CAS  Google Scholar 

  • R. R. Matheson and H. A. Scheraga, A method for predicting nucleation sites for protein folding based on hydrophobic contacts, Macromolecules 11(4), 819–829 (1978).

    CAS  CrossRef  Google Scholar 

  • L. G. Chavez and H. A. Scheraga, Immunological detemination of the order of folding of portions of the molecule during air oxidation of reduced ribonuclease, Biochemistry 16, 1849 (1977).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. Zerella, P. A. Evans, J. M. C. Ionides, L. C. Packman, B. W. Trotter, J. P. Mackay, and D. H. Williams, Autonomous folding of a peptide corresponding to the N-terminal β-hairpin from ubiquitin, Protein Sci. 8(6), 1320–1331 (1999).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. S. Searle, R. Zerella, D. H. Williams, and L. C. Packman, Native-like β-hairpin structure in an isolated fragment from ferrodoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues, Protein Eng. 9(7), 559–565 (1996).

    PubMed  CAS  CrossRef  Google Scholar 

  • F. J. Blanco, M. A. Jimenez, A. Pineda, M. Rico, J. Santoro, and J. Nieto, NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like β-hairpin formation, Biochemistry 33, 6004–6014 (1994).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. Hrabal, Z. Chen, S. James, H. P. J. Bennett, and F. Ni, The hairpin stack fold, a novel protein architecture for a new family of protein growth factors, Nat. Struct. Biol. 3, 747–752 (1996).

    PubMed  CAS  CrossRef  Google Scholar 

  • F. Rousseau, J. W. H. Schymkowitz, and L. S. Itzhaki, The unfolding story of three-dimensional domain swapping, Structure 11, 243–251 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • Y. Liu, G. Gotte, M. Libonati, and D. Eisenberg, A domain-swapped RNase A dimer with implications for amyloid formation, Nat. Struct. Biol. 8, 211–214 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. P. Schlunegger, M. J. Bennett, and D. Eisenberg, Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly, Adv. Protein Chem. 50, 61–122 (1997).

    PubMed  CAS  CrossRef  Google Scholar 

  • F. Rousseau, J. W. H. Schymkowitz, H. R. Wilkinson, and L. S. Itzhaki, Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues, Proc. Natl. Acad. Sci. USA 98(10), 5596–5601 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. M. Green, A. G. Gittis, A. K. Meeker, and E. E. Lattman, One-step evolution of a dimer from a monomeric protein, Nat. Struct. Biol. 2, 746–751 (1995).

    PubMed  CAS  CrossRef  Google Scholar 

  • D. Bolton, P. A. Evans, K. Stott, and R. W. Broadhurst, Structure and properties of a dimeric N-terminal fragment of human ubiquitin, J. Mol. Biol. 314, 773–787 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • D. D. Ojennus, M. R. Fleissner, and D. S. Wuttke, Reconstitution of a native-like SH2 domain from disordered peptide fragments examined by multidimensional heteronuclear NMR, Protein Sci. 10, 2162–2175 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. E. Georgescu, M. M. Garcia-Mira, M. L. Tasayco, and J. M. Sanchez-Ruiz, Heat capacity analysis of oxidized Escherichia coli thioredoxin fragments (1-73, 74-108) and their noncovalent complex, Eur. J. Biochem. 268, 1477–1485 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • C. Mendoza, F. Figueirido, and M. L. Tasayco, DSC studies of a family of natively disordered fragments from Escherichia coli thioredoxin: Surface burial in intrinsic coils, Biochemistry 42, 3349–3358 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. Santucci, L. Fiorucci, F. Sinibaldi, F. Polizio, A. Desideri, and F. Ascoli, The heme-containing N-fragment (residues 1-56) of cytochrome c is a bis-histidine functional system, Arch. Biochem. Biophys. 379(2), 331–336 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • K. A. Dill, Dominant forces in protein folding, Biochemistry 29(31), 7133–7155 (1990).

    PubMed  CAS  CrossRef  Google Scholar 

  • C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. (New York: Wiley, 1980).

    Google Scholar 

  • B. Widom, P. Bhimalapuram, and K. Koga, The hydrophobic effect, Phys. Chem. Chem. Physics 5(15), 3085–3093 (2003).

    CAS  Google Scholar 

  • N. T. Southall, K. A. Dill, and A. D. J. Haymet, A view of the hydrophobic effect, J. Phys. Chem. B 106(3), 521–533 (2002).

    CAS  CrossRef  Google Scholar 

  • F. M. Richards, Areas, volumes, packing, and protein structure, Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977).

    PubMed  CAS  CrossRef  Google Scholar 

  • M. H. Klapper, On the nature of the protein interior, Biochim. Biophys. Acta 229(3), 557–566 (1971).

    PubMed  CAS  Google Scholar 

  • C. Chothia, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 165, 1–14 (1976).

    CrossRef  Google Scholar 

  • G. D. Rose, A. R. Geselowitz, G. J. Lesser, R. H. Lee, and M. H. Zehfus, Hydrophobicity of amino acid residues in globular proteins, Science 229(4719), 834–838 (1985).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. R. Livingstone, R. S. Spolar, and M. T. Record, Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area, Biochemistry 30(17), 4237–4244 (1991).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. S. Spolar, J. H. Ha, and M. T. Record, Hydrophobic effect in protein folding and other noncovalent processes involving proteins, Proc. Natl. Acad. Sci. USA 86(21), 8382–8385 (1989).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. L. Baldwin, Temperature dependence of the hydrophobic interaction in protein folding, Proc. Natl. Acad. Sci. USA 83(21), 8069–8072 (1986).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. S. Spolar, J. R. Livingstone, and M. T. Record, Use of liquid-hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water, Biochemistry 31(16), 3947–3955 (1992).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. D. Pickett and M. J. E. Sternberg, Empirical scale of side-chain conformational entropy in protein folding, J. Mol. Biol. 231(3), 825–839 (1993).

    PubMed  CAS  CrossRef  Google Scholar 

  • K. A. Dill, Theory for the folding and stability of globular proteins, Biochemistry 24(6), 1501–1509 (1985).

    PubMed  CAS  CrossRef  Google Scholar 

  • W. J. Becktel and J. A. Schellman, Protein stability curves, Biopolymers 26(11), 1859–1877 (1987).

    PubMed  CAS  CrossRef  Google Scholar 

  • R. S. Spolar and M. T. Record, Coupling of local folding to site-specific binding of proteins to DNA, Science 263(5148), 777–784 (1994).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. Kyte and R. F. Doolittle, A simple model for displaying the hydrophobic character of a protein, J. Mol. Biol. 157, 105–132 (1982).

    PubMed  CAS  CrossRef  Google Scholar 

  • N. Kurt and S. Cavagnero, The burial of solvent-accessible surface area is a predictor of polypeptide folding and misfolding as a function of chain elongation, J. Am. Chem. Soc. 127(45), 15690–15691 (2005).

    PubMed  CAS  CrossRef  Google Scholar 

  • O. V. Tsodikov, M. T. Record, and Y. V. Sergeev, Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature, J. Comput. Chem. 23(6), 600–609 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • N. Kurt and S. Cavagnero, The burial of solvent-accessible surface area is a predictor of polypeptide folding and misfolding as a function of chain elongation, J. Am. Chem. Soc. 127(45), 15690–15691 (2005).

    PubMed  CAS  CrossRef  Google Scholar 

  • H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, The Protein Data Bank, Nucleic Acids Res. 28, 235–242 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. Cammer, A. Tropsha, and C. W. Carter, Protein Structure Workbench, contact order profile calculation, http://mmlsun4.pha.unc.edu/psw/3dworkbench.html.

    Google Scholar 

  • D. B. Sherman, S. X. Zhang, J. B. Pitner, and A. Tropsha, Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method, Proteins 56, 828–838 (2004).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. B. Zimmerman, and A. P. Minton, Macromolecular crowding: biochemical, biophysical and physiological consequences, Annu. Rev. Biophys. Bioeng. 22, 27–75 (1993).

    CAS  Google Scholar 

  • M. T. Record, D. S. Courtenay, D. S. Cayley, and H. J. Guttman, Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments, Trends Biochem. Sci. 23, 190–194 (1998).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. Han and J. Herzfeld, Macromolecular diffusion in crowded solutions, Biophys. J. 65, 1155–1161 (1993).

    PubMed  CAS  Google Scholar 

  • B. van den Berg, R. Wain, C. M. Dobson, and R. J. Ellis, Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell, EMBO J. 19(15), 3870–3875 (2000).

    PubMed  CrossRef  Google Scholar 

  • A. P. Minton, Implications of molecular crowding on protein assembly, Curr. Opin. Struct. Biol. 10, 34–39 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • A. P. Minton, Protein folding: Thickening the broth, Curr. Biol. 10(3), R97–R99 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, The complete atomic structure of the large ribosomal subunit at 2.4 Angstrom resolution, Science 289, 905–920 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • G. Kramer, W. Kudlicki, and B. Hardesty, Cotranslational folding—omnia mea mecum porto? Int. J. Biochem. Cell. B. 33, 541–553 (2001).

    CAS  CrossRef  Google Scholar 

  • A. L. Goldberg, Protein degradation and protection against misfolded or damaged proteins, Nature 426, 895–899 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • A. L. Goldberg and J. F. Dice, intracellular protein degradation in mammalian and bacterial cells, Annu. Rev. Biochem. 43, 835–869 (1974).

    PubMed  CAS  CrossRef  Google Scholar 

  • U. Schubert, L. C. Anton, J. Gibbs, C. C. Norbury, J. W. Yewdell, and J. R. Bennink, Rapid degradation of a large fraction of newly synthesized proteins by protesomes, Nature 404, 770–774 (2000).

    PubMed  CAS  CrossRef  Google Scholar 

  • F. U. Hartl and M. Hayer-Hartl, Molecular chaperones in the cytosol: from nascent chain to folded protein, Science 295, 1852–1858 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. Frydman, Folding of newly translated proteins in vivo: the role of molecular chaperones, Annu. Rev. Biochem. 70, 603–647 (2001).

    PubMed  CAS  CrossRef  Google Scholar 

  • T. Hesterkamp, S. Hauser, H. Lutcke, and B. Bukau, Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains, Proc. Natl. Acad. Sci. USA 93, 4437–4441 (1996).

    PubMed  CAS  CrossRef  Google Scholar 

  • E. A. Craig, H. C. Eisenman, and H. A. Hundley, Ribosome-tethered molecular chaperones: the first line of defense against misfolding? Curr. Opin. Microbiol. 6, 157–162 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

  • S. Rospert, Y. Dubaquie, and M. Gautschi, Nascent-polypeptide-associated complex, Cell. Mol. Life Sci. 59, 1632–1639 (2002).

    PubMed  CAS  CrossRef  Google Scholar 

  • B. Bukau and A. L. Horwich, The Hsp70 and Hsp60 chaperone machines, Cell 92, 351–366 (1998).

    PubMed  CAS  CrossRef  Google Scholar 

  • J. C. Young, J. M. Barral, and F. U. Hartl, More than folding: localized functions of cytosolic chaperones, Trends Biochem. Sci. 28(10), 541–547 (2003).

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Cavagnero, S., Kurt, N. (2006). Folding and Misfolding as a Function of Polypeptide Chain Elongation. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_10

Download citation